Electroweak and radiative penguin decays at Belle II

Lucas Martel lucas.martel@iphc.cnrs.fr On behalf of the Belle II collaboration

CIPANP 2022, Aug 29 - Sep 04

Electroweak and radiative penguin decays

Electroweak penguins:

- $b \rightarrow s(d)$ flavour changing neutral current transitions **not possible at tree level** in the Standard Model (SM).
- Branching fractions $\simeq 10^{-4} 10^{-7} \Rightarrow$ "rare" decays.
- Highly sensitive to beyond-SM mediator contributions, affecting:
 - Branching fractions.
 - Angular distributions.
 - CP asymmetries.
 - Kinematics.

Electroweak radiative penguin:

Belle II at superKEKB (1/3)

SuperKEKB: 4.0 GeV e^+ - 7.0 GeV e^- collider.

Luminosity world record: 4.7×10^{34} cm⁻²s⁻¹ On June 22, 2022.

Current status:

- Collected 424 fb^{-1} of data since 2019.
- Here we show studies based on 63 fb⁻¹ and 189 fb⁻¹ datasets.

On-resonance data:

- $\sqrt{s} = 10.58 \text{ GeV}.$
- $\blacksquare \simeq 1\%$ of collisions produce $B\bar{B}$ pairs.
- Clean B sample.

Off-resonance data:

- 60 MeV below $\Upsilon(4S)$ resonance.
- $e^+e^- \rightarrow q\bar{q}$ events.
- Control sample for continuum background.

Belle II at superKEKB (2/3)

KL and muon detector Resistive Plate Counter (barrel outer lavers) Scintillator + WLSF + MPPC (end-caps, inner 2 barrel layers) **FM Calorimeter** CsI(TI), waveform sampling electronic Particle Identification electrons (7 GeV) Time-of-Propagation counter (barrel) Prox. focusing Aerogel BICH (forward) Vertex Detector 2 layers Si Pixels (DEPFET) + 4 layers Si double sided strip DSSD positrons (4 GeV) Central Drift Chamber Smaller cell size, long lever arm

Belle II

Belle II detector:

- Flavour universal : similar performances for electrons and muons.
- Optimized for high instantaneous luminosity.
- Collision of point-like particles and 4π detector coverage.

Belle II at superKEKB (3/3)

[[]BELLE2-NOTE-PL-2021-008]

[BELLE2-NOTE-PL-2020-024]

⇒ Strengths: Precision measurements, rare and partially invisible decays (ex: $B \rightarrow D\tau\bar{\nu}$). Just started a shutdown to upgrade the detector and improve the beampipe.

Measurement methods

Some decays studied here have missing kinetic information in the final state of the signal B meson (fully inclusive measurements or neutrinos in the final state).

 \implies Specific to e^+e^- B-factories: use the accompanying *B* meson (tag-side) to constrain the signal-side.

The Full Event Interpretation

How to reconstruct the tag-side ?

- Reconstruction using the Full Event Interpretation algorithm (FEI).
- Use final state particles to hierarchically reconstruct the most probable B_{tag}.
- Predefined B meson decay lists are used (ex: fully hadronic decays).
- Probability of each candidate to be correct estimated by a multivariate classifier.
- Inclusive tagging does not need to use this algorithm.

Towards R_K , R_{K^*} (1/2)

Belle II able to provide independent checks of ${\bf R}_{{\bf K}^*}$ anomalies ([JHEP 08(2017)055]) with enough data (few ab $^{-1}$). Here search with $189~{\rm fb}^{-1}$

 $\mathbf{R}_{\mathbf{K}*} = \frac{\mathcal{B}(\mathbf{B} \rightarrow \mathbf{K}^* \boldsymbol{\mu}^+ \boldsymbol{\mu}^-)}{\mathcal{B}(\mathbf{B} \rightarrow \mathbf{K}^* \mathbf{e}^+ \mathbf{e}^-)}$

- First step towards $\mathbf{R}_{\mathbf{K}^*}$: observation of $B \to K^*(892)l^+l^-$.
- Reconstruct K^* from K^+ or K^0_S with π^+ or π^0 .
- Background suppression: dilepton mass suppression (e.g $J/\Psi \rightarrow ll$, photon conversion). Boosted Decision Tree (BDT) to suppress $e^+e^- \rightarrow q\bar{q}$.
- Extract signal yield from 2-dimensional fit to M_{bc} and $\Delta E.$
- Precision for e and µ channels in same ballpark (≈ 25 - 30%).

$$\mathrm{M_{bc}} = \sqrt{\mathrm{E_{beam}^2} - \mathrm{p_B^{*2}}}$$

$$\Delta \mathbf{E} = \mathbf{E}^*_{\mathbf{B}} - \mathbf{E}_{\mathbf{beam}}$$

Mode	Observed events	Branching Fraction ($\times 10^{-6}$)	World average ($ imes 10^{-6}$)
$B \rightarrow K^* e^+ e^-$	22 ± 6	$1.42 \pm 0.48 \pm 0.09$	1.19 ± 0.20
$B \to K^* \mu^+ \mu^-$	18 ± 6	$1.19 \pm 0.31^{+0.08}_{-0.07}$	1.06 ± 0.09

Towards R_K , R_{K^*} (2/2)

arXiv: 2207.11275

Measurement of $B \to J/_{\Psi} K$.

- Not a $b \rightarrow s$ transition, **but** an important control channel for $\mathbf{R}_{\mathbf{K}}$.
- Proceeds via a $b \rightarrow c$ tree level transition.

Recontruct $B^+ \to K^+ J/_{\Psi}$ and $B^0 \to K^0_S J/_{\Psi}$ decays with $J/_{\Psi} \to e^+ e^- / \mu^+ \mu^-$.

Signal yield extracted from fit to M_{bc} and ΔE.

Observable	Belle II	Belle (2021)
$R_{K^+}(J/\Psi)$	$1.009 \pm 0.022 \pm 0.008$	$0.0994 \pm 0.011 \pm 0.010$
$R_{K^0_S}(J/\Psi)$	$1.042\pm 0.042\pm 0.008$	$0.0993 \pm 0.015 \pm 0.010$

[JHEP, 03, 105 (2021)]

Complementary to $b \rightarrow sll$. Avoids some theoretical uncertainties (no amplitude with virtual photon).

Challenges:

- **Rare**: $Br_{SM} = (4.6 \pm 0.5) \times 10^{-6}$ [arXiv: 1606.00916].
- Two neutrinos in the final state \Rightarrow unique to Belle II.
- Previous analyses used tagged approaches: low efficiency.
 - No signal observed thus far.
 - $Br(\breve{B}^+ \to K^+ \nu \bar{\nu}) < 1.6 \times 10^{-5}$ at 90% CL.
- Here, an **inclusive** approach is used to search for $B^+ \rightarrow K^+ \nu \bar{\nu}$ with 63 fb⁻¹.
 - **Single candidate**: single highest p_T kaon track
 - Rest of event: remaining tracks and energy deposits (tag-side B meson).
 - Use two sequential BDTs trained on kinematics, event-topology, vertexing, etc. to suppress background.

- BDT performance on data tested using $B^+ \to K^+ J/_{\Psi}(\mu^+ \mu^-)$.
- Signal from maximum likelihood fit in bins of $p_T(K^+)$ and BDT output.
- No statistically significant signal observed.
- Upper limit at 90% CL: $Br(B^+ \to K^+ \nu \bar{\nu}) < 4.1 \times 10^{-5}$.
- Belle II capable of providing world-leading measurements in the near future.

$B ightarrow X_s \gamma$ with hadronic tagging (1/3)

 $b \rightarrow s\gamma$ has higher rates and is sensitive differently to NP compared to $b \rightarrow s\nu\bar{\nu}$. All $b \rightarrow s\gamma$ final states are considered \Rightarrow **inclusive** search. In addition to studying NP (H^{\pm} mass), allows to extract:

- Several SM parameters (e.g m_b) [RevModPhys.88.035008].
- Shape function describing the motion of b-quark inside B meson [PRL 127, 102001].

Measurement:

- Inclusive measurement: only photon constrained on signal side.
- Large background contribution ⇒ challenging to suppress without losing "inclusiveness".
- Tag-side *B* meson reconstructed with hadronic tagging ⇒ high purity sample, direct access to E_{γ}^{B} , photon energy in *B* rest frame.
- Hadronic tagged study performed once by BaBar (210 fb⁻¹) [PRD 77, 051103].

$B o X_s \gamma$ with hadronic tagging (2/3)

- **Signal candidate**: Highest energy photon in event, $E_{\gamma}^B > 1.4$ GeV.
- General background suppression: BDT trained to suppress events compatible with $e^+e^- \rightarrow q\bar{q}$.
 - \Rightarrow only use features uncorrelated to E_{γ}^B and M_{bc} .
- Signal-side background suppression (photon): Veto $\eta \rightarrow \gamma \gamma$ and $\pi^0 \rightarrow \gamma \gamma$.
- Tag-side background suppression: $B_{tag} M_{bc}$ fits in bins of $E_{\gamma}^B \Rightarrow$ correctly tagged events count.

Selection and fit validated on $1.4 < E_{\gamma}^B < 1.8$ GeV.

$B ightarrow X_s \gamma$ with hadronic tagging (3/3)

Still correctly tagged non- $B \rightarrow X_s \gamma$ background remaining. \Rightarrow Simulation used to estimate the size of this background.

- Main systematic effect comes from background data/simulation discrepancies.
- **Competitive with BaBar** (210 fb⁻¹) **measurement:** $3.66 \pm 0.55 \pm 0.60 \times 10^{-4}$ ($E_{\gamma}^{P} > 1.9$ GeV) [PRD 77, 051103]
- Consistent with world average: $3.49 \pm 0.19 \times 10^{-4}$

Summary

- $b \rightarrow s$ transitions are powerful tools to probe the SM.
- Belle II is at the center of the studies on these modes, thanks to its unique access to radiative and missing energy modes.

Measurements presented:

•
$$B \to K^* l^+ l^-$$
 and $B \to K J/\Psi \Rightarrow$ First steps towards $\mathbf{R}_{\mathbf{K}}$. (189 fb⁻¹)

■ $B^+ \to K^+ \nu \bar{\nu} \Rightarrow$ New approach, upper limit on branching fraction. (63 fb⁻¹)

■ $B \to X_s \gamma \Rightarrow$ First Belle II inclusive measurement of the branching fraction (189 fb⁻¹)

Belle II will provide new exciting EW and Radiative penguins measurements using the full data collected before shutdown.

Thank you for listening !

Measurement of $B \to K^* ll$

Measurement of $B \rightarrow K^* ll$

Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
$R_K ([1.0, 6.0] \text{GeV}^2)$	28%	11%	3.6%
$R_K \ (> 14.4 {\rm GeV^2})$	30%	12%	3.6%
R_{K^*} ([1.0, 6.0] GeV ²)	26%	10%	3.2%
$R_{K^*} \ (> 14.4 {\rm GeV^2})$	24%	9.2%	2.8%

Figure: Prospects for Belle II sensitivity for R_K/R_{K^*} measurements.

Angular analysis in $B \to K^* ll$

The differential decay rate is given by :

 $\begin{array}{ll} \frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{d\cos\theta_l d\cos\theta_K d\phi dq^2} &=& \frac{9}{32\pi} [\frac{3}{4}(1 - F_L) sin^2 \theta_K + F_L cos^2 \theta_K + \frac{1}{4}(1 - F_L) sin^2 \theta_K cos 2\theta_l - F_L cos^2 \theta_K cos 2\theta_l + S_3 sin^2 \theta_K sin^2 \theta_l cos 2\phi + S_4 sin 2\theta_K sin 2\theta_l cos \phi + S_5 sin 2\theta_K sin \theta_l cos \phi + S_6 sin^2 \theta_K cos \theta_l + S_7 sin 2\theta_K sin \theta_l sin \phi + S_8 sin 2\theta_K sin 2\theta_l sin \phi + S_9 sin^2 \theta_K sin^2 \theta_l sin 2\phi] \end{array}$

- 8 independent observables in the lepton massless limit:
 - F_L: Fraction of the longitudinal polarization of the K^{*}.
 - S₆: The forward-backward assymetry of the *ll* system.
 - S_{3,4,5,7,8,9}: The remaining CP-averaged observables.
- F_L and S_i are function of q^2 .

•
$$P'_i$$
 and Q_i :

$$P'_{i=4,5,7,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1-F_L)}}$$
$$Q_i = P^{\mu}_i - P^e_i, i = 4,5$$

Any deviation from zero for Q_i would indicate NP.

Measurement of $B \to J/_{\Psi} K$

Measurement of $B \to J/_{\Psi} K$

TABLE I: Partial branching fraction measu	rement results and uncertainties. Note that
signal efficiency and background modelling	uncertainties are correlated (see Sections 7.2
and	7.3).

E^B_γ [GeV]	$\frac{1}{\Gamma_B} \frac{d\Gamma_i}{dE_{\gamma}} (10^{-4})$	Statistical	Systematic	Fit procedure	Signal efficiency	Background modelling	Other
1.8 - 2.0	0.48	0.54	0.64	0.42	0.03	0.49	0.09
2.0-2.1	0.57	0.31	0.25	0.17	0.06	0.17	0.07
2.1 - 2.2	0.13	0.26	0.16	0.13	0.01	0.11	0.01
2.2 - 2.3	0.41	0.22	0.10	0.07	0.05	0.04	0.02
2.3 - 2.4	0.48	0.22	0.10	0.06	0.06	0.02	0.05
2.4 - 2.5	0.75	0.19	0.14	0.04	0.09	0.02	0.09
2.5 - 2.6	0.71	0.13	0.10	0.02	0.09	0.00	0.04

Measurement of $B \to X_s \gamma$

