Salt Lake City, Utah, United States July 31st - Aug. 6th, 2022

Recent results from Belle II

Karol Adamczyk

on behalf of Belle II Collaboration

Belle II physics program

FB (tau, mu, e+, b, c)

Study of rare decays of B, D and τ

The Belle II Physics Book: PTEP 2019 (2019) 12, 123C01

Snowmass White Paper:

w physics phases in b->s: B->phi Ks, B->eta' Ks

Branching Fractions, Dalitz analys

New charmed resonances

Lepton flavor violation

vtd/Vts from penguins

Belle II physics reach and plans for the next decade and beyond arXiv:2207.06307

Belle II will pursue NP in many ways:

GOAL

- improving precision of CKM matrix elements and phases
- testing violations of lepton conservation and universality
- probing the existence of dark-sector particles
- and many more ...

SuperKEKB

Electron ring

Positron ring

7 GeV

4 GeV

new Intensity Frontier machine

Positron damping ring

collision point

- $c\bar{c}$, $s\bar{s}$, $u\bar{u}$, $d\bar{d}$, l^+l^- , $t^+t^-\leftarrow e^+e^-\rightarrow Y(nS)\rightarrow B^{(*)}\overline{B}^{(*)}$
- SuperKEKB + Belle II detector ≡ 2nd generation super B-factory
- **substantial upgrade** of the B factory facility located at KEK (Tsukuba, Japan)
- SuperKEKB: asymmetric e⁺e⁻ collider operating **mainly** at $m_{Y(4S)} = 10.58 \text{ GeV}$
- high luminosity achieved by
 - squeeze beams at IP (vertical ~60 nm)
 - increase beam currents + make smaller β_{v}^{*}
 - larger crossing angle (22 → 83 mrad)

KEKB Electron-Positron linear accelerator

Belle II detector

nano-beam

scheme

(Pantaleo Raimondi)

TARGETS

- \rightarrow peak luminosity: 6 × 10³⁵ cm⁻² s⁻¹ (30x KEKB)
- \rightarrow integrate up to 50 ab⁻¹ (50x Belle) in a decade!

SuperKEKB

SuperKEKB new Intensity Frontier machine

- SuperKEKB + Belle II detector

 = 2nd generation
 super B-factory located at KEK (Tsukuba, Japan)
- asymmetric e⁺e⁻ collider operating mainly at 10.58 GeV: Y(4S)

Current status

- complete detector started taking data in spring 2019
- ✓ total integrated luminosity collected before summer 2022: 424 fb⁻¹ (good runs)
 - ✓ at the Y(4S) resonance: 363 fb⁻¹
 - ✓ similar DATA as BaBar, ~0.5 Belle DATA
- ✓ new World Record of peak luminosity:
 - **4.7** x **10**³⁴ cm⁻² s⁻¹ (> 2 x KEKB record)
- ✓ Long Shutdown 1 (LS1) from summer 2022 for 15 months
 - improvements of machine and detector (beam pipe, Pixel Vertex Detector, Time-Of-Propagation PMT)

Belle II detector

multipurpose $\sim 4\pi$ magnetic spectrometer

Silicon vertex detectors

- 2 layers DEPFET (pixel)
- 4 outer layers DSSD
- vertexing resolution ~ 15 μm

electrons (7 GeV)

Tracking detector

- central drift chamber (He + C₂H₆)
- small cells, long lever arm, fast electronic
- spatial resolution: 100 μm
- $ho_{\rm T}$ resolution $\sim 0.4\%/p_{\rm T}$
- ✓ dE/dx resolution: 5%

Key factors:

- known initial state + nearly hermetic detector with excellent PID
 - ► reconstruct fully-inclusive final states
 - ▶ broadly search for particles with no direct signature
- ightharpoonup reconstruct neutral particles (γ , π^0 , K_s , K_L) nearly as well as charged particles

K_L and µ detector

- Resistive Plate Counter (barrel outer layers)
- Scintillator + WLS fiber + MPPC (end-caps & inner 2 barrel layers)
- μ ID efficiency: 90 %

Magnetic field

1.5 T superconducting magnet

Particle ID detectors

- Time-of-Propagation counter (barrel)
- Aerogel RICH (forward end-cap)
- hadron ID efficiency ~90% at 10% fakes

Electromagnetic Calorimeter

- CsI(Tl) + waveform sampling (barrel + end-caps)
- energy resolution ~1.6-4%
- / lepton ID efficiency 90% at fakes: 0.5% for e and 7% for μ

5

positrons (4 GeV)

Experimental techniques

@ B-factories

B-TAGGING

- \checkmark exclusive production of BB pairs at B-factories
- ✓ kinematical constraints from beam energy in CM of Y(4S)
- \checkmark in channels with missing energy (i.e. multi ν final state)
 - ► reconstruct partner of signal B meson: B_{TAG} using well measured channels
 - ► B_{TAG} kinematics, flavor, charge

Inclusive:

 $B \rightarrow \text{anything}$ (hadrons + photons) high $\epsilon \approx O(10\%)$ but lower purity

Semileptonic:

$$\begin{split} B &\to \sum \text{ of } B \to D^{(*)} \text{ I } \nu \\ \text{BF \sim20\%; } \epsilon &\approx O(1\%) \\ \text{with optimal purity} \end{split}$$

Hadronic:

 $B \rightarrow \sum$ of exclusive hadron modes low $\epsilon \approx O(0.1\%)$ but high purity

Full Event Interpretation (FEI)

- → improved B-tagging algorithm based on Boosted Decision Trees
- → hierarchical approach to reconstruct O(10⁴) decay chains
- → $ε_{SL} \approx 2\%$
- → $ε_{had} ≈ 0.5\%$

T. Keck et al, Comput Softw Big Sci 3, 6 (2019)

Dark sector

direct searches for light non-SM physics

Dark Sector

portals between DM and SM

- → identify particles and properties of Dark Matter through production at colliders
- → constraints on weakly coupled DM
 - ► light dark mediator X as portal

Belle II has unique capability to search for dark matter and mediators at MeV-GeV scale

- dedicated low-multiplicity triggers
 - ✓ e.g. single photon; single/two/three track(s); E_{ECL} >1GeV
- ✓ hermetic detector + clean events
- ✓ high intensity collisions at ~10.6 GeV

9

Dark sector

Dark Higgsstrahlung: e⁺e⁻ → A' h'

Motivation:

- U(1)' vector portal extension of SM
 - Dark photon A': coupled to SM photon via kinetic mixing parameter ε
 - mass generated via spontaneous symmetry breaking
 - Dark Higgs h': couples with α_D to A'

Signature:

- $M_{h'} < M_{A'} \rightarrow h'$ is long-lived (invisible)
 - ⇒ 2 charged tracks + missing energy
 - A': M_{μμ} and h': M_{recoil}

Selection:

- two reconstructed muons, $p_T^{\mu\mu} > 0.1 \text{ GeV/c}$
- recoil momentum in ECL barrel, no nearby photon
- cut on helicity angle of muon

Strategy:

- scan for excess in 2D plane of M_{recoil} vs. $M_{\mu\mu}$
- ~9000 rotated elliptical mass windows to test signal hypotheses

Dark sector

Dark Higgsstrahlung: e⁺e⁻ → A' h'

Results:

- no significant excess above bkg was observed
 ▶ 90% CL upper limits on σ and ε² α_D
- world leading limit: 1.65 < M_{A'} < 10.51 GeV/c²

Dark sector Z' → invisible

Motivation:

- L_μ L_τ model can provide solution for R(K^(*)) and (g-2)_μ
- Z' new massive gauge boson coupled only to μ and τ

Searched signatures:

- μ⁺μ⁻ final state with
 - Z' → invisible (neutrinos/dark matter)
 - final states with missing energy \Rightarrow \mathbf{M}_{recoil}

Bkg:

• $e^+e^- \to \mu^+\mu^-(\gamma), e^+e^- \to \tau^+\tau^-(\gamma), e^+e^- \to e^+e^-\mu^+\mu^-$

Selection:

- two reconstructed muons, $p_T^{\mu\mu} > 0.4$ GeV/c
- recoil momentum in ECL barrel, no nearby photon
- neural network trained to optimize Punzi FOM » Eur.Phys.J.C 82 (2022) 2, 121

Strategy:

• template fit in 2D plane of θ_{recoil} vs. \mathbf{M}^{2}_{recoil}

ICHEP

Dark sector

Z' → invisible

- no excess found
 - ▶ 90% CL upper limits on σ and coupling
- excluded fully invisible Z' as explanation for $(g-2)_{\mu}$ in range $0.8 < M_{z'} < 5.0 \text{ GeV/c}^2$

79.7 fb⁻¹

12

Dark sector Z', S, ALP → T T

Motivation:

probe three different models:
 Z' L_μ - L_τ, leptophilic dark scalar S, ALP

Signature:

• $\tau\tau$ resonance in $\mu^+\mu^-\tau^+\tau^-$ final states

Selection:

- 4 tracks: $2\mu + 2 e/\mu/\pi$ (1-prong τ decay)
- M(4-track) < 9.5 GeV/c²

Bkg:

- $e^+e^- \rightarrow \tau^+\tau^-(\gamma)$ (1x3 prong)
- e⁺e⁻ → qq (q=u,d,s,c)
- $e^+e^- \rightarrow |+|-|+|-$, $\mu^+\mu^-T^+T^-$, $e^+e^-X_{hadronic}$

Bkg suppression:

8 neural networks trained for different ranges in M_{recoil}(μμ)

Strategy:

• extract signal from fit to M_{recoil} above floating bkg

63.3 fb⁻¹ (2019-2020)

Dark sector

Z', S, ALP $\rightarrow \tau \tau$

Results:

- no significant excess above bkg has been found
 - ▶ 90% CL upper limits on σ and couplings
- first constraints for S in range M_s > 6.5 GeV/c²
- first direct constraints for ALP $\rightarrow \tau \tau$

Lepton Flavour Universality

 $g_e = g_\mu = g_\tau$? accidental symmetry of SM?

LFU experimental puzzles

Several measurements show tension with SM

$$\mathsf{R}(\mathsf{D}^{(*)}) = \frac{\mathcal{B}(\mathsf{B} \to \mathsf{D}^{(*)} \tau \nu)}{\mathcal{B}(\mathsf{B} \to \mathsf{D}^{(*)} \ell \nu)}, \ell = \mathsf{e}, \mu \quad \text{$^{\text{-3.3}}$ σ}$$

$$R(K) = \frac{\mathcal{B}(B \to K\mu^{+}\mu^{-})}{\mathcal{B}(B \to Ke^{+}e^{-})}$$

~310

Tension in $B \to K^* \mu^+ \mu^-$ angular observables

- → global discrepancy unlikely to be fluctuation
- → exploit more complementary observables

$$\mathsf{R}(\mathsf{X}_{\mu/\mathsf{e}}) = rac{\mathcal{B}(\mathsf{B} o \mathsf{X} \mu
u)}{\mathcal{B}(\mathsf{B} o \mathsf{X} \mathsf{e}
u)}$$

Challenges:

- larger background from less constrained X
- difficult MC modeling of the X = D, D*, D**, non resonant hadronic decays ('gap')
 - ▶ probe inclusive $B \rightarrow X I \nu$ modeling in data-driven way

Belle II Preliminary

 p_{ℓ}^* [GeV]

Selection:

- hadronic B-tagging with FEI $(\epsilon_{\text{had}}\approx 0.1\%)$
- p_i* > 1.3 GeV/c ⇒ reject most of B → X τ ν
 ⇒ suppress fake and secondary leptons
- · optimized lepton ID requirements

 p_{ℓ}^* [GeV]

189 fb⁻¹

ICHEP 2022

ICHEP 2022

Strategy:

- binned likelihood template fit with 3 components:
 - signal, continuum (cc, ss, uu, dd), "fake leptons + secondaries"
- e and μ templates are fitted simultaneously in 10 \mathbf{p}_1^* bins

Results:

- $R(X_{\mu/e}) = 1.031 \pm 0.010 \pm 0.020$ for $p_i^* > 1.3$ GeV/c
- SM: $R(X_{\mu/e}) = 1.006 \pm 0.001$ » arXiv:2207.03432
- agrees with SM expectation within 1.4σ
- most precise single test of $e \mu$ FU in semileptonic B decays
- precursor to measurement of R(X_{τ/l})
- dominated systematics: lepton ID efficiency (~2%)

Motivation:

- test on control mode in preparation to first Belle II R(K) measurement
- demonstrate capability of detector performance on 'SM candle' process: $B \rightarrow J/Psi(ll) K$

Selection:

pure selection: simple mass cuts on J/Psi, K_s, and particle ID criteria on leptons and charged K

Strategy:

extract branching fractions and r(K)_{J/Psi} from 2D unbinned fit to ΔE and M_{bc} distributions

Results:

- precision limited by statistics
- in agreements with SM and
- other measurements (Belle, LHCb) lepton ID uncertainties decreased with respect to Belle by factor ~2

1000

Belle (2021)

X + (stat.) + (syst.)

0.994±0.011±0.010

0.993±0.015±0.010

 $r(K^+)_{J/Psi}$

1.042±0.042±0.008 $r(K_s)_{J/Psi}$

» arXiv:2207.11275

X + (stat.) + (syst.)

1.009±0.022±0.008

19

LHCb (2022)

X + (stat. + syst.)

0.981±0.020

0.977±0.028

189 fb⁻¹

LFU prospects

Belle II provide most precise experimental information to resolve the R(D(*)) anomalies

Snowmass White Paper: Belle II physics reach and plans for the next decade and beyond » arXiv:2207.06307

$$R(X) = \frac{\mathcal{B}(B \to X \tau \nu)}{\mathcal{B}(B \to X \ell \nu)}$$

$$X = \pi, \rho, D, D^*, D^{**}, \dots$$

$$\ell = e, \mu$$

20

$$\ell=\mathsf{e},$$

Charged Lepton Flavour Violation

powerful tool to search for physics beyond SM

τ physics @ Belle II

overview

e⁺e⁻ annihilation experiment at B-factory also serves as τ factory

$$\sigma(\mathrm{e^+e^-}
ightarrow \Upsilon(4\mathrm{S})) = 1.05 \; \mathrm{nb}$$

$$\sigma(\mathrm{e^+e^-} \rightarrow \tau^+\tau^-) = 0.92~\mathrm{nb}$$

Signal search

τ features:

- · due to large mass
 - only lepton that can decay into hadrons, thus providing a clean laboratory to study QCD effects in the 1 GeV energy region
 - BSM contributions coupled more strongly to the third generation
- direct observation of forbidden decays violating flavour conservation and/or universality ⇒ unambiguous signature of New Physics

Challenges:

- presence of neutrinos requires good reconstruction of missing energy, hermetic detector, minimal combinatorial and machine backgrounds
- low multiplicity channels require appropriate triggers
- lifetime measurements require excellent vertexing capabilities

Snowmass 2021 White Paper: Charged lepton flavor violation in the tau sector arXiv:2203.14919

observed limits and projections

- 52 benchmark LFV τ decays have been searched
- modes can be classified as neutrinoless 2-body/3-body decays
- critical to probe all possible LFV modes of τ
 - ⇒ any excess in single channel not provide sufficient information on underlying mechanism

- → Belle II detector sensitivity close to NP scenarios limits
 - → expected to improve the results of previous B-factories by a factor ~100 with statistics only
- → there are additional LFV search channels with extra non-SM particles

LFV with light ALP production

 $\tau \rightarrow I + \alpha$ (invisible)

Motivation:

- NP models: light Axion-Like Particle
- best UL on BF($\tau \rightarrow I\alpha$)/BF($\tau \rightarrow I\nu\nu$) from ARGUS (476 pb⁻¹, 1995)
- Belle II can set more stringent limits

Reconstruction: split event in two hemispheres across thrust axis: $\overrightarrow{T} = \max(\sum_{i} \frac{\overrightarrow{p_i} \cdot \overrightarrow{T}}{|p_i|})$

- require 4 tracks: signal with 1 lepton track
 - tag with $\tau \rightarrow 3\pi \nu + vertex$

 - Veto neutrals (π^0, y) to suppress hadronic bkg

Bkg:

- irreducible: $\tau \rightarrow 1 \overline{\nu} \nu$
 - reducible: qq, l*l-, l*l-l*l-, l*l-h*h-, correctly tagged τ*τ with misidentified signal (suppresed by PID cut)

Bkg suppresion:

- unknown mass of $\alpha \rightarrow$ optimse selection using $\tau \rightarrow 1 \nu \nu$
- use 'safe' variables (thrust, M(3 π), E_{CM}(3 π)) which cannot distinguish between $\tau \rightarrow 1 \nu \nu$ and $\tau \rightarrow 1 \alpha$

tag

62.8 fb⁻¹

LFV with light ALP production

 $\tau \rightarrow I + \alpha$ (invisible)

Signature:

- search for excess above SM spectrum after bkg suppression
- in two-body decay we have monochromatic peak in τ rest frame
- undetected ν in both τ \Rightarrow use approximated pseudo-rest frame

Strategy:

- extract signal using template fit to $x_\ell \equiv \mathsf{E}_\ell/(\mathsf{m}_ au/2)$
- estimate $R = \mathcal{B}(\tau \to \ell \alpha)/\mathcal{B}(\tau \to \ell \nu \bar{\nu})$
- signal and SM systematics partially cancel out in ratio
 - ⇒ different kinematic regime

normalized to BF = 5%

LFV with light ALP production

 $\tau \rightarrow I + \alpha$ (invisible)

Results:

- we observe no signal and set 95% confidence level ULs on $\mathbf{P} = \mathbf{P}(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}, \mathbf{r}_{4}, \mathbf{r}_{3})$
 - $R = \mathcal{B}(\tau \to \ell \alpha) / \mathcal{B}(\tau \to \ell \nu \bar{\nu})$
- most stringent measurements in these channels to date

62.8 fb⁻¹

Summary + prospects

- ✓ New results in a wide range of B, τ decays and dark matter searches on limited data sample show promising capabilities of next-generation B-factory
- ✓ Until summer 2022 Belle II collected 424 fb⁻¹ \Rightarrow soon more new and updated results on the full sample
- SnowMass reports for Belle II provide a lot of details on the machine, detector, analysis tools, and planned physics analyses
- ✓ Belle II will contribute substantially to flavor physics throughout the next decade

BACKUP

Belle II detector

lepton ID performance

eID > 0.9 selection.

p [GeV/c]

likelihood-based ID; mid_ID rate is multiplied **x10** for illustration purposes

On-resonance: 190 fb-1 Off-resonance: 18 fb-1 (2019 – mid 2021)

 $\mu ID > 0.9$ selection.

likelihood-based ID; mid_ID rate is multiplied x3 for illustration purposes

Belle II detector

SVD performance + trigger

+ hit-time resolution ~ 3 ns ⇒ suppress beam-related background

TRIGGER

- L1 Trigger: CDC+ECL+TOP+KLM
- Max. L1 DAQ: 30 kHz
- DAQ: pipeline readout

DM mass range for Belle II

The masses of **mediator** and of the **DM candidates** lead to different type of searches

31

Luminosity

SuperKEKB luminosity

$$L = \frac{\gamma_{\pm}}{2er_{e}} \left(1 + \frac{\sigma_{y}^{*}}{\sigma_{x}^{*}} \right) \underbrace{\frac{I_{\pm} \xi_{y\pm}}{\beta_{y\pm}^{*}}}_{X} \frac{R_{L}}{R_{\xi_{y}}} \times \frac{1}{20}$$

$$\Rightarrow \times 40 \text{ luminosity}$$

$\tau \rightarrow l + \alpha \text{ (invisible)}$

UL on ratio

34