
Belle II & SuperKEKB Accelerator

- Belle II is a multipurpose experiment at the SuperKEKB collider located at KEK (Tsukuba, Japan)
 - Asymmetric-energy e+ (4 GeV) e- (7 GeV) collider with E_{CM} near the Y(4S) resonance (~10.6 GeV)
- Aims to collect a 50 ab^{-1} data sample (50 \times Belle)
- Final design instantaneous luminosity of 6.5×10^{35} cm⁻² s⁻¹ (30 × that of KEKB) by
 - reducing beam size by factor 20 ("nano beams")
 - increasing beam current by factor 1.5

Belle II Detector

K_L and μ detector:

RPC + scintillator w/ SiPM's

 μ ID: 1% π/K fake rate at $\varepsilon_{\mu} = 95\%$

EM Calorimeter

8k CsI(Tl) crystals, 16 X_0 , waveform sampling

*e*ID: 0.01% fake rate at $\varepsilon_e = 95\%$

electrons (7 GeV)

Beryllium beam pipe

2 cm diameter

Vertex Detector

2 layers pixels + 4 layers DSSD

Vertex resolution $\sim 15 \mu m$

Particle Identification

Time-of-propagation counter (barrel), Proximity focusing Aerogel RICH (forward)

 K/π separation: 1.8% π fake rate at $\varepsilon_K = 90\%$

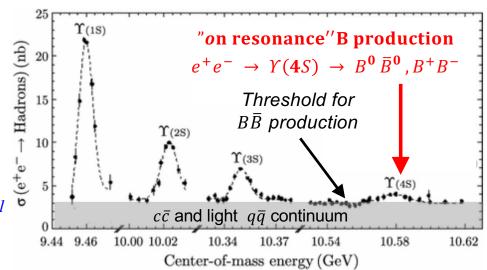
positrons (4 GeV)

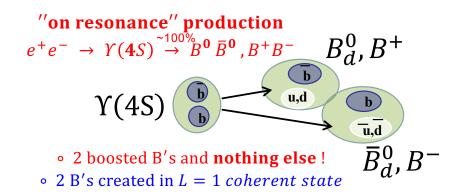
Central Drift Chamber

He(50%):C₂H₆(50%), 56 layers

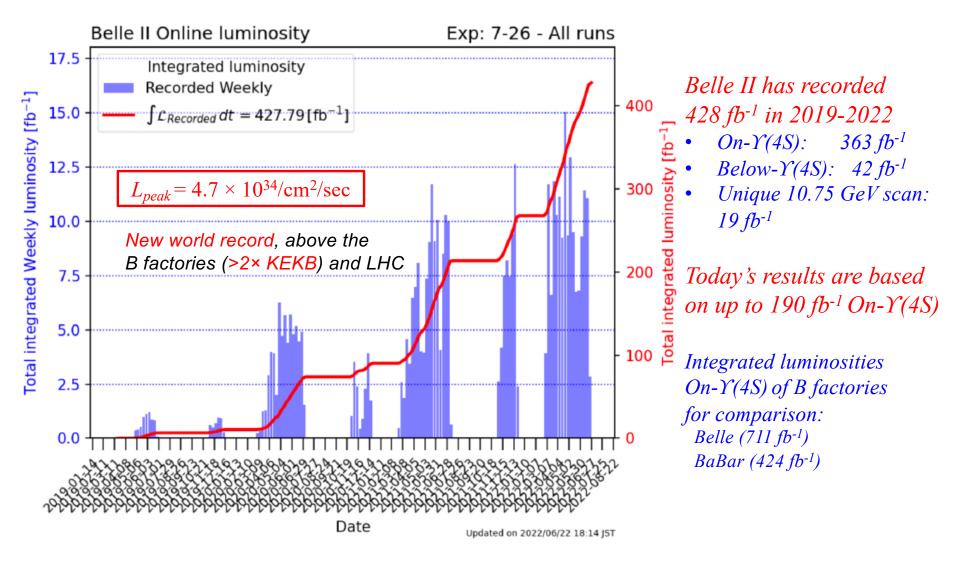
 p_T resolution $\sim 0.4 \%$

Belle II reuses the structure, solenoid, CsI(TI) crystals, and part of the barrel RPCs from the original Belle detector.


Belle II, a Super Heavy Flavor Factory


Belle II is ...

- a Super **B** Factory: $1.1 \times 10^9 \, B\bar{B}$ pairs per ab^{-1}
- a Super Charm Factory: $1.3 \times 10^9 \, c\bar{c}$ pairs per ab^{-1}
- a Super τ Factory: $0.9 \times 10^9 \tau^+ \tau^-$ pairs per ab^{-1}


... and in addition, the clean e+e- environment allows the study/search of

- Charmonium & bottomonium (SM & exotic X, Y, Z)
- *Tetra- and penta-quarks*
- Dark particles (dark γ/Higgs, ALPs, LLPs), ...

Belle II Luminosity

Many Belle II results are starting to become statistically competitive, some measurements are already world's best!

B Meson Reconstruction Techniques

Exploit kinematics of $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\bar{B}$ for signal selection

$$M_{bc} = \sqrt{(E_{beam}^*)^2 - (p_B^*)^2}$$

$$\Delta E = E_B^* - E_{beam}^*$$

$$Correctly$$
reconstructed
$$BB \text{ events}$$

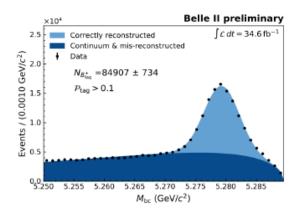
$$S22 \text{ 521 522 523 524 525 528 527 528 529 53}$$

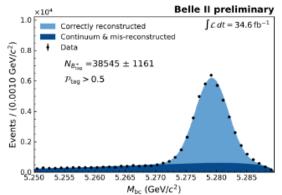
$$M_{bc}(\text{GeV})$$

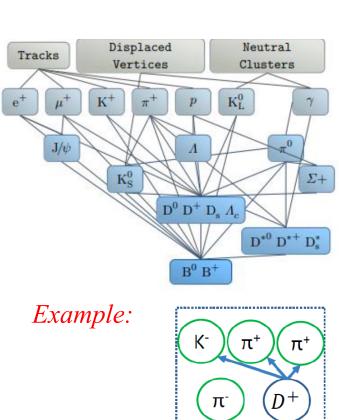
$$AE = E_B^* - E_{beam}^*$$

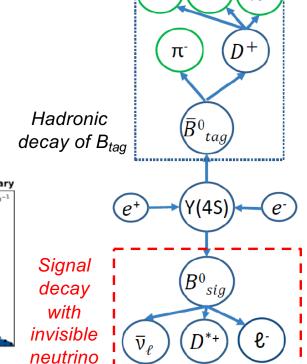
$$AE = E_B^* - E_{beam}^*$$

$$AE = E_B^* - E_{beam}^*$$


$$Event shape variables$$


$$Signat \text{ (spherical)}$$

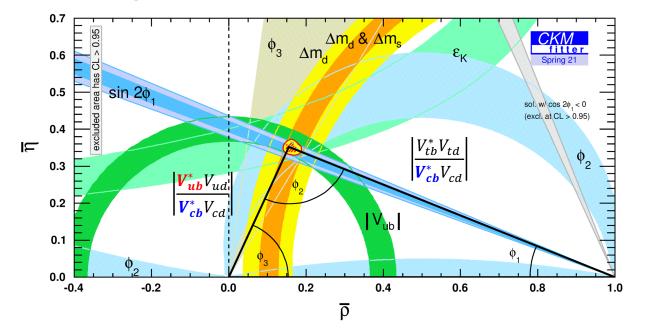

Full Event Interpretation


Comput. Softw. Big Sci. 3, 6 (2019)

- Reconstruct one $B(B_{tag})$ fully w/ multivar. classifiers (hadr. and SL final states)
 - >200 BDTs reconstr. O(10k) decay chains
 - Samples dominated by large-BF, low-background modes
- Properties of B_{sig} (e.g. momentum) and invisible daughters (e.g. "missing mass") can be calculated with B_{tag} momentum
- \sim (1.5-2)× better perform. than at Belle
 - Typical for values hadronic B_{tag} : $\epsilon(B_{tag}^+) \sim 0.5\%$, purity $\sim 10\%$

Measurements of quark mixing parameters

Amplitude for charged current quark transition $q_i \rightarrow W q_j$ is proportional to CKM matrix element V_{ij}


 $V_{\text{CKM}} \equiv V_L^u V_L^{d\dagger} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$

- BFs ($\propto |V_{ij}|^2$) \rightarrow magnitudes
- *CP* asymmetries (arising from interference of 2 amplitudes) \rightarrow (complex) phases

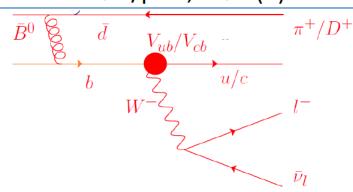
Belle II can measure magnitudes of 7 of the 9 matrix elements and the weak phase

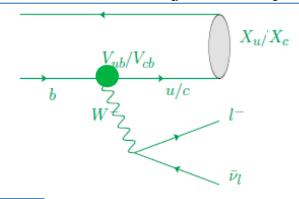
In the SM, V_{CKM} is a unitary 3×3 matrix: measurements of Unitarity Triangle sides and angles must be consistent!!!

$$V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0$$

$$\phi_1 = \beta \equiv \arg\left[-V_{cd}V_{cb}^*/V_{td}V_{tb}^*\right]$$

$$\phi_2 = \alpha \equiv \arg\left[-V_{td}V_{tb}^*/V_{ud}V_{ub}^*\right]$$

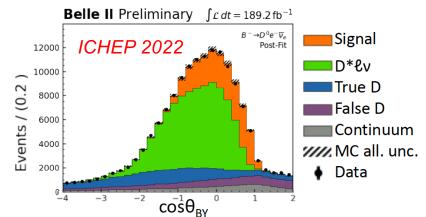

$$\phi_3 = \gamma \equiv \arg\left[-V_{ud}V_{ub}^*/V_{cd}V_{cb}^*\right]$$

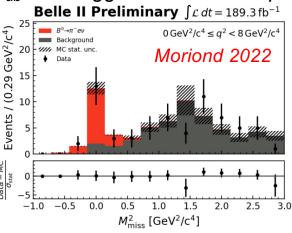

V_{ub} and V_{cb}

$|V_{ub}|$ and $|V_{cb}|$ are precisely measured with semileptonic B decays

Exclusive: $B \rightarrow \pi/\rho \ \ell \nu$, $B \rightarrow D(*) \ell \nu$ etc.

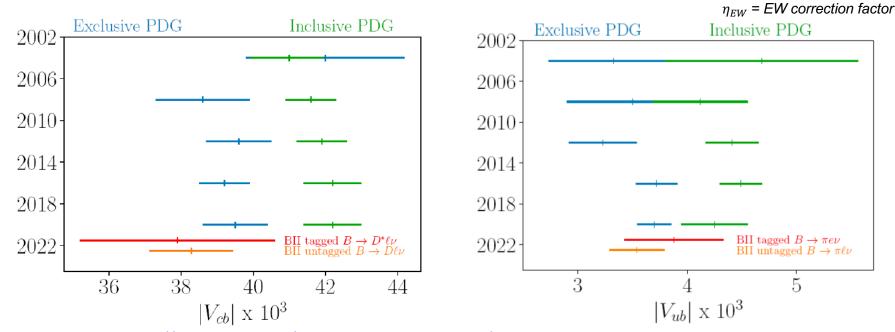
Inclusive: $B \rightarrow X_{\mu} \ell \nu$, $B \rightarrow X_{c} \ell \nu$




Parameter	Exclusive	Inclusive
$ V_{cb} \times 10^{-3}$	39.10±0.50	42.19±0.78
$ V_{ub} \times 10^{-3}$	3.51±0.12	4.19 ± 0.12

HFLAV, arXiv:2206.07501 discrepancy between inclusive and exclusive

V_{cb} from untagged $B \rightarrow Dl\nu$ sample



 V_{ub} from tagged $B \rightarrow \pi l \nu$ sample

4 new exclusive Vxb results from Belle II:

V _{xb}	Signal B (B _{sig}) decay	Other B (B _{tag}) decay	Latest result	$ V_{xh} \times10^3$
V _{cb}	$B_{sig} \rightarrow D\ell v (\ell=e,\mu)$	untagged	ICHEP 2022	$ \eta_{EW} V_{cb} = 38.53 \pm 1.15$
$ V_{cb} $	$B^0_{sig} \rightarrow D^* \ell \nu \ (\ell=e,\mu)$	hadronically tagged	Moriond 2022	$ \eta_{EW} V_{cb} = 38.2 \pm 2.8$
$ V_{ub} $	$B^0_{sig} \rightarrow \pi \ell \nu (\ell=e,\mu)$	untagged	ICHEP 2022	$ V_{ub} = 3.54 \pm 0.25$
$ V_{ub} $	$B_{sig} \rightarrow \pi e \nu$	hadronically tagged	Moriond 2022	$ V_{ub} = 3.88 \pm 0.45$

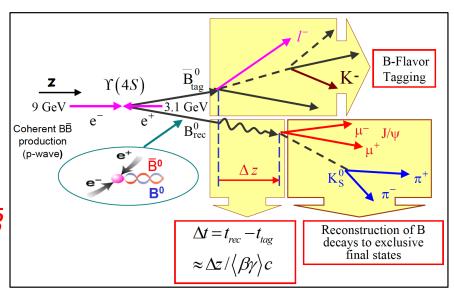
Belle II V_{xb} results are consistent with previous measurements, with precision approaching those of prev. results

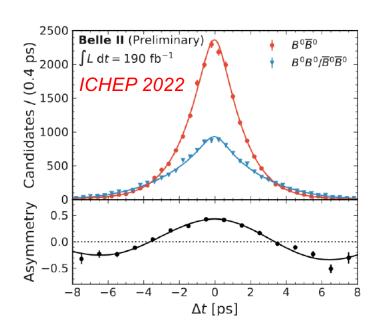
Excl. vs incl. discrepancy may be due to unaccounted non-perturbative effects.

Meier, HF
Sat 15:30 &

Meier, HF
Sat 15:30 &

Time-dependent asymmetries in B decays


- TD measurements of B decays at Y(4S) were pioneered by BABAR and Belle
 - Need good B flavor tagging and $\Delta t = t_{Sig} t_{tag}$ measurement
- $B\bar{B}$ mixing freq. Δm_d determined from TD of $\Upsilon(4S) \rightarrow B\bar{B}$ or $BB, \bar{B}\bar{B}$

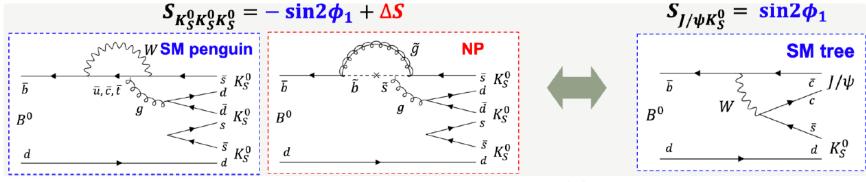

$$\mathcal{A}(\Delta t) = \frac{N_{B\bar{B}} - N_{BB,\bar{B}\bar{B}}}{N_{B\bar{B}} + N_{BB,\bar{B}\bar{B}}} = cos(\Delta m_{d}\Delta t)(1 - 2w) \otimes R(\Delta t)$$

 New Belle II measurements of B lifetime and mixing frequency

$$\tau_{B^0} = 1.499 \pm 0.013 \pm 0.008 \text{ ps}$$

 $\Delta m_d = 0.516 \pm 0.008 \pm 0.005 \text{ ps}^{-1}$

- Measurements consistent with WAs
- O(1%) precision in $\tau(B^0)$ and Δm_d demonstrates Belle II's excellent flavor tagging and vertexing performance



Measurement of CP asymmetry $\sin 2\phi_1$

Zlebcik, HF Tue 13:30

$$\mathcal{A}^{raw}(\Delta t) = \frac{N(\bar{B^0} \to f_{CP}) - N(B^0 \to f_{CP})}{N(\bar{B^0} \to f_{CP}) + N(B^0 \to f_{CP})} (\Delta t) = \underbrace{A_{CP} \cos(\Delta m_d \Delta t) + S_{CP} \sin(\Delta m_d \Delta t)}_{\text{direct CP asymmetry}} + \underbrace{N(\bar{B^0} \to f_{CP}) + N(B^0 \to f_{CP})}_{\text{mixing-induced CP asymmetry}} + \underbrace{N(\bar{B^0} \to f_{CP}) + N(B^0 \to f_{CP})}_{\text{direct CP asymmetry}} + \underbrace{N(\bar{B^0} \to f_{CP}) + N(B^0 \to f_{CP})}_{\text{mixing-induced CP asymmetry}} + \underbrace{N(\bar{B^0} \to f_{CP}) + N(B^0 \to f_{CP})}_{\text{direct CP asymmetry}} + \underbrace{N(\bar{B^0} \to f_{CP}) + N(B^0 \to f_{CP})}_{\text{direct CP asymmetry}} + \underbrace{N(\bar{B^0} \to f_{CP}) + N(B^0 \to f_{CP})}_{\text{direct CP asymmetry}} + \underbrace{N(\bar{B^0} \to f_{CP}) + N(B^0 \to f_{CP})}_{\text{direct CP asymmetry}} + \underbrace{N(\bar{B^0} \to f_{CP}) + N(B^0 \to f_{CP})}_{\text{direct CP asymmetry}} + \underbrace{N(\bar{B^0} \to f_{CP}) + N(B^0 \to f_{CP})}_{\text{direct CP asymmetry}} + \underbrace{N(\bar{B^0} \to f_{CP}) + N(\bar{B^0} \to f_{CP})}_{\text{direct CP asymmetry}} + \underbrace{N(\bar{B^0} \to f_{CP}) + N(\bar{B^0} \to f_{CP})}_{\text{direct CP asymmetry}} + \underbrace{N(\bar{B^0} \to f_{CP}) + N(\bar{B^0} \to f_{CP})}_{\text{direct CP asymmetry}} + \underbrace{N(\bar{B^0} \to f_{CP}) + N(\bar{B^0} \to f_{CP})}_{\text{direct CP asymmetry}} + \underbrace{N(\bar{B^0} \to f_{CP}) + N(\bar{B^0} \to f_{CP})}_{\text{direct CP asymmetry}} + \underbrace{N(\bar{B^0} \to f_{C$$

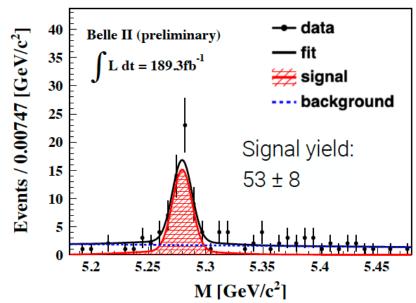

- Expect $S_{CP} = \sin 2\phi_1$ for tree amplitude $b \rightarrow c\bar{c}s$ decays
- New physics could provide CP contribution in penguin decays

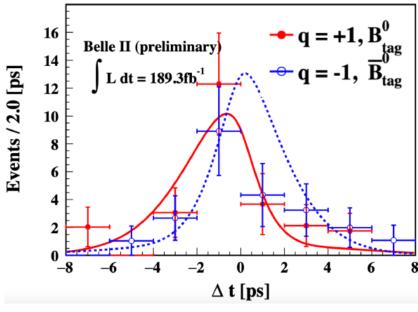
• New Belle II $\sin 2\phi_1$ measurement with golden mode $B \to J/\psi K_S^0$

$$S_{CP} = 0.720 \pm 0.062 \text{ (stat)} \pm 0.016 \text{ (syst)}$$

 $A_{CP} = 0.094 \pm 0.044 \text{ (stat)} + 0.042 \text{ (syst)}$

- 9% measurement is statistically dominated
- Consistent with WA


Time-dependent CPV in B penguins


ICHEP 2022

- Measure S_{CP} in penguin decay $B \to 3K_S^0$
- Result are consistent with SM predictions:
 - $A_{CP} \sim 0$ and $S_{CP} \sim -\sin 2\phi_1$

$$S_{CP} = -1.86^{+0.91}_{-0.46} \text{ (stat)} \pm 0.09 \text{ (syst)}$$

 $A_{CP} = -0.22^{+0.30}_{-0.27} \text{ (stat)} \pm 0.04 \text{ (syst)}$

- Technically complicated measurement with no tracks from B_{sig} decay vertex
- Small inner radius of PXD ensures most $K_S^0 \to \pi^+\pi^-$ daughter tracks have pixel hit info

$K\pi$ Puzzle

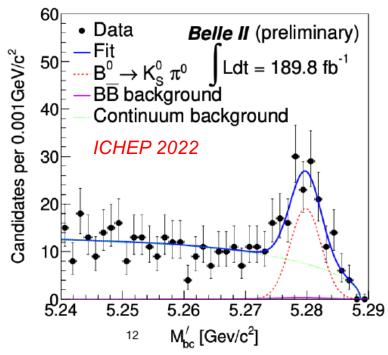
- Unexpected large difference between CP asymmetries $A_{K^+\pi^-}^{CP}$ and $A_{K^+\pi^0}^{CP}$ in $B \to K\pi$ decays dominated by hadronic penguin amplitudes
- Isospin sum rule tests if discrepancy from sub-leading SM amplitudes

$$I_{K\pi} = \mathcal{A}_{K^+\pi^-}^{ ext{CP}} + \mathcal{A}_{K^0\pi^+}^{ ext{CP}} rac{\mathcal{B}_{K^0\pi^+}}{\mathcal{B}_{K^+\pi^-}} rac{ au_{B^0}}{ au_{B^+}} - 2 \mathcal{A}_{K^+\pi^0}^{ ext{CP}} rac{\mathcal{B}_{K^+\pi^0}}{\mathcal{B}_{K^+\pi^-}} rac{ au_{B^0}}{ au_{B^+}} - 2 \mathcal{A}_{K^0\pi^0}^{ ext{CP}} rac{\mathcal{B}_{K^0\pi^0}}{\mathcal{B}_{K^+\pi^-}} pprox 0$$

- Current precision (13%) limited by $A_{K^0\pi^0}^{CP}$.
- Only Belle II can measure all of these!

New Belle II measurements:

$$A_{CP}^{K^{+}\pi^{0}} = 0.014 \pm 0.047 \pm 0.010$$


$$B_{K^{+}\pi^{0}} = (14.30 \pm 0.69 \pm 0.79) \times 10^{-6}$$

$$A_{CP}^{K^{0}\pi^{0}} = -0.41_{-0.32}^{+0.30} \pm 0.09$$

$$B_{K^{0}\pi^{0}} = (11.0 \pm 1.2 \pm 1.0) \times 10^{-6}$$

ICHEP 2022

Previous Belle II results with 63 fb⁻¹: $K^+\pi^-$ and $K^0\pi^+$ (arXiv:2106.03766), $K^0\pi^0$ (arXiv:2104.14871), and $K^+\pi^0$ (arXiv:2105.04111),

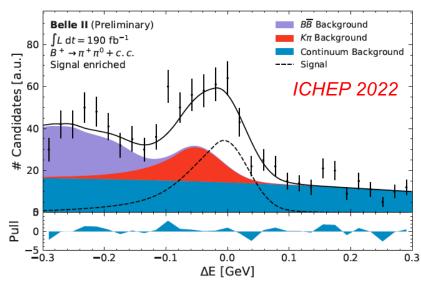
Measurement of ϕ_2 from $B \to \pi\pi$ and $B \to \rho\rho$

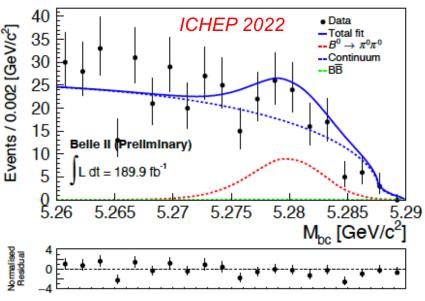
CKM angle ϕ_2 determined through BFs and CP asymmetries for sets of $b \rightarrow u$ dominated $B \rightarrow \pi\pi$ and $B \rightarrow \rho\rho$ decays

Isospin decomposition is necessary to account for penguin pollution

$$B^+ \to \rho^+ \rho^0$$
, $B^0 \to \rho^0 \rho^0$, $B^0 \to \rho^+ \rho^-$ or $B^0 \to \pi^+ \pi^-$, $B^+ \to \pi^+ \pi^0$, $B^0 \to \pi^0 \pi^0$

New Belle II $B \rightarrow \pi\pi$ *measurements:*


$$A_{CP}^{\pi^{+}\pi^{0}} = -0.085 \pm 0.085 \pm 0.019$$


$$B_{\pi^{+}\pi^{0}} = (6.12 \pm 0.53 \pm 0.53) \times 10^{-6}$$

$$A_{CP}^{\pi^{0}\pi^{0}} = 0.14 \pm 0.46 \pm 0.07$$

$$B_{\pi^{0}\pi^{0}} = (1.27 \pm 0.25 \pm 0.17) \times 10^{-6}$$

WA:
$$A_{CP}^{\pi^0\pi^0} = 0.33 \pm 0.22, B_{\pi^0\pi^0} = (1.59 \pm 0.26) \times 10^{-6}$$

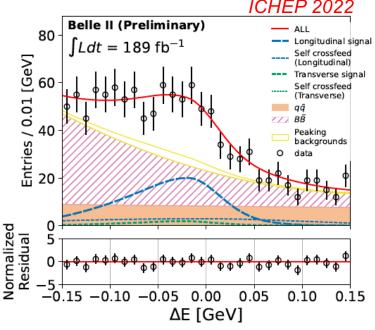
Although $\rho\rho$ is a VV final state, similar isospin analysis as in $\pi\pi$ possible since only longitudinal amplitude dominant

New Belle II $B \rightarrow \rho \rho$ measurements:

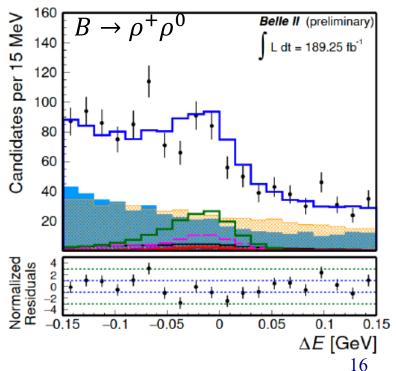
$$B_{\rho^{+}\rho^{-}} = (26.7 \pm 2.8 \pm 2.8) \times 10^{-6}$$

 $f_{L}^{\rho^{+}\rho^{-}} = 0.956 \pm 0.035 \pm 0.033$

WA:
$$B_{\rho^+\rho^-} = (27.7 \pm 1.9) \times 10^{-6}$$

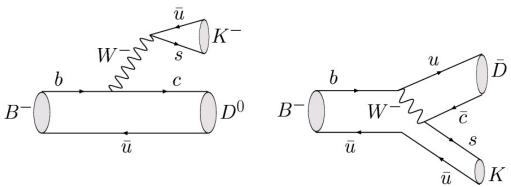

$$A_{CP}^{\rho^{+}\rho^{0}} = -0.069 \pm 0.068 \pm 0.060$$

$$B_{\rho^{+}\rho^{0}} = (23.2^{+2.2}_{-2.1} \pm 2.7) \times 10^{-6}$$


$$f_{L}^{\rho^{+}\rho^{0}} = 0.943^{+0.035}_{-0.033} \pm 0.027$$

WA:
$$A_{CP}^{\rho^+ \rho^0} = -0.05 \pm 0.05, B_{\rho^+ \rho^0} = (24.0 \pm 1.9) \times 10^{-6}$$

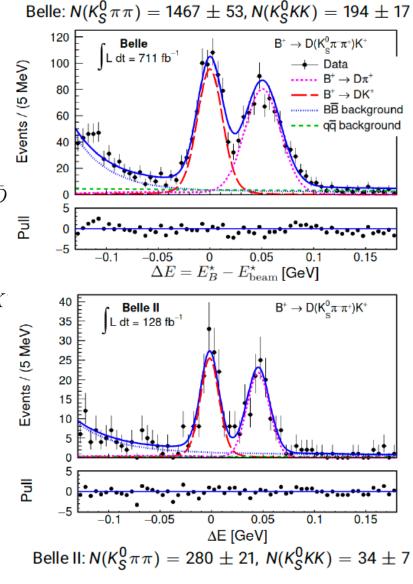
Previous Belle II results with 63 fb⁻¹: $\pi^+\pi^-$ (arXiv:2106.03766), $\pi^0\pi^0$ (arXiv:2107.02373), and $\rho^+\rho^0$ (arXiv:2206.12362),



Moriond 2022

Measurement of ϕ_3 with $B^{\pm} \rightarrow D(K_S^0 h^+ h^-)K^{\pm}$

Measure ϕ_3 through interference of $b \to c$ and $b \to u$ amplitudes in bins of $D/\overline{D} \to K_S^0 h^+ h^- Dalitz$ plots

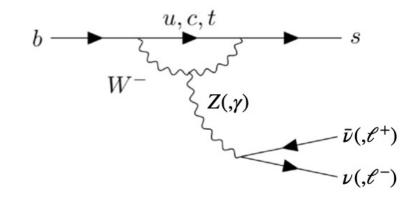


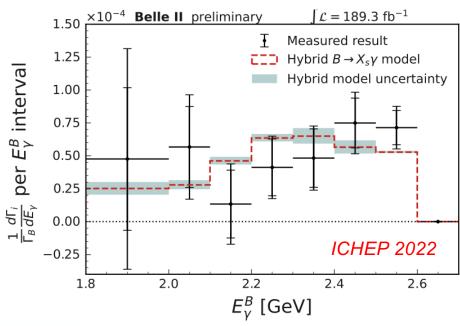
Strong phase in D decay from CLEO and BESIII used as external input

$$\phi_3 = (78.4 \pm 11.4 \pm 0.05 \pm 1.0)^{\circ}$$

WA: $\phi_3 = (65.9^{+3.3}_{-3.5})^{\circ}$

First joint Belle (711 fb⁻¹) and Belle II (128 fb⁻¹) analysis!

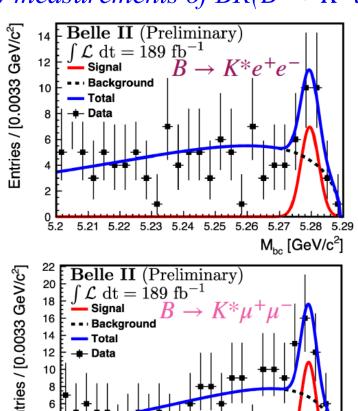


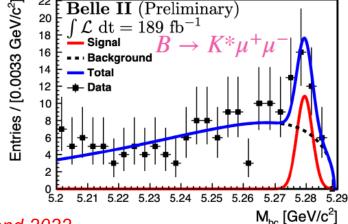

Belle & Belle II, JHEP 02 (2022) 063

Radiative and EW Penguin B Decays

- Flavor-changing neutral currents: in SM due to b → s transitions at one-loop level
 - Sensitive to New Physics particles in the loop
- BF ratios, asymmetries and angular observables can be precisely predicted in SM
- New Belle II incl. $BR(b \rightarrow s \gamma)$ measurement
 - Apply cut-off due to large background at low $E(\gamma)$

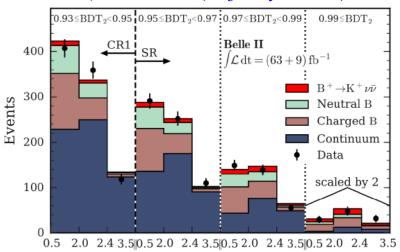
E_{γ}^{B} threshold, GeV	${\cal B}(B o X_s\gamma)(10^{-4})$
1.8	$3.54 \pm 0.78 \text{ (stat.) } \pm 0.83 \text{ (syst.)}$
2.0	$3.06 \pm 0.56 \text{ (stat.) } \pm 0.47 \text{ (syst.)}$

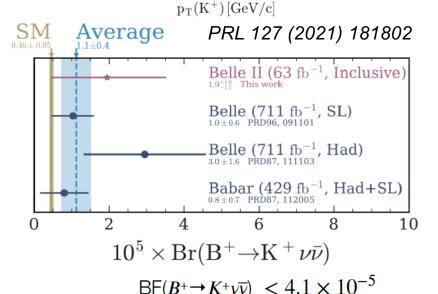



SM prediction for $E_{\gamma}^{B} >$ 1.6 GeV: (3.40 ± 0.17)×10⁻⁴ (JHEP06(2020)175)

$B \to K^*l^+l^-$ and $B \to K\nu\bar{\nu}$

Martel, HI Thu 16:30


New measurements of $BR(B \to K^*l^+l^-)$ and $BR(B \to K\nu\bar{\nu})$ (fully-incl.)



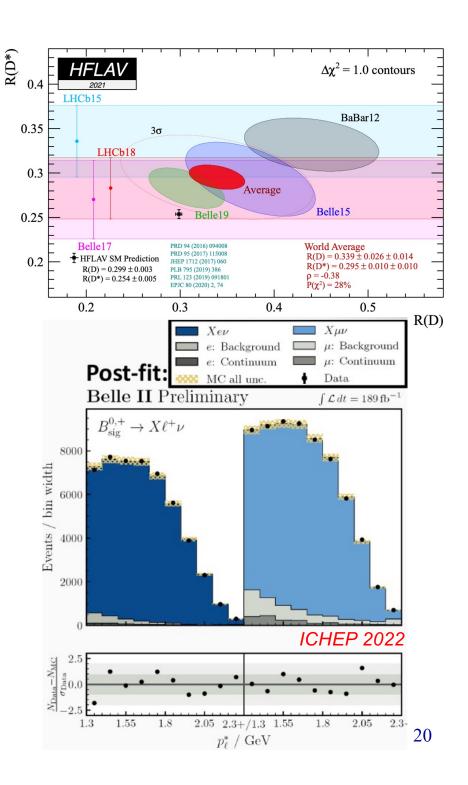
Moriond 2022

Decay	Belle II (10^{-6})	PDG (10^{-6})
$B \to K^* e^+ e^-$	$1.42 \pm 0.48 \pm 0.09$	1.19 ± 0.20
$B \to K^* \mu^+ \mu^-$	$1.19 \pm 0.31^{+0.08}_{-0.07}$	1.06 ± 0.09

Fully-inclusive method improves sensitivity significantly over previous measurements! 19

$LFU in B \rightarrow D^{(*)} l\nu$

Hara, HI Sat 14:00


- Tensions observed recently in excl. semi-leptonic BF ratios $R(D^{(*)}) = BR(B \to D^{(*)}\tau\nu)/BR(B \to D^{(*)}l\nu)$
- *Predictions for incl.* R(X):

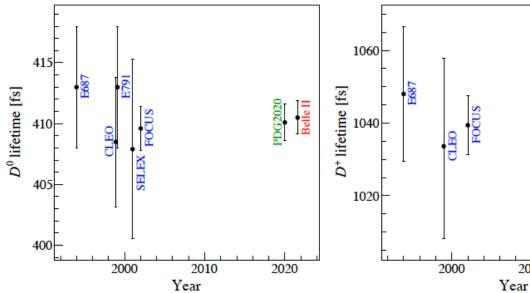
$$R(X_{c,\tau/l})_{SM} = 0.223 \pm 0.004$$
 $PRD 92 (2015) 054018$
 $R(X_{c,e/\mu})_{SM} = 1.006 \pm 0.001$
 $Vos \& Rahimi, in progress$

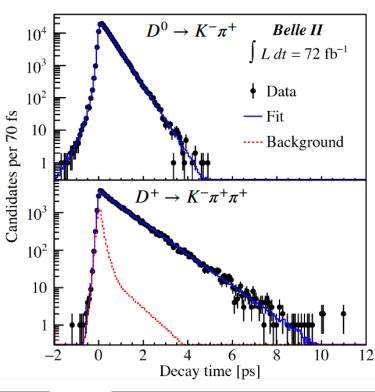
• Since incl. measurements are hard, esp. with τ , measure $R(X_{e/\mu})$ first

$$R(X_{c,e/\mu}) = 1.003 \pm 0.010 \pm 0.020$$

Most precise LFU test with semi-leptonic B decays to date!

Charm meson lifetimes


 First D⁰ and D⁺ lifetime measurements in 2 decades


Belle II, PRL 127 (2021) 021801

$$\tau(D^0) = 410.5 \pm 1.1 \text{ (stat)} \pm 0.8 \text{ (syst) fs}$$

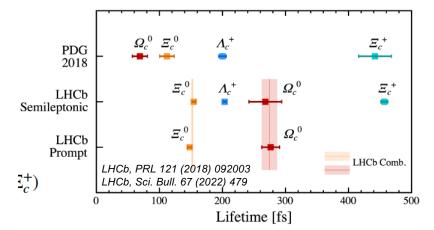
 $\tau(D^+) = 1030.4 \pm 4.7 \text{ (stat)} \pm 3.1 \text{ (syst) fs}$

 Belle II results are more precise than and consistent with previous measurements

0.5% precision (incl. syst.) demonstrates excellent performance and understanding of Belle II vertex detector

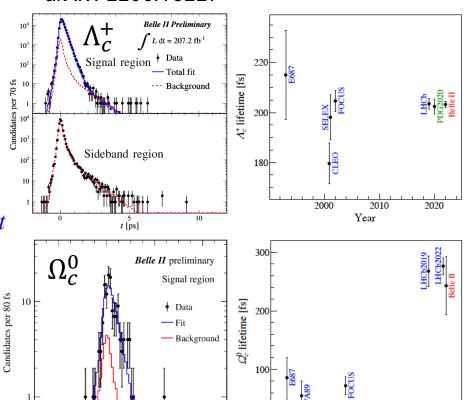
2010

2020


21

Charm baryon lifetimes

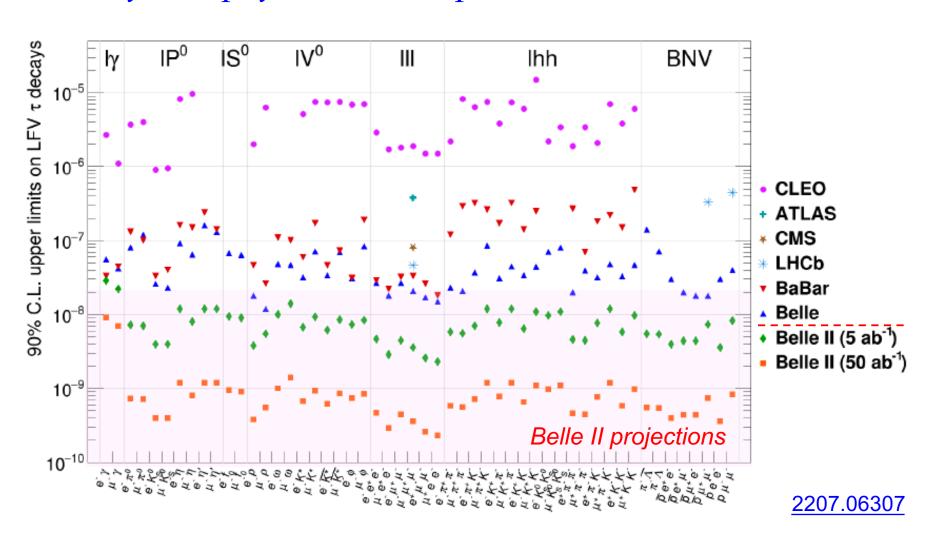
- Recent LHCb Λ_c^+ and Ξ_c^0 lifetime measurements changed order of charm baryon lifetimes
- New Belle II results:


$$\tau(\Lambda_c^+)$$

= 203.2 ± 0.9 (stat) ± 0.8 (syst) fs
 $\tau(\Omega_c^0)$
= 243 ± 48 (stat) ± 11 (syst) fs

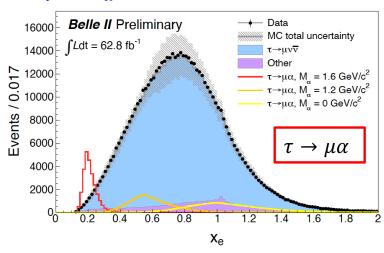
- Most precise Λ_c^+ lifetime measurement
- Confirms that Ω_c^0 is not shortestlived singly-charmed baryon
 - Consistent with LHCb results
 - Inconsistent with pre-LHCb world average by 3.4sigma

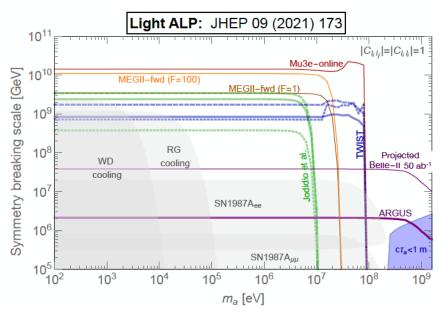
Decay-time [ps]

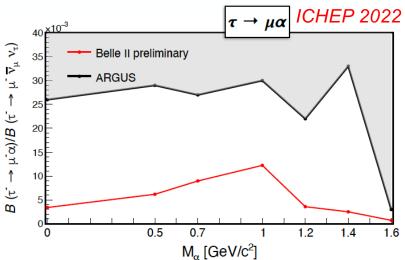

2000

Year

Banerjee, HI Thu 17:00


LFV searches in τ decays


Many new physics models predict cLFV at 10^{-7} - 10^{-10}



$\tau \rightarrow e/\mu + \alpha \ (invisible)$

- Invisble particle occur in many NP models (e.g. light ALPs)
- Previous best upper limits for $0.1 < M_{\alpha} < 1.6$ GeV from ARGUS (Z. Phys. C68 (1995) 25)
- Compare $\tau \to e/\mu + \alpha$ rate with $SM \tau \to e/\mu \nu \bar{\nu}$ prediction
 - Improved 95% C.L. limits set for $BR(\tau \rightarrow e/\mu + \alpha)/BR(\tau \rightarrow e/\mu \nu \bar{\nu})$ for $M_{\alpha} < 1.6 \text{ GeV}$

Plots and limits for $\tau \to e\alpha$ are similar!

Conclusions

- SuperKEKB is delivering e⁺e⁻ collision data at world-record luminosity
 - Expect to improve a factor of 6 during next running period (will start in Fall 2023)
- Belle II detector demonstrates excellent performance
 - Esp. in incl. reco., neutrals (γ, π^0) & vertex measurements
- Belle II is a Super Flavor Factory, already producing many results with first 190 fb⁻¹ (of 424 fb⁻¹ recorded)
 - New B, Charm, and \(\tau\)physics results are at precisions comparable to those of BABAR and Belle
 - Similarly, many new and unique results on dark sector searches & heavy quarkonium (not covered in this talk)