Recent results from Belle II

Karol Adamczyk

on behalf of Belle II Collaboration

Institut
"Jožef Stefan"
Ljubljana, Slovenija
Belle II physics program

Study of rare decays of B, D and τ

GOAL
uncover New Physics beyond the Standard Model

Belle II will pursue NP in many ways:

* improving precision of CKM matrix elements and phases
* testing violations of lepton conservation and universality
* probing the existence of dark-sector particles
* and many more …
SuperKEKB
new Intensity Frontier machine

\[\text{cc}, \text{ss}, \bar{u}u, \bar{d}d, \bar{l}l, \tau^+\tau^- \rightarrow e^+e^- \rightarrow Y(nS) \rightarrow B^(*)\bar{B}^(*) \]

- **SuperKEKB + Belle II detector** ≡ 2nd generation super B-factory
- **substantial upgrade** of the B factory facility located at KEK (Tsukuba, Japan)
- **SuperKEKB**: asymmetric \(e^+e^-\) collider operating **mainly** at \(m_{Y(4S)} = 10.58\text{ GeV}\)
- high luminosity achieved by
 - squeeze beams at IP (vertical ~60 nm)
 - increase beam currents + make smaller \(\beta^*\)
 - larger crossing angle (22 → 83 mrad)

TARGETS

- peak luminosity: \(6 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1}\) (30x KEKB)
- integrate up to 50 ab\(^{-1}\) (50x Belle) in a decade!
SuperKEKB

new Intensity Frontier machine

- SuperKEKB + Belle II detector ≡ 2nd generation super B-factory located at KEK (Tsukuba, Japan)
- asymmetric e⁺e⁻ collider operating **mainly** at 10.58 GeV: Υ(4S)

Current status

- complete detector started taking data in spring 2019
- total **integrated luminosity** collected before summer 2022: **424 fb⁻¹** (good runs)
 - at the Υ(4S) resonance: **363 fb⁻¹**
 - similar DATA as BaBar, ~0.5 Belle DATA
- new **World Record of peak luminosity**: 4.7 x 10^{34} cm⁻² s⁻¹ (> 2 x KEKB record)
- Long Shutdown 1 (LS1) from summer 2022 for 15 months
 - improvements of machine and detector (beam pipe, Pixel Vertex Detector, Time-Of-Propagation PMT)

Luminosity projection

- We are here

Belle II luminosity page
Belle II detector

multipurpose ~ 4π magnetic spectrometer

Silicon vertex detectors
- 2 layers DEPFET (pixel)
- 4 outer layers DSSD
 ✔ vertexing resolution ~ 15 μm

Tracking detector
- central drift chamber (He + C₂H₆)
- small cells, long lever arm, fast electronic
 ✔ spatial resolution: 100 μm
 ✔ p_T resolution ~ 0.4%/p_T
 ✔ dE/dx resolution: 5%

Electromagnetic Calorimeter
- CsI(Tl) + waveform sampling (barrel + end-caps)
 ✔ energy resolution ~1.6-4%
 ✔ lepton ID efficiency 90% at fakes: 0.5% for e and 7% for μ

Particle ID detectors
- Time-of-Propagation counter (barrel)
- Aerogel RICH (forward end-cap)
 ✔ hadron ID efficiency ~90% at 10% fakes

- Resistive Plate Counter (barrel outer layers)
- Scintillator + WLS fiber + MPPC (end-caps & inner 2 barrel layers)
 ✔ μ ID efficiency: 90 %

Magnetic field
- 1.5 T superconducting magnet

Key factors:
- known initial state + nearly hermetic detector with excellent PID
 ► reconstruct fully-inclusive final states
 ► broadly search for particles with no direct signature
- reconstruct neutral particles (γ, π⁰, Kᵢ, K_L) nearly as well as charged particles

Particles
- electrons (7 GeV)
- positrons (4 GeV)
Experimental techniques
@ B-factories

B-TAGGING

- exclusive production of $B\bar{B}$ pairs at B-factories
- kinematical constraints from beam energy in CM of $\Upsilon(4S)$
- in channels with missing energy (i.e. multi ν final state)
 - reconstruct partner of signal B meson: B_{TAG}
 - using well measured channels
 - B_{TAG} kinematics, flavor, charge

Different tagging approaches:

- **Inclusive:**
 - $B \rightarrow $ anything (hadrons + photons)
 - high $\epsilon \approx O(10\%)$ but lower purity

- **Semileptonic:**
 - $B \rightarrow \sum$ of $B \rightarrow D^{(*)} l \nu$
 - $BF \sim 20\%$; $\epsilon \approx O(1\%)$ with optimal purity

- **Hadronic:**
 - $B \rightarrow \sum$ of exclusive hadron modes
 - low $\epsilon \approx O(0.1\%)$ but high purity

Full Event Interpretation (FEI)

- improved B-tagging algorithm based on Boosted Decision Trees
- hierarchical approach to reconstruct $O(10^4)$ decay chains
 - $\epsilon_{\text{SL}} \approx 2\%$
 - $\epsilon_{\text{had}} \approx 0.5\%$

Dark sector

direct searches for light non-SM physics
Dark Sector

portals between DM and SM

→ identify particles and properties of Dark Matter through production at colliders

→ constraints on weakly coupled DM

▸ light dark mediator X as portal

Belle II has unique capability to search for dark matter and mediators at MeV-GeV scale

✔ dedicated low-multiplicity triggers

✔ e.g. single photon; single/two/three track(s); $E_{\text{ECL}} > 1\text{GeV}$

✔ hermetic detector + clean events

✔ high intensity collisions at ~10.6 GeV

Vector
Dark Photon, Z'

Scalar
Dark Higgs, Dark Scalar

Neutrino
Sterile neutrinos

X

Pseudoscalar
Axion-Like Particles

Standard Model
Motivation:
- U(1)’ vector portal extension of SM
 - Dark photon A’: coupled to SM photon via kinetic mixing parameter ϵ
 - mass generated via spontaneous symmetry breaking
 - Dark Higgs h’: couples with α_D to A’

Signature:
- $M_{h'} < M_A' \rightarrow h'$ is long-lived (invisible)
 - \Rightarrow 2 charged tracks + missing energy
- A’: $M_{\mu\mu}$ and h’: M_{recoil}

Selection:
- two reconstructed muons, $p_{T\mu\mu} > 0.1$ GeV/c
- recoil momentum in ECL barrel, no nearby photon
- cut on helicity angle of muon

Strategy:
- scan for excess in 2D plane of M_{recoil} vs. $M_{\mu\mu}$
- ~9000 rotated elliptical mass windows to test signal hypotheses
Dark sector
Dark Higgsstrahlung: $e^+e^- \rightarrow A' h'$

Results:
- no significant excess above bkg was observed
 - 90% CL upper limits on σ and $\varepsilon^2 \alpha_D$
- world leading limit: $1.65 < M_{A'} < 10.51 \text{ GeV/c}^2$

Results:
- no significant excess above bkg was observed
 - 90% CL upper limits on σ and $\varepsilon^2 \alpha_D$
- world leading limit: $1.65 < M_{A'} < 10.51 \text{ GeV/c}^2$

Results:
- no significant excess above bkg was observed
 - 90% CL upper limits on σ and $\varepsilon^2 \alpha_D$
- world leading limit: $1.65 < M_{A'} < 10.51 \text{ GeV/c}^2$

Results:
- no significant excess above bkg was observed
 - 90% CL upper limits on σ and $\varepsilon^2 \alpha_D$
- world leading limit: $1.65 < M_{A'} < 10.51 \text{ GeV/c}^2$

Results:
- no significant excess above bkg was observed
 - 90% CL upper limits on σ and $\varepsilon^2 \alpha_D$
- world leading limit: $1.65 < M_{A'} < 10.51 \text{ GeV/c}^2$

Results:
- no significant excess above bkg was observed
 - 90% CL upper limits on σ and $\varepsilon^2 \alpha_D$
- world leading limit: $1.65 < M_{A'} < 10.51 \text{ GeV/c}^2$

Results:
- no significant excess above bkg was observed
 - 90% CL upper limits on σ and $\varepsilon^2 \alpha_D$
- world leading limit: $1.65 < M_{A'} < 10.51 \text{ GeV/c}^2$

Results:
- no significant excess above bkg was observed
 - 90% CL upper limits on σ and $\varepsilon^2 \alpha_D$
- world leading limit: $1.65 < M_{A'} < 10.51 \text{ GeV/c}^2$

Results:
- no significant excess above bkg was observed
 - 90% CL upper limits on σ and $\varepsilon^2 \alpha_D$
- world leading limit: $1.65 < M_{A'} < 10.51 \text{ GeV/c}^2$
Dark sector

Z' → invisible

Motivation:
- $L_\mu - L_\tau$ model can provide solution for $R(K^*)$ and $(g-2)_\mu$
- Z' – new massive gauge boson coupled only to μ and τ

Searched signatures:
- $\mu^+\mu^-$ final state with
 - Z' – invisible (neutrinos/dark matter)
 - final states with missing energy $\Rightarrow M_{\text{recoil}}$

Bkg:
- $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$, $e^+e^- \rightarrow \tau^+\tau^-(\gamma)$, $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$

Selection:
- two reconstructed muons, $p_{T\mu\mu} > 0.4$ GeV/c
- recoil momentum in ECL barrel, no nearby photon
- neural network trained to optimize Punzi FOM

Strategy:
- template fit in 2D plane of θ_{recoil} vs. M_{recoil}^2
Results:

- no excess found
 - 90% CL upper limits on σ and coupling
- excluded fully invisible Z' as explanation for $(g-2)_\mu$ in range $0.8 < M_{Z'} < 5.0$ GeV/c2
Motivation:
- probe three different models: Z', L_μ, L_τ, leptophilic dark scalar S, ALP

Signature:
- $\tau\tau$ resonance in $\mu^+\mu^-\tau^+\tau^-$ final states

Selection:
- 4 tracks: $2\mu + 2\ e/\mu/\pi$ (1-prong τ decay)
- $M(4\text{-track}) < 9.5 \text{ GeV/c}^2$

Bkg:
- $e^+e^- \rightarrow \tau^+\tau^-(\gamma)$ (1x3 prong)
- $e^+e^- \rightarrow q\bar{q}$ ($q=u,d,s,c$)
- $e^+e^- \rightarrow l^+l^-l^+l^-,\mu^+\mu^-\tau^+\tau^-,e^+e^-X_{\text{hadronic}}$

Bkg suppression:
- 8 neural networks trained for different ranges in $M_{\text{recoil}}(\mu\mu)$

Strategy:
- extract signal from fit to M_{recoil} above floating bkg
Results:

- no significant excess above bkg has been found
 - 90% CL upper limits on σ and couplings
- first constraints for S in range $M_S > 6.5$ GeV/c2
- first direct constraints for ALP $\rightarrow \tau \tau$
Lepton Flavour Universality

$g_e = g_\mu = g_\tau$? accidental symmetry of SM?
LFU

experimental puzzles

Several measurements show tension with SM

\[R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)} \tau \nu)}{\mathcal{B}(B \to D^{(*)} \ell \nu)}, \ell = e, \mu \quad \sim 3.3 \sigma \]

\[R(K) = \frac{\mathcal{B}(B \to K \mu^+ \mu^-)}{\mathcal{B}(B \to Ke^+e^-)} \quad \sim 3.1 \sigma \]

Tension in \(B \to K^* \mu^+ \mu^- \) angular observables

- global discrepancy unlikely to be fluctuation
- exploit more complementary observables
\[
R(X_{\mu/e}) = \frac{\mathcal{B}(B \to X_{\mu/e})}{\mathcal{B}(B \to X_{\mu/e})}
\]

Challenges:
- larger background from less constrained X
- difficult MC modeling of the X = D, D*, D**, non resonant hadronic decays ('gap')
 - probe inclusive B → X l ν modeling in data-driven way

Selection:
- hadronic B-tagging with FEI (ε_{had} ≈ 0.1%)
- \(p_{t}^* > 1.3 \text{ GeV/c} \Rightarrow \) reject most of B → X τ ν
 - suppress fake and secondary leptons
- optimized lepton ID requirements
$R(X_{\mu/e})$

test of LFU via inclusive B decays

Strategy:
- binned likelihood template fit with 3 components:
 - signal, continuum ($c\bar{c}$, $s\bar{s}$, $u\bar{u}$, $d\bar{d}$), “fake leptons + secondaries”
 - e and μ templates are fitted simultaneously in 10 p_t^* bins

Results:
- $R(X_{\mu/e}) = 1.031 \pm 0.010 \pm 0.020$ for $p_t^* > 1.3$ GeV/c
- SM: $R(X_{\mu/e}) = 1.006 \pm 0.001$ » arXiv:2207.03432
- agrees with SM expectation within 1.4σ
- most precise single test of $e - \mu$ FU in semileptonic B decays
- precursor to measurement of $R(X_{\tau/l})$
- dominated systematics: lepton ID efficiency (~2%)
Motivation:
- test on control mode in preparation to first Belle II R(K) measurement
- demonstrate capability of detector performance on ‘SM candle’ process: \(B \rightarrow J/\psi(\ell\ell) K \)

Selection:
- pure selection: simple mass cuts on \(J/\psi, K_s \), and particle ID criteria on leptons and charged K

Strategy:
- extract branching fractions and \(r(K)_{J/\psi} \) from 2D unbinned fit to \(\Delta E \) and \(M_{bc} \) distributions

Results:
- precision limited by statistics
- in agreements with SM and other measurements (Belle, LHCb)
- lepton ID uncertainties decreased with respect to Belle by factor \(~2\)

\[
\Delta E = E_B^* - \sqrt{s}/2
\]

\[
m_{bc} = \sqrt{s/4 - \vec{p}_B^*}^2
\]

<table>
<thead>
<tr>
<th></th>
<th>Belle II (2022)</th>
<th>Belle (2021)</th>
<th>LHCb (2022)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r(K^+)_{J/\psi})</td>
<td>1.009±0.022±0.008</td>
<td>0.994±0.011±0.010</td>
<td>0.981±0.020</td>
</tr>
<tr>
<td>(r(K_s)_{J/\psi})</td>
<td>1.042±0.042±0.008</td>
<td>0.993±0.015±0.010</td>
<td>0.977±0.028</td>
</tr>
</tbody>
</table>

\[* \text{arXiv:2207.11275} \]
Belle II provide most precise experimental information to resolve the R(D^(0)) anomalies
Charged Lepton Flavour Violation

powerful tool to search for physics beyond SM

SM case with neutrino oscillation
BR ~ 10^{-54}

NP case
BR ~ 10^{-10} - 10^{-7}
τ physics @ Belle II

Overview

\[e^+e^- \rightarrow \gamma(4S) \] = 1.05 nb
\[e^+e^- \rightarrow \tau^+\tau^- \] = 0.92 nb

τ features:

- due to large mass
 - only lepton that can decay into hadrons, thus providing a clean laboratory to study QCD effects in the 1 GeV energy region
 - BSM contributions coupled more strongly to the third generation
 - direct observation of forbidden decays violating flavour conservation and/or universality ⇒ unambiguous signature of New Physics

Challenges:

- presence of neutrinos requires good reconstruction of missing energy, hermetic detector, minimal combinatorial and machine backgrounds
- low multiplicity channels require appropriate triggers
- lifetime measurements require excellent vertexing capabilities
Current status
observed limits and projections

- 52 benchmark LFV τ decays have been searched
- modes can be classified as neutrinoless 2-body/3-body decays
- critical to probe all possible LFV modes of τ
 \[\Rightarrow \text{any excess in single channel not provide sufficient information on underlying mechanism} \]

<table>
<thead>
<tr>
<th>$\ell\gamma$</th>
<th>IP^0</th>
<th>IS^0</th>
<th>IV^0</th>
<th>III</th>
<th>lh\bar{h}</th>
<th>BNV</th>
</tr>
</thead>
<tbody>
<tr>
<td>10$^{-3}$</td>
<td>10$^{-7}$</td>
<td>10$^{-6}$</td>
<td>10$^{-5}$</td>
<td>10$^{-9}$</td>
<td>10$^{-7}$</td>
<td>10$^{-5}$</td>
</tr>
</tbody>
</table>

- Belle II detector sensitivity close to NP scenarios limits
 \[\Rightarrow \text{expected to improve the results of previous B-factories by a factor } \sim 100 \text{ with statistics only} \]
- there are additional LFV search channels with extra non-SM particles
LFV with light ALP production

\(\tau \rightarrow l + \alpha \) (invisible)

Motivation:
- NP models: **light** Axion-Like Particle
- best UL on BF(\(\tau \rightarrow l \alpha\))/BF(\(\tau \rightarrow l \nu \nu\)) from ARGUS (476 pb\(^{-1}\), 1995)
- Belle II can set more stringent limits

Reconstruction:
- split event in two hemispheres across thrust axis: \(\vec{T} = \max(\sum_i \frac{\vec{p}_i \cdot \vec{T}}{|p_i|}) \)
- require 4 tracks:
 - **signal with 1 lepton track**
 - **tag with \(\tau \rightarrow 3\pi\nu + \) vertex**
 - Veto neutrals (\(\pi^0, \gamma\)) to suppress hadronic bkg

Bkg:
- irreducible: \(\tau \rightarrow l \nu \nu\)
- reducible: \(q\bar{q}, l^+l^-, l^+l^+l^-, l^+h+h^-\), correctly tagged \(\tau^+\tau^-\) with misidentified signal (suppressed by PID cut)

Bkg suppression:
- unknown mass of \(\alpha \rightarrow \) optimise selection using \(\tau \rightarrow l \nu \nu\)
- use ‘safe’ variables (**thrust**, \(M(3\pi)\), \(E_{cm}(3\pi)\)) which cannot distinguish between \(\tau \rightarrow l \nu \nu\) and \(\tau \rightarrow l \alpha\)
LFV with light ALP production

Signature:
- search for excess above SM spectrum after bkg suppression
- in two-body decay we have monochromatic peak in τ rest frame
- undetected ν in both τ ⇒ use approximated pseudo-rest frame

Strategy:
- extract signal using template fit to $x_\ell \equiv E_\ell/(m_\tau/2)$
- estimate $R = B(\tau \rightarrow \ell\alpha)/B(\tau \rightarrow \ell\nu\bar{\nu})$
- signal and SM systematics partially cancel out in ratio ⇒ different kinematic regime

\[\hat{p}_\tau \approx -\frac{\vec{p}_{\text{tag}}}{|\vec{p}_{\text{tag}}|} \, , \quad E_\tau \approx \sqrt{s}/2 \]
LFV with light ALP production
\(\tau \to l + \alpha \) (invisible)

Results:
- we observe no signal and set 95% confidence level ULs on
 \[R = \frac{\mathcal{B}(\tau \to \ell\alpha)}{\mathcal{B}(\tau \to \ell\nu\bar{\nu})} \]
- most stringent measurements in these channels to date

ICHEP 2022

\(62.8 \text{ fb}^{-1}\)
New results in a wide range of B, τ decays and dark matter searches on limited data sample show promising capabilities of next-generation B-factory

Until summer 2022 Belle II collected 424 fb$^{-1}$ ⇒ soon more new and updated results on the full sample

SnowMass reports for Belle II provide a lot of details on the machine, detector, analysis tools, and planned physics analyses

Belle II will contribute substantially to flavor physics throughout the next decade
BACKUP
Belle II detector

lepton ID performance

On-resonance: 190 fb\(^{-1}\)
Off-resonance: 18 fb\(^{-1}\)
(2019 – mid 2021)

eID > 0.9 selection.

likelihood-based ID; mid_ID rate is multiplied \(x10\) for illustration purposes

μID > 0.9 selection.

likelihood-based ID; mid_ID rate is multiplied \(x3\) for illustration purposes
Belle II detector

SVD performance + trigger

TRIGGER

- L1 Trigger: CDC+ECL+TOP+KLM
- Max. L1 DAQ: 30 kHz
- DAQ: pipeline readout

+ hit-time resolution ~ 3 ns ⇒ suppress beam-related background
The masses of mediator and of the DM candidates lead to different type of searches

arXiv: 1707.04591
Luminosity

2022

Belle II Online luminosity
Exp: 7-26 - All runs

Integrated luminosity
Recorded Weekly
\[\int \mathcal{L}_{\text{Recorded}} \, dt = 427.79\,\text{fb}^{-1} \]
\[L = \frac{\gamma_+}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} I_{\pm,\xi_y,\pm} \frac{R_L}{R_{\xi_y}} \beta_{y_\pm} \right) \times 2 \times 1 \times \frac{1}{20} \times 40 \text{ luminosity} \]
\(\tau \rightarrow l + \alpha \) (invisible)

UL on ratio