Recent results on B and D decay from Belle II

Doris Yangsoo Kim
on behalf of the Belle II collaboration

July 27, 2022
50th International Symposium on Multiparticle Dynamics (PASCOS 2022)
Max Planck Institute for Nuclear Physics, Heidelberg, Germany
Belle II Experiment in a Nutshell

- HEP experiments have seen huge accomplishments during the last decades.
 - CPV/CKM, discovery of XYZ/tetra/penta particles, discovery of Higgs, etc.
 - Next major theme: New Physics, requiring more precision and larger samples.
- Belle II/SuperKEKB is the upgrade of Belle/KEK.
- Upsilon(4S) decays into $B\bar{B}$ meson pairs, coherently with no additional fragments.
 - Full event reconstruction tagging possible
- Direct detection of neutrals such as γ, π^0, K_L.
- A hermetic detector:
 - Detection of neutrinos or invisibles as missing energy/momentum.
- Large continuum charm and τ samples in addition to B samples.
 - Detect both e and μ with similar performance.
 - For example, search for LFV τ decays at $O(10^{-9})$ possible.
Belle II Physics Prospects

- Charm decays
- Next precision **CKM matrix**
 - Semileptonic B decays (CKM elements)
 - Hadronic B decays (angles and CPV)
 - Time dependent CP violation
- τ physics
- Hadron spectroscopy
- **Rare decays**, FCNC
- New physics
 - Lepton flavor violation
 - Dark sector, Long lived particles

[Link to Snowmass 2021]

Paul Feichtinger, July 26, Session A
Dark sector results from Belle II
The Belle II Detector

KL and muon detector:
- Resistive Plate Counter (barrel outer layers)
- Scintillator + WLSF + MPPC (end-caps, inner 2 barrel layers)

Particle Identification
- Time-of-Propagation counter (barrel)
- Prox. focusing Aerogel RICH (forward)

Central Drift Chamber
- (He + C2H6) small cells, long lever arm

EM Calorimeter:
- CsI(Tl), waveform sampling

Vertex Detector
- 1 to 2 layers Si Pixels (DEPFET)
- 4 layers Si double sided strip DSSD

Beryllium beam pipe
- 2cm diameter

Pixelated photo sensors in TOP/ARICH/KLM
Front-end ASICs in many subsystems.

Doris Yangsoo Kim @ PASCOS
2022, July 27, 2022

Vertexing and Tracking Improved
- Particle ID improved
- Better background insensitivity
- Higher event rate
SuperKEKB Luminosity: Current Status

- After the commission phases, physics runs started spring 2019.
- Reclaimed the luminosity record June 2020! (Previously held by LHC.)
- Spring/summer 2022 run ended June.
 - Peak luminosity at $L_{\text{peak}} = 4.7 \times 10^{34} \text{cm}^{-2}\text{s}^{-1}$, the current world record on June 22nd.
 - Current integrated luminosity at $\int L_{\text{recorded}} \, dt = 424 \text{ fb}^{-1}$.
 (~ Babar, ~ ½ Belle)
- Long shutdown 1 (LS1) just started for upgrades (beam pipe, pixel, TOP MPT).

https://confluence.desy.de/display/BI/Belle+II+Luminosity
Charm Particle Lifetime

- Charm particles @ low-energy QCD calculation (non-perturbative and high order correction). The effective models do have uncertainties.
- Measurements of charm lifetimes can test the models.

- At SuperKEKB, $\sigma_{c\bar{c}} \sim \sigma_{b\bar{b}}$. Large charm sample from continuum.
- $e^+ e^-$ collision gives clean environment. Less bias.
- Small interaction region and the new Belle II vertex detector give strong constraints and better resolutions.
- A great opportunity to measure the world best charm lifetimes.
$D^0, D^+, \Lambda_c^+, \Omega_c^0$ Lifetimes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Belle II (fs)</th>
<th>Previous WA (fs)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D^0</td>
<td>$410.5 \pm 1.1 \pm 0.8$</td>
<td>410.1 ± 1.5</td>
<td>Phys. Rev. Lett. 127 (2021), 211801</td>
</tr>
<tr>
<td>D^+</td>
<td>$1030.4 \pm 4.7 \pm 3.1$</td>
<td>1040 ± 7</td>
<td></td>
</tr>
<tr>
<td>Λ_c^+</td>
<td>$203.2 \pm 0.9 \pm 0.8$</td>
<td>202.4 ± 3.1</td>
<td>arXiv: 2206.15227v1, PRL accepted</td>
</tr>
<tr>
<td>Ω_c^0</td>
<td>$243 \pm 48 \pm 11$</td>
<td>$268 \pm 24 \pm 10$ LHCb</td>
<td></td>
</tr>
</tbody>
</table>

Belle II Data

- $D^0 \to K^-\pi^+$
- $\Lambda_c^+ \to pK^-\pi^+$
- $\Omega_c^0 \to \Omega^-\pi^+$, $\Omega^- \to \Lambda^0K^-$, $\Lambda^0 \to p\pi^-$
Why CKM Matrix?

• Unitary triangle constraints are powerful test of the SM.
 – Precision on α and γ angles are much less than β.
• Predicting rare decays involves $V_{qq'}$. Needed for NP searches.
 – Use semi-leptonic, leptonic decays of mesons.

To be published,
Prog. Theor. Exp. Phys. 2022 083C01 (2022) aka PDG 2022

Figure 12.1: Sketch of the unitarity triangle.
Hierarchical reconstruction is performed to obtain B (tag) meson exclusively. Then use the Upsilon(4S) constraint to get the B (sig) meson.

- Traditionally, at Upsilon(4s), one B (tag) is reconstructed first. The rest of the event is considered as a signal B.
 arXiv.org: 2008.02707
- An improved tool (FEI) is developed based on Boosted Decision Tree.
- MVA based. $O(10^4)$ decay channels.
- Max. tag side efficiency: $\varepsilon_{\text{had}} \approx 0.5\%$ and $\varepsilon_{\text{SL}} \approx 2\%$
The CKM Matrix elements

- The ~ 3σ tension between inclusive and exclusive measurements in $|V_{cb}|, |V_{ub}|$ is still going on.
- Preliminary Belle II results, based on 190 fb$^{-1}$ samples.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>V_{cb}</td>
<td>$</td>
<td>$B \rightarrow Dl\nu$, $(l = e, \mu)$</td>
<td>Untagged</td>
</tr>
<tr>
<td></td>
<td>$B^0 \rightarrow D^*l\nu$, $(l = e, \mu)$</td>
<td>Hadronic</td>
<td>$(38.2 \pm 2.8 \text{ (stat. + sys. +theo.)}) \times 10^{-3}$</td>
<td>Moriond 2022</td>
</tr>
<tr>
<td>$</td>
<td>V_{ub}</td>
<td>$</td>
<td>$B^0 \rightarrow \pi l\nu$, $(l = e, \mu)$</td>
<td>Untagged</td>
</tr>
<tr>
<td></td>
<td>$B \rightarrow \pi e\nu$</td>
<td>hadronic</td>
<td>$(3.88 \pm 0.45\text{(stat. + sys. +theo.)}) \times 10^{-3}$</td>
<td>Moriond 2022</td>
</tr>
</tbody>
</table>
Signal Selection of SL modes.

\[\cos \theta_{BY} \text{ (angle btw. } B \text{ and } DL) \]

\[B^0 \rightarrow \pi^- e^+ \nu_e \text{ untagged} \]

\[M_{\text{miss}}^2 = (P_{\text{beam}} - P_{\text{tag}} - P_{\bar{B}} - P_f)^2 \text{ [GeV}^2/c^4]\]

\[\Delta E = E_B^* - E_{\text{beam}}^* \text{ [GeV]} \]
Time Dependent CPV and Mixing

- Belle II flavor tagging $\varepsilon_{\text{eff}} = (30.0 \pm 1.2 \pm 0.4)\%$
- The $190 \, fb^{-1}$ sample was studied to extract B^0 lifetime and mixing frequency.
- $30k B^0 \to D^{(*)-}h^+$ decays are used for this result.

Belle II: $\tau_{B^0} = 1.499 \pm 0.013 \, (\text{stat}) \pm 0.008 \, (\text{syst}) \, \text{ps}$
W. A.: $1.510 \pm 0.004 \, \text{ps}$

Belle II: $\Delta m_{d} = 0.516 \pm 0.008 \, (\text{stat}) \pm 0.005 \, (\text{syst}) \, \text{ps}^{-1}$
W. A.: $0.50665 \pm 0.0019 \, \text{ps}^{-1}$
Next, Measure $\sin 2\beta$

- Apply the strategy to the golden mode: $B^0 \rightarrow J/\psi K_S^0$. This tree mode should be precisely measured, to compare with the penguin decays.
- NP can appear in the penguin decays such as $B^0 \rightarrow K_S^0 K_S^0 K_S^0$.

$\sin 2\beta$ validation from $B^0 \rightarrow J/\psi K^+$

$\sin 2\beta$ results from $B^0 \rightarrow J/\psi K_S^0$

\[
S_{CP} \approx \sin 2\beta = 0.720 \pm 0.062 \, \text{(stat)} \pm 0.016 \, \text{(syst)}
\]

\[
A_{CP} = 0.094 \pm 0.044 \, \text{(stat)}^{+0.042}_{-0.017} \, \text{(syst)}
\]
Rare B decays: Overview

• FCNC $b \rightarrow s$ transitions are suppressed in the SM. A good place to look for NP.
 – The 10 to 30% uncertainty in the SM BR (10^{-5} to 10^{-7}) can be supplemented by ratios, asymmetries, and angular distributions.

• A decay channel involving leptons is an excellent place to test LFU or LFV.
 – Belle II have similar detector performances between electron and muon.

• The results from the initial physics sample are shown here.
$B^+ \rightarrow K^* l^+ l^-$

- R_{K^*} measurements have a 2-3 σ discrepancies between e and μ.
- The first Belle II report on 190 fb^{-1} sample.
- Background suppressed by BDT, and veto on J/ψ, $\psi(2S)$ mass.
- 2D fit to M_{bc} and ΔE.

<table>
<thead>
<tr>
<th>Modes</th>
<th>Belle II</th>
<th>WA</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B \rightarrow K^* \mu^+ \mu^-$</td>
<td>$(1.19 \pm 0.31^{+0.08}_{-0.07}) \times 10^{-6}$</td>
<td>$(1.06 \pm 0.09) \times 10^{-6}$</td>
</tr>
<tr>
<td>$B \rightarrow K^* e^+ e^-$</td>
<td>$(1.42 \pm 0.48 \pm 0.09) \times 10^{-6}$</td>
<td>$(1.19 \pm 0.20) \times 10^{-6}$</td>
</tr>
<tr>
<td>$B \rightarrow K^* l^+ l^-$</td>
<td>$(1.25 \pm 0.30^{+0.08}_{-0.07}) \times 10^{-6}$</td>
<td>$(1.05 \pm 0.10) \times 10^{-6}$</td>
</tr>
</tbody>
</table>
$B^+ \rightarrow K^+ \nu \nu$ with Inclusive Tagging

• The Belle II measurement at $63 fb^{-1}$ is comparable to the previous Babar/Belle measurements.
• Next step: 424 fb^{-1} sample, hadronic/semileptonic taggings, more channels (K^*, K_S)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Limit on $\sin(2\theta_{CP})$ at 90% C.L.</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Babar</td>
<td>$< 1.6 \times 10^{-5}$ (90% C.L.)</td>
<td>Phys. Rev. D87,112005 (2013)</td>
</tr>
<tr>
<td>Belle</td>
<td>$< 1.9 \times 10^{-5}$ (90% C.L.)</td>
<td>Phys. Rev. D96,091101(R) (2017)</td>
</tr>
</tbody>
</table>
Summary

• SuperKEKB has achieved $L_{\text{peak}} = 4.7 \times 10^{34} cm^{-2} s^{-1}$, the world record on June 22nd, 2022.
 – It is a super B factory now.

• Belle II has started producing new results, including a world leading results in charm lifetime.
 – More updates are coming with the 424 fb^{-1} sample!

• Belle II started producing results on many interesting B physics.
 – Only a few selected topics are shown here.
 – Further reports at ICHEP 2022, Moriond 2022.

• This is a very exciting time to do flavor physics, looking for physics beyond the Standard Model.
EXTRA
The Belle II Collaboration

- As of July 2022, approximately
- 1,100 members, 120 institutes, 27 countries
Belle II and LHCb

- Belle II and LHCb have different systematics
 - Two experiments are required to establish NP.
 - LHCb: large $b \bar{b}$ cross-section (LHCb 1 fb$^{-1}$ ~ Belle II 1 ab$^{-1}$). Good sensitivity and S/N with di-muon modes and charged tracks with a vertex.
KEKB to SuperKEKB: Accomplished

- Nano beam scheme + Crab waist optics
- Target: vertical beta function β_y^*, 5.9 mm (KEKB) to 0.3 mm (SuperKEKB)
- Increase beam currents $I_{e\pm}$
- Increase beam-beam interaction ζ_y

KEKB beams

Beam crossing angle 22 mrad

SuperKEKB nanobeams

Beam crossing angle 83 mrad

$$L = \frac{\gamma_{e\pm}}{2e r_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \left(\frac{1}{\beta_y^*} \frac{I_{e\pm}}{\xi_{y,e\pm}} \right) \frac{R_L}{R_{\xi_y}}\right)$$