Latest results on semileptonic and electroweak penguin decays at Belle II

M. WELSCH on behalf of the Belle II Collaboration

Physikalisches Institut, Nußallee 12
University of Bonn, 53115 Bonn, Germany

The Belle II Collaboration presents four new analyses: The measurement of $|V_{ub}|$ from $B \to \pi \ell \nu$ decays with a fit to the differential q^2 spectrum, the determination of $|V_{cb}|$ using a fit to the differential w distribution from $B^0 \to D^- \ell^+ \nu_\ell$ decays, and the measurement of q^2 moments in inclusive $B \to X_c \ell \nu_\ell$ decays. In all these analyses tag-side B meson is reconstructed in a fully hadronic decay chain. The last result are branching fraction measurement of $B \to K^* \ell^+ \ell^-$ decays using an untagged approach.

1 Introduction

The Belle II Collaboration collected a data set corresponding to an integrated 189 fb$^{-1}$ at the $\Upsilon(4S)$ resonance. The data is recorded with the Belle II detector and the SuperKEKB e^+e^--collider located at KEK in Tsukuba, Japan. This manuscript presents four new recent results from the Belle II Collaboration.

2 Branching Fraction Measurements of $B \to \pi e^+\nu_\ell$ Decays and Determination of $|V_{ub}|$

In this analysis reconstructs the decays $B^0 \to \pi^- e^+ \nu_\ell$ and $B^+ \to \pi^0 e^+ \nu_\ell$ using hadronic tagging provided by tagging algorithm implemented in the Full-Event-Interpretation. These decays are considered the golden modes to measure the magnitude of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element $|V_{ub}|$ in an exclusive approach.

$B \to \pi e^+\nu_\ell$ decays are reconstructed in channels with charged and neutral π candidates. The number of signal and background events are determined with a maximum likelihood fit of the missing mass squared $m^2_{\text{Miss}} = (p^*_{B_{\text{sig}}} - p^*_\pi)^2$ in three bins of the four-momentum transfer $q^2 = (p^*_{B_{\text{sig}}} - p^*_\pi)^2$. Here, p^* denotes the four momentum in the center-of-mass of the $e^+ e^-$-collision. The four-momentum of the signal B is calculated from the momentum of fully reconstructed tag-side B meson $p^*_{B_{\text{sig}}} = (m_{\Upsilon(4S)}^{2}, -p^*_\Upsilon(4S))$.

In a next step, the unfolded yields are translated into partial branching fractions in bins of q^2. A χ^2-fit of dB/dq^2 to the measured partial branching fractions and to the Fermilab/MILC lattice QCD constraints is performed for each reconstruction channel individually and and the combination of charged and neutral B modes. In the fit, the form factors are parameterized using the BCL parameterization. The fit result for the combined fit is shown in Fig. 1. Table 1 lists the extracted $|V_{ub}|$ values. In addition, we report the total branching fractions $\mathcal{B}(B^0 \to \pi^- e^+ \nu_\ell) = (1.43\pm0.27_{\text{stat}}\pm0.07_{\text{sys}}) \times 10^{-4}$ and $\mathcal{B}(B^+ \to \pi^0 e^+ \nu_\ell) = (8.43\pm1.42_{\text{stat}}\pm0.54_{\text{sys}}) \times 10^{-5}$ obtained by the sum of the partial branching fractions in the three q^2 bins.
Table 1: Extracted $|V_{ub}|$ values by χ^2-fits to $d\mathcal{B}/dq^2$ of $B^0 \rightarrow \pi^- e^+ \nu_e$ and $B^+ \rightarrow \pi^0 e^+ \nu_e$ decays.

| Decay mode | $|V_{ub}| \times 10^3$ | χ^2/DOF |
|------------|------------------------|---------------|
| $B^0 \rightarrow \pi^- e^+ \nu_e$ | (3.71 ± 0.55) | 0.16 |
| $B^+ \rightarrow \pi^0 e^+ \nu_e$ | (4.21 ± 0.63) | 0.02 |
| Combined fit | (3.88 ± 0.45) | 0.32 |

3 Branching Fraction Measurements of $B^0 \rightarrow D^{*-} l^+ \nu_l$ Decays and Determination of $|V_{cb}|$

In this analysis, the decay $B^0 \rightarrow D^{*-} l^+ \nu_l$ is reconstructed using a hadronic tagging approach. A good understanding of the decay $B \rightarrow D^* l \nu_l$ is important for future measurements of $R(D^*)$ and the precise exclusive determination of the CKM matrix element $|V_{cb}|$.

Events are reconstructed in a single decay chain, where the D^* decays into a neutral D meson and a charged pion π^-. The D meson is reconstructed in the decay channel $D \rightarrow K^+ \pi^-$. We measure a branching fraction of $B(B^0 \rightarrow D^{*-} l^+ \nu_l) = (5.27 \pm 0.22_{\text{stat}} \pm 0.38_{\text{sys}}) \%$. $|V_{cb}|$ is determined with a fit of the differential decay rate to the unfolded w spectrum. Here, w denotes the product of B and D^* four-velocities $w = v_B v_{D^*} = (m_B^2 + m_{D^*}^2 - q^2)/(2m_B m_{D^*})$. The differential decay rate is given by

$$\frac{d\Gamma}{dw} = \frac{\eta_{EW} G_F^2}{48\pi^2} m_{D^*}^3 (m_B - m_{D^*})^2 g(w) F^2(w) |V_{cb}|^2. \quad (1)$$

The product $g(w)F^2(w)$ is parameterized with $R_1(1)$, $R_2(1)$ and ρ_2^2 in the CLN form factor parameterization. The result of a χ^2 fit of $d\Gamma/dw$ is shown in Fig. 2. $R_1(1)$ and $R_2(1)$ are constrained to external measurements in the fit. A 2D scan of the χ^2 function in the ρ_2^2 and $\eta_{EW} F(1)|V_{cb}|$ plane is also shown in Fig. 2. With $\eta_{EW} = 1.0066$ and $F(1) = 0.906 \pm 0.004_{\text{stat}} \pm 0.001_{\text{sys}}$ we obtain $|V_{cb}| = (37.9 \pm 2.7) \times 10^{-3}$.

4 Measurement of q^2 Moments in $B \rightarrow X_c l \nu_l$ Decays

We present measurements of the first to fourth raw and central q^2 moments of $B \rightarrow X_c l \nu_l$ decays as functions of lower q^2 threshold from $1.5 \text{ GeV}^2/c^4$ up to $8.5 \text{ GeV}^2/c^4$. Lepton energy and hadronic mass moments have been used to determine $|V_{cb}|$ and parameters of the Heavy-Quark-Expansion (HQE) up to $O(1/m_b^2)$ in a model independent way using a global fit. At higher order,
the determination of the HQE is complicated by a proliferation of non-perturbative matrix elements. Ref.\(^9\) outlines an alternative approach to determine \(|V_{cb}|\) from inclusive decays avoiding this proliferation of HQE parameters by exploiting reparameterization invariance. However reparameterization invariance is not retained by the lepton energy and hadronic mass moments. Thus, the measurement of \(q^2\) moments is proposed.

Semileptonic decays are reconstructed in an inclusive approach without assuming exclusive hadronic charmed resonances in the the \(B \rightarrow X \ell \nu \ell\) decay. The hadronic \(X\) system is identified with the remaining charged particles and photons not used in the tag-side \(B\) meson and signal lepton reconstruction. Figure 3 shows the reconstructed \(q^2\) spectrum.

Before calculating the moments, a calibration of the \(q^2\) spectrum \(q^2_{\text{reco}} \rightarrow q^2_{\text{calib}}\) is applied to correct for detector resolution and reconstruction efficiency effects. The remaining background is subtracted directly in the calculation of the \(q^2\) moments by assigning a signal probability as event weight \(w_i(q^2)\). The raw moments are calculated as a weighted mean

\[
\langle q^{2n} \rangle = \frac{\sum w_i q^{2n}_{i,\text{calib}}}{\sum w_i} \times C_{\text{calib}} \times C_{\text{gen}}. \tag{2}
\]

Here, \(C_{\text{calib}}\) and \(C_{\text{gen}}\) are two additional correction factors correcting imperfections of the calibration procedure and for different selection efficiencies of the \(B \rightarrow X \ell \nu \ell\) components. The measurement of the first raw moment \(\langle q^2 \rangle\) are also shown in Fig. 3. The moments for the assumed \(X_c\) model are show for comparison. We provide numerical results and covariance matrices on HEPData.

5 Branching Fraction Measurements of \(B \rightarrow K^* \ell^+ \ell^-\) Decays

The decay \(B \rightarrow K^* \ell^+ \ell^-\) involves a \(b \rightarrow s\) transition mediated by a flavour changing neutral current which is forbidden at tree level and thus, highly suppressed. The decay is sensitive
to new physics contributions, which might enhance or suppress the decay amplitude or modify the angular distributions. The here reported branching fractions measurements are a first step towards a measurement of $R(K^*)$ at Belle II. Recent determinations of $R(K^*)$ show tensions with the SM expectation10,11,12.

The analysis considers three decay modes: $B^0 \rightarrow K^{*0} (\rightarrow K^+ \pi^-) \ell^+ \ell^-$ and $B^+ \rightarrow K^{*+} (\rightarrow K_S^0 \pi^+, \rightarrow K^+ \pi^0) \ell^+ \ell^-$. The second B meson in the $\Upsilon(4S)$ decay is not explicitly reconstructed.

The number of signal decays is extracted from a 2D maximum likelihood fit to the beam-constrained mass $M_{bc} = \sqrt{s/4 - p_B^*}$ and the energy difference $\Delta E = (E_B^* - \sqrt{s}/2)$.

We measure $B(B \rightarrow K^* \mu^+ \mu^-) = (1.28 \pm 0.29^{+0.08}_{-0.07}) \times 10^{-6}$, $B(B \rightarrow K^* e^+ e^-) = (1.04 \pm 0.48^{+0.09}_{-0.09}) \times 10^{-6}$ and $B(B \rightarrow K^* \ell^+ \ell^-) = (1.22 \pm 0.28^{+0.08}_{-0.07}) \times 10^{-6}$ with the first and second uncertainty being statistical and systematic, respectively.

References

11. R. Aaij et al. Tests of lepton universality using $B^0 \rightarrow K_S^0 \ell^+ \ell^-$ and $B^+ \rightarrow K^{*+} \ell^+ \ell^-$ decays. 2021.