		Semileptonic decays Belle II V _{ub} measurements V _{cb} measurements Summary
--	--	--

Exclusive semileptonic decays at Belle II

Philipp Horak¹ on behalf of the Belle II collaboration

¹HEPHY, Austrian Academy of Sciences Funded by FWF Project P34529-N

CIPANP 2022

September 3, 2022

Semileptonic decays			
000			

Semileptonic decays

- SM precision measurements
 - Semileptonic decays used to measure the CKM matrix elements $|V_{cb}|$ and $|V_{ub}|$
- Potential probes of new physics
 - $\sim 3\sigma$ discrepancy from SM in measurements of ratios

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu_{\tau})}{\mathcal{B}(B \to D^{(*)}\ell\nu_{\ell})} \ (\ell = \mu, e)$$

Semileptonic decays ○●○	V _{ub} measurements 0000000	V _{cb} measurements 0000	

Status of |V_{cb}| and $V_{\mu b}$

Exclusive: Reconstruct specific final states

Measure all visible final state particles

ie:

- $|V_{cb}|: B \to D^{(*)}\ell\nu$ $|V_{ub}|: B \to \pi\ell\nu$
- Theory: Lattice QCD
- $\blacksquare \rightarrow \text{covered today}$

- **Inclusive**: Measure general $X\ell\nu$ decay
 - Measure some particles in decay
 - Assign remaining unmeasured parts to Х
- i.e.:

$$|V_{cb}|:B\to X_c\ell\nu$$

- $|V_{ub}|: B \to X_u \ell \nu$
- Theory: HQET
- \blacksquare \rightarrow talk by Frank Meier on Tuesday

Semileptonic decays ○○●		V _{ub} measurements 0000000	V _{cb} measurements 0000	
Status of $ V_{cb} $ and	$V_{ub} $			

• $\sim 3.3\sigma$ discrepancy between inclusive and exclusive $|V_{cb}|$ and $|V_{ub}|$ measurements

	Belle II ●0000	V _{ub} measurements 0000000	V _{cb} measurements 0000	
SuperKEKR and Bell	~ II			

upernend and <u>Delle</u>

- Belle II:
 - Hermetic detector
 - 3-dimensional missing momentum measurements
 - Important for studying events with missing energy
 - Particle identification
 - \blacksquare μ ID superior to Belle
 - e and K ID not at Belle level yet but improving
 - \blacksquare high γ detection efficiency

	Belle II		
	00000		

Luminosity

- Data-taking since 2019
- \blacksquare With June 2022 went into Long Shutdown 1
- Recorded data up until LS1: 424 fb⁻¹ (BaBar: 425 fb⁻¹, Belle: 711 fb⁻¹)
- Current results: 189 fb⁻¹
- Long term goal 50 ab^{-1} by > 2030

	Belle II		
	00000		

Untagged vs Tagged

- Reconstruct only B_{sig}
- High efficiency, high backgrounds

- B_{sig} and B_{tag} are reconstructed
- Tag can be hadronic or semileptonic
- Precisely determine missing neutrino momentum

Terminology Untagged - Tagged Only one or both B mesons reconstructed per event Exclusive - Inclusive Reconstruction of B_{sig} → specific decay or B_{sig} → Xℓν

	Belle II 000●0	V _{ub} measurements 0000000	V _{cb} measurements 0000	
- Full Event Interpreta	ation			

Full Event Interpretation algorithm [Comput Softw Big Sci 3, 6 (2019)] to reconstruct B_{tag}

- Reconstruct B candidate with all combination of daughters
- Calculate signal probability with multivariate classifiers

Hadronic FEI

- Over 200 BDTs to reconstruct O(10000) distinct decay chains
- $\epsilon_{B^+} pprox 0.5\%$, $\epsilon_{B^0} pprox 0.3\%$ at $\sim 15\%$ purity
 - $\blacksquare~\sim$ 50% increase over Belle tag

	Belle II 0000●	V _{ub} measurements 0000000	V _{cb} measurements 0000	
A 1				

Analyses

Featured analyses with 189 fb^{-1}

Exclusive CKM measurements

Analyses covered	$ V_{ub} $	$ V_{cb} $
Untagged	$B ightarrow \pi\ell u$ (2022)	$B ightarrow D\ell u$ (2022)
Tagged	$B ightarrow\pi e u$ (2022)	$B ightarrow D^{*}\ell u$ (2022)

Branching ratio measurements

• Tagged $\mathcal{B}(B \to \rho \ell \nu)$ (2022)

	V _{ub} measurements ●000000	V _{cb} measurements 0000	

Untagged $|V_{ub}|$ via $B \to \pi \ell \nu$

- Reconstruct $B^0 o \pi^{\pm} \ell \nu$ with $\ell = (e, \mu)$
- Main challenge: large backgrounds from continuum and other semileptonic decays
- Separate boosted decision trees to suppress background
- Signal extraction via binned 2D fit using ΔE and M_{bc}

$$\Delta E = E_B^* - E_{
m beam}^*$$

 $M_{bc} = \sqrt{(E_{
m beam}^*)^2 - (p_B^*)^2}$

 $B
ightarrow \pi e
u_e$ Signal

Untagged $|V_{ub}|$ via $B o \pi \ell u$

Untagged analysis: p_B not known, estimated with new method (extension of BABAR's diamond frame [Phys. Rev. D 74, 092004]):

Calculate angle between B meson and combined $\pi \ell = Y$

$$\cos \theta_{BY} = \frac{2 E_B^* E_Y^* - m_B^2 - m_Y^2}{2|p_B^*||p_Y^*|}$$

- Calculate Rest of Event (ROE) momentum p_{ROE}
- Likely direction on $\cos \theta_{BY}$ cone: close to back-to-back of p_{ROE}
- Build weighted average over 10 uniformly distributed vectors on cone with weights

$$\frac{1}{2} (1 - \hat{p}_{\mathsf{ROE}} \cdot \hat{p}_{\mathsf{B}}) \sin^2 \theta_B$$

Differential branching ratios dependent on $|V_{ub}|$ and q^2

$$rac{d {\cal B}(B
ightarrow \pi \ell
u)}{d q^2} \propto \left|V_{ub}
ight|^2 imes f_+(q^2)$$

To extract $|V_{ub}|$ partial branching fractions measured with independent fits in 6 q^2 bins

Post-Fit

		V _{ub} measurements 000●000	V _{cb} measurements 0000	
Untagged $ V_{ub} $ via B -	$\rightarrow \pi \ell \nu$			

- \blacksquare Combine e and μ spectra in weighted average
- Fit partial branching ratios to BCL expansion [Phys. Rev. D 79, 013008] to determine $|V_{ub}|$
- FNAL/MILC [Phys. Rev. D 92, 014024] Lattice QCD constraints included as nuisance parameters

• Reconstruct
$$B^0 o \pi^\pm e \nu_e$$
 and $B^\pm o \pi^0 e \nu_e$

- Hadronic FEI
- Clean q^2 reconstruction thanks to tag: $q^2 = (p_{e^+e^-} p_{B_{tag}} p_{\pi})^2$
- Fit $M^2_{miss} = (p_{e^+e^-} p_{B_{tag}} p_e p_\pi)^2$ in 3 q^2 bins

			V _{ub} measurements 00000●0	V _{cb} measurements 0000	
Tagged	$ V_{ub} $ via $B \to c$	$\pi e u$			

- Fit partial branching ratios to BCL expansion [Phys. Rev. D 79, 013008] to determine $|V_{ub}|$
- FNAL/MILC [Phys. Rev. D 92, 014024] Lattice QCD constraints included as nuisance parameters

Leading systematic: Tag calibration factor

		V _{ub} measurements 000000●	V _{cb} measurements 0000	
-				

Tagged $\mathcal{B}(B o \rho \ell \nu)$

- Tagged measurement of $B^0 \to \rho^{\pm} \ell \nu$ and $B^{\pm} \to \rho^0 \ell \nu$ with $\rho \to \pi \pi$
 - Potential new avenue to measure $|V_{ub}|$ with independent sample
 - \blacksquare Previously observed tensions in both ρ^\pm and ρ^0 modes
- 2-dimensional fit in $M_{\pi\pi}$ and M_{miss}^2 to measure branching fractions
- BDT to suppress continuum background

$$\begin{split} \mathcal{B}(B^0 \to \rho^- \ell^+ \nu_\ell) &= (4.12 \pm 0.64_{\text{stat}} \pm 1.16_{\text{sys}}) \times 10^{-4}, \\ & \text{PDG:} (2.94 \pm 0.11 \pm 0.18) \times 10^{-4} \\ \mathcal{B}(B^+ \to \rho^0 \ell^+ \nu_\ell) &= (1.77 \pm 0.23_{\text{stat}} \pm 0.36_{\text{sys}}) \times 10^{-4} \\ & \text{PDG:} (1.58 \pm 0.11) \times 10^{-4} \end{split}$$

• Large systematic from $B \rightarrow \pi \pi \ell \nu$ background

	Belle II 00000	V _{ub} measurements 0000000	V _{cb} measurements ●000	

Untagged $|V_{cb}|$ via $B \to D\ell\nu$

- Reconstruct $B^{\pm} \rightarrow D^{0}\ell\nu$ and $B^{0} \rightarrow D^{\pm}\ell\nu$ with $\ell = (e, \mu)$ and $D \rightarrow K\pi(\pi)$
- Main challenge: large backgrounds from D^{*}ℓν
- Signal extraction via 1 dimensional fit of angle between *B* and *Y*(*D*ℓ)
 - Only between -1 and 1 for signal

$$\cos \theta_{BY} = \frac{2 E_B^* E_Y^* - m_B^2 - m_Y^2}{2|p_B^*||p_Y^*|}$$

- D^* veto to reduce $B \to D^* \ell \nu$ candidates
 - Reconstruct slow pion π_s with p < 0.35 GeV
 - If π_s and D candidate can be combined to D^* with $m_D^* - m_D \in [140, 150] \text{ MeV} \rightarrow \text{veto}$ event

	V _{ub} measurements 0000000	V _{cb} measurements ○●○○	

Untagged $|V_{cb}|$ via $B \rightarrow D\ell \nu$

• Differential decay width proportional to V_{cb} and hadronic recoil w

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}w} \left(B \to D\ell\nu_{\ell}\right) = \frac{G_F^2}{48\pi^3} (m_B + m_D)^2 m_D^3 \eta_{EW} |V_{cb}|^2 (w^2 - 1)^{3/2} \mathcal{G}(w)^2$$

- with $w = \frac{P_B \cdot P_D}{m_B m_D} = \frac{m_B^2 + m_D^2 q^2}{2m_B m_D}$ and form factor $\mathcal{G}(w)$
- Fit form factor to differential decay rates in 10 bins of w
- BGL (N=3) parametrization [Phys. Rev. D 56, 6895 (1997)]
- FNAL/MILC [Phys. Rev. D 92, 034506] and HPQCD Lattice QCD [Phys. Rev. D 92, 054510 (2015)] as nuisance parameters

 $|V_{cb}| = (38.3 \pm 1.2) \times 10^{-3}$ World-average exclusive $D\ell\nu$: [arXiv:2206.07501] $(39.14 \pm 0.92_{exp} \pm 0.36_{th}) \times 10^{-3}$

- Consistent with the exclusive world average
- $\blacksquare \sim 3\%$ error, comparable to the past measurements

- Tagged measurement of $B^0 \to D^{*\pm} \ell \nu$ with $\ell = (e, \mu)$, $D^{*-} \to D^0 \pi_s^-$ and $D^0 \to K^- \pi^+$
- High signal purity thanks to tagging and clean signature of $D^*\ell
 u$ mode
- Fit m_{miss}^2 in 10 bins of w

		V _{ub} measurements 0000000	V _{cb} measurements 000●	
Tagged $ V_{ch} $ via $B \rightarrow$	$D^*\ell u$			

Fit CLN parametrized form factor [NPB530, 153 (1998)] to differential decay rates

 $|V_{cb}| = (37.9 \pm 2.7) \times 10^{-3}$

 $\begin{array}{l} \mbox{World-average exclusive $D^* \ell \nu : [arXiv:2206.07501]$} \\ \mbox{(38.46} \pm 0.40_{exp} \pm 0.55_{th}) \times 10^{-3} \end{array}$

 \blacksquare Major systematic errors: slow π efficiency and tag calibration

Summary

- Improved measurements of $|V_{cb}|$ and $|V_{ub}|$ are essential to increase the constraining power of the Unitarity triangle fit
- First exclusive measurements of $|V_{cb}|$ and $|V_{ub}|$ at Belle II with 189 fb⁻¹
- Results are in agreement with previous results and approaching their precision
- Soon: $|V_{cb}|$ from untagged $D^* \ell \nu$, A_{fb} in $D^* \ell \nu$, first $R(D^*)$ results and many more!
- Related talks:
 - Frank Meier: Belle II results on inclusive $B \rightarrow X \ell \nu$
 - Koji Hara: LFU measurements in semileptonic $b
 ightarrow c \ell
 u$ decays