Recent results on inclusive semileptonic B decays at Belle and Belle II

Frank Meier on behalf of Belle and Belle II

14th Conference on the Intersections of Particle and Nuclear Physics 29 Aug - 4 Sep 2022

Research supported by

CKM triangle

 \blacktriangleright precise measurements of $|V_{ub}|$ and $|V_{cb}|$ crucial to constrain CKM triangle

Frank Meier (Duke University)

CKM triangle

 \blacktriangleright precise measurements of $|V_{ub}|$ and $|V_{cb}|$ crucial to constrain CKM triangle

Frank Meier (Duke University)

Data-taking at the B factories

- ▶ asymmetric collision of e^+e^- , mostly at a center-of-mass energy of the $\Upsilon(4S)$ resonance
- ► $\Upsilon(4S) \rightarrow B^+B^- (\sim 51.5\%), \Upsilon(4S) \rightarrow B^0\overline{B}^0 (\sim 48.5\%)$
- ▶ Belle collected ~772M $B\overline{B}$ pairs over the course of 10 years

Integrated luminosity of B factories

Frank Meier (Duke University)

Belle detector

Changes from KEKB to SuperKEKB and from Belle to Belle II

Frank Meier (Duke University)

Data-taking at Belle II

• new luminosity world record of $4.7 \cdot 10^{34} \, \mathrm{cm}^{-2} \, \mathrm{s}^{-1}$

Frank Meier (Duke University)

Semileptonic B decays

- make use of kinematic constraint
- signal extraction via fit of
 - missing mass distribution
 - lepton momentum spectrum
 - hadronic mass spectrum
 - four-momentum-transfer squared distribution
 - ▶ angle in CMS between measured momentum and nominal direction

$$\cos \theta_{\rm BY} = \frac{2E_B^{\rm CM} E_{Xl}^{\rm CM} - m_B^2 - m_{Xl}^2}{2p_B^{\rm CM} p_{Xl}^{\rm CM}}$$

Frank Meier (Duke University)

Duke

Tagged vs untagged measurement

Tagged approach

- \blacktriangleright reconstruct $\varUpsilon(4S)$ from signal and tag side
- lower efficiency
- higher purity

Untagged approach

- reconstruct only signal side
- higher signal efficiency
- lower purity
 ⇒ suppression and / or proper description of background more important

9/24 30.08.2022

 $\Sigma +$

Full Event Interpretation

Comput. Softw. Big Sci. 3 (2019)

Displaced Vertices

- fully reconstruct one of the B mesons (tag-side) in many exclusive modes
- hadronic and semileptonic version: trade-off between efficiency and purity
- train BDT for each stage \Rightarrow signal probability

[%] [%]

Tracks

Neutral Clusters

Exclusive vs inclusive analysis technique

Exclusive approach

- ► fully reconstruct final state
 - $\blacktriangleright \quad B \to D^{(*)} \ell \nu_{\ell}$
 - $\blacktriangleright \quad B \to \pi \ell^+ \nu_\ell$
- ► theory: lattice QCD
- Belle II results in HF session on Saturday by Philipp Horak

Inclusive approach

- partial reconstruction
 - $B \to X_c \ell^+ \nu_\ell$ $B \to X_c \ell^+ \nu_\ell$
- ► theory: Heavy Quark Effective Theory
- covered in this talk

Measurements of V_{ub}

▶ $b \rightarrow u$ transitions CKM suppressed \Rightarrow large background contributions from $b \rightarrow c$ transitions

 \blacktriangleright clean measurement only possible in certain kinematic regions (lepton endpoint or low M_X)

$$|V_{ub}| = \sqrt{\frac{\Delta \mathcal{B}(B \to X_u \ell^+ \nu_\ell)}{\tau_B \Delta \Gamma(B \to X_u \ell^+ \nu_\ell)}}$$

Frank Meier (Duke University)

Measurements of Partial Branching Fractions of Inclusive $B \rightarrow X_u \ell^+ \nu_\ell$ Decays with Hadronic Tagging PRD 104, 012008 (2021)

- ▶ BDTs trained to reduce $B \rightarrow X_c \ell \nu_\ell$ (background rejection of 98.7% at 18.5% signal retention)
- inclusion of gap modes major improvement

▶ four-momentum-transfer squared q²
 ▶ lepton energy E_ℓ^B in B rest frame

• $M_X < 1.7 \,\text{GeV}/c^2 + q^2 > 8 \,\text{GeV}^2$

▶ $E_{\ell}^B > 1 \, \text{GeV}$

$$|V_{ub}| = (4.10 \pm 0.09 \,({\rm stat}) \pm 0.22 \,({\rm syst}) \pm 0.15 \,({\rm theo})) \cdot 10^{-3}$$

Frank Meier (Duke University)

Measurement of Differential Branching Fractions of Inclusive $B \rightarrow X_u \ell^+ \nu_\ell$ Decays

- ▶ selection and reconstruction analogous to partial branching fraction measurement
- ▶ distributions corrected for det. resolution and efficiency effects and unfolded to phase space of $E_{\ell}^B > 1 \text{ GeV}$

Measurements of V_{cb}

Frank Meier (Duke University)

Measurement of \mathcal{B} $(B \rightarrow X_c \ell^+ \nu_\ell)$ arXiv:2111.09405

 $\int c dt = 62.8 \text{ fb}^{-1}$

- first shown in summer last year on reduced data set of 62.8 fb^{-1}
- one well-identified signal lepton required
- background rejected using missing mass and momentum distributions
- signal yield extracted via binned likelihood fit of p_{ℓ}^*

$$N_{\rm sig}^{X_c e} = (1.932 \pm 0.006) \cdot 10^6$$

$$\blacktriangleright N_{\rm sig}^{X_c \mu} = (1.501 \pm 0.007) \cdot 10^6$$

$$\mathcal{B}(B \to X_c \ell^+ \nu_\ell) = \frac{N_{\text{sig}}^\ell \tau}{2N_{B\bar{B}} \left(f_+ \epsilon^\ell (B^+) \tau (B^+) + f_0 \epsilon^\ell (B^0) \tau (B^0) \right)}$$

= (9.75 ± 0.03 (stat) ± 0.47 (syst)) %

leading systematic: branching fractions of $B \to X_c \ell^+ \nu_\ell$ components and lepton ID corrections

Frank Meier (Duke University)

Recent results on inclusive semileptonic B decays at Belle and Belle II.

v109 Belle II

2 00

15 / 2430.08.2022

Extracting $|V_{cb}|$ from inclusive $B \to X_c \ell \nu_\ell$ decays

$$\Gamma = \frac{G_{\mathsf{F}}^2 m_b^5}{192\pi^3} |V_{cb}|^2 \left(1 + \frac{c_5(\mu)O_5(\mu)}{m_b^2} + \frac{c_6(\mu)O_6(\mu)}{m_b^3} + \mathcal{O}\left(\frac{1}{m_b^4}\right) + \dots \right)$$

- Operator Product Expansion (OPE)
 - non-perturbative hadronic matrix elements O_i
 - perturbative coefficients c_i
- precision depends on order of expansion
- higher order of expansion requires more matrix elements
- solution: reparametrization invariance arXiv:1812.07472
 - works for q^2 moments

Order	HQE parameters			
$\mathcal{O}(1)$	m_b, m_c			
$\mathcal{O}(1/m_b^2)$	μ_π^2 , μ_G^2			
${\cal O}(1/m_b^3)$	$ ho_D^3$, $ ho_{LS}^3$			

q^2 moments

•
$$q^2$$
: squared four-momentum-transfer $(p_\ell + p_{\nu_\ell})^2$

$$\langle q^{2n} \rangle = \frac{\sum w_i(q^2)(q_{\mathsf{calib},i}^{2n})}{\sum w_i(q^2)} \times \mathcal{C}_{\mathsf{cal}} \times \mathcal{C}_{\mathsf{acc}}$$

- $w_i(q^2)$ signal probability weights
- ► calibrate reconstructed moments using MC: $q_{\text{calib},i}^2 = (q_{\text{reco},i}^2 c)/m$ with c & m parameters of linear fit
- \blacktriangleright \mathcal{C}_{cal} corrects for small residual calibration bias
- ▶ C_{acc} corrects selection bias

 \blacktriangleright using q^2 moments reduces number of necessary HQE parameters from 13 to 8 at $\mathcal{O}(1/m_b^4)$

Frank Meier (Duke University)

Measurements of q^2 Moments of Inclusive $B \to X_c \ell^+ \nu_\ell$ Decays with Hadronic Tagging PRD 104, 112011 (2021) arXiv:2109.01685

- using full Belle data sample
- ▶ one *B* meson reconstructed in fully hadronic decay modes (Full Reconstruction, not FEI)
- signal characterized by single lepton
- background statistically subtracted via event weights from fit of M_X distribution followed by polynomial fit of signal probability

Measurements of q^2 Moments of Inclusive $B \rightarrow X_c \ell^+ \nu_\ell$ Decays with Hadronic Tagging PRD 104, 112011 (2021) arXiv:2109.01685

- first to fourth moment of q^2 spectrum determined
- no deviation between electron and muon mode observed
- moments for low q² slightly higher than simulated cocktail sample
 - indicating necessity to better understand contributions from heavier charmed final states and high multiplicity decays
 - currently covered by systematic uncertainties

Measurement of lepton mass squared moments in $B \rightarrow X_c \ell \nu_\ell$ decays with the Belle II experiment arXiv:2205.06372 (submitted to PRD)

- \blacktriangleright raw and central moments for $q^2 > 1.5 \, {\rm GeV^2}/c^4$ up to $q^2 > 8.5 \, {\rm GeV^2}/c^4$
- first measurement in range $[1.5,2.5] \text{ GeV}^2/c^4$
- ▶ exploit FEI for reconstruction of tag B meson (two times higher efficiency than Belle's algorithm)

- kinematic fit significantly improves q^2 resolution
- signal probability fit with cubic spline

Frank Meier (Duke University)

First extraction of inclusive V_{cb} from q^2 moments ${\rm arXiv:2205.10274}$

- input: q^2 moment spectra of Belle and Belle II
- use $\mathcal{B} (B \to X_c \ell \nu_\ell) = (10.48 \pm 0.13) \%$
- \blacktriangleright HQE parameters and $|V_{cb}|$ determined in simultaneous χ^2 fit

Prospects for semileptonic measurements

			mery lab-1							
	Process	Observable	Theory	Sys. dom	. (Disco	vs Belle	Anomaly	NP		
•	$B o \pi \ell u_\ell$	$ V_{ub} $	***	10-20	***	***	**	*		
•	$B \to X_u \ell \nu_\ell$	$ V_{ub} $	**	2-10	***	**	***	*		
	$B \to \tau \nu$	Br.	***	>50(2)	***	***	*	***		
	$B ightarrow \mu u$	Br.	***	>50(5)	***	***	*	***		
	$B \to D^{(*)} \ell \nu_{\ell}$	$ V_{cb} $	***	1-10	***	**	**	*		
	$B \to X_c \ell \nu_\ell$	$ V_{cb} $	***	1 - 5	***	**	**	**		
	$B o D^{(*)} \tau \nu_{\tau}$	$R(D^{(*)})$	***	5 - 10	**	***	***	***		
	$B o D^{(*)} \tau \nu_{\tau}$	$P_{ au}$	***	15 - 20	***	***	**	***		
	$B \to D^{**} \ell \nu_{\ell}$	Br.	*	-	**	***	**	-		

▶ R(X): ratio of inclusive \mathcal{B} $(B \to X \tau \nu)$ to lower-mass lepton counterparts

Frank Meier (Duke University)

Projection of integrated luminosity delivered by SuperKEKB to Belle II

Target scenario: extrapolation from 2021 run including expected improvements.

Base scenario: conservative extrapolation of SuperKEKB parameters from 2021 run

- We start long shutdown I (LSI) from summer 2022 for 15 months to replace VXD. There will be other maintenance/improvement works of machine and detector.
- We resume physics running from Fall 2023.
- A SuperKEKB International Taskforce (aiming to conclude in summer 2022) is discussing additional improvements.
- An LS2 for machine improvements could happen on the time frame of 2026-2027

Frank Meier (Duke University)

Conclusion

- study of semileptonic decays reveals some tensions with SM
 - mystery about difference between inclusive and exclusive determination of V_{ub} and V_{cb}
 - deviation of $R(D/D^*)$ from SM expectation
- measurement of q^2 moments provide important input for global fit of inclusive $|V_{cb}|$
- inclusive measurement of $R(X_{e/\mu})^{p_{\ell}^*>1.3 \text{ GeV}/c}$ will be presented by Koji Hara in joint HI/HF session on Saturday
- stay tuned for new results with more data collected by Belle II

Conclusion

- study of semileptonic decays reveals some tensions with SM
 - mystery about difference between inclusive and exclusive determination of V_{ub} and V_{cb}
 - deviation of $R(D/D^*)$ from SM expectation
- \blacktriangleright measurement of q^2 moments provide important input for global fit of inclusive $|V_{cb}\>|$
- inclusive measurement of $R(X_{e/\mu})^{p_{\ell}^*>1.3 \text{ GeV}/c}$ will be presented by Koji Hara in joint HI/HF session on Saturday
- stay tuned for new results with more data collected by Belle II

Thanks for your attention!