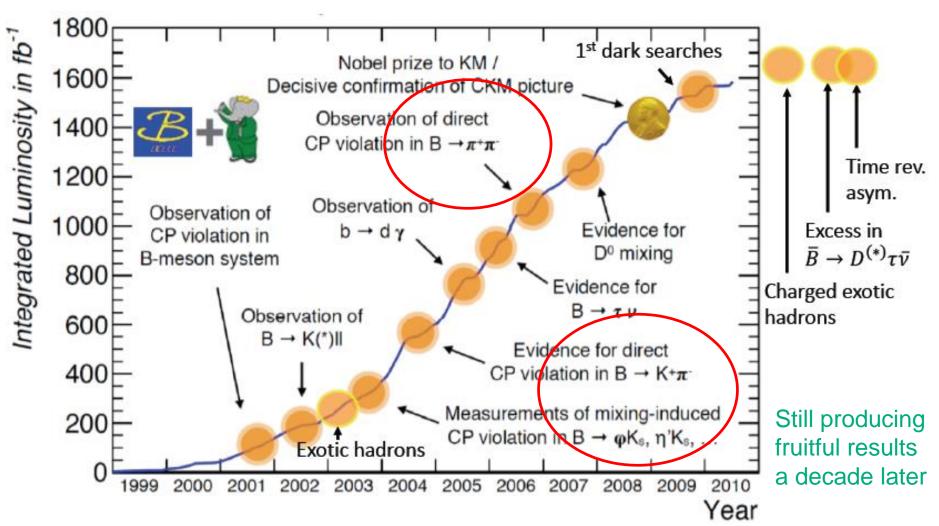


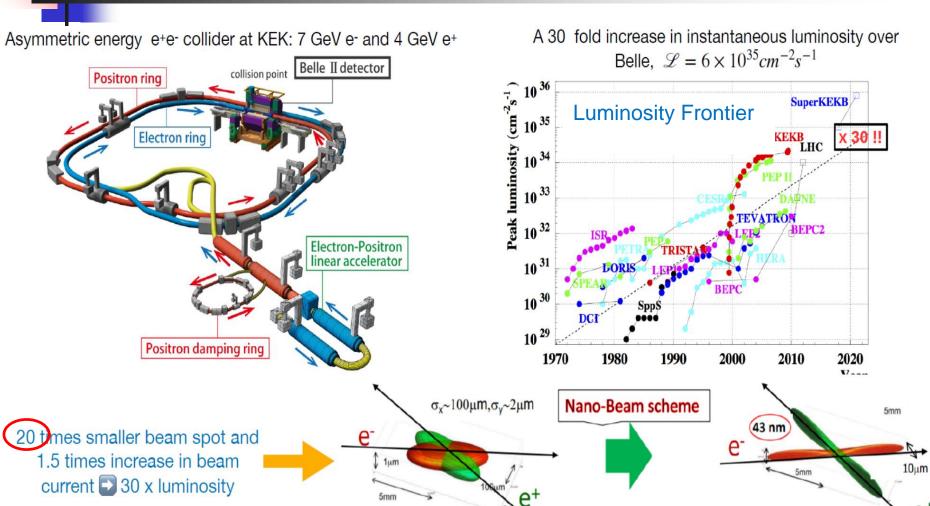
Charmless B decay at Belle II

- Introduction
- SuperKEKB & BelleII
- $\mathbf{B} \to \eta' \mathbf{K}$
- $\mathbf{B}^0 \to \mathbf{K}^0 \pi^0$
- $\blacksquare B^+ \to \rho^+ \rho^0$
- Summary

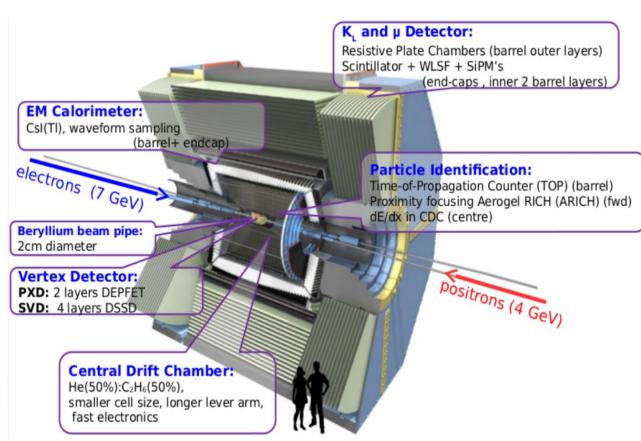


M.-Z. Wang on behalf of Belle II Collaboration 2022/6/2@

Non-leptonic B meson decays workshop

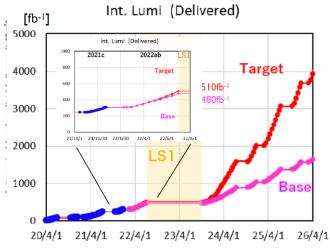


Findings from B-factories

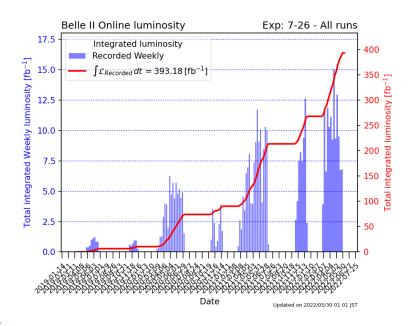

SuperKEKB nano-beam technology

Belle II detector

- High trigger rate
- Higher beam background
- New tracking system and improved vertexing capability
- New particle identification systems
- Better time resolution at calorimeter


Accumulated data

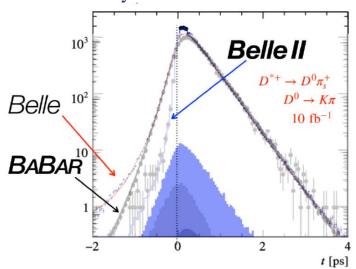
In this presentation, only a maximum of 190 fb-1 used


Luminosity

Status:

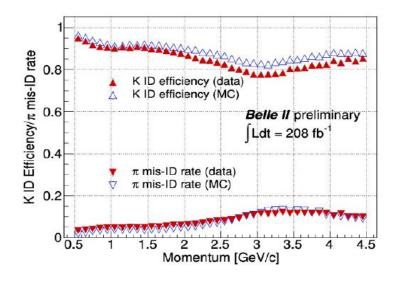
- ▶ Collected $\sim \frac{393}{\text{fb}^{-1}}$ since April 2019
- \triangleright Slower luminosity accumulation than initially planned, but with \sim 90% data-taking efficiency
- ▶ Highest daily integrated luminosity: 2.2 fb⁻¹

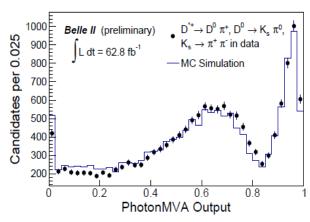
Comparable to Belle data before 2022 LS



Plans:

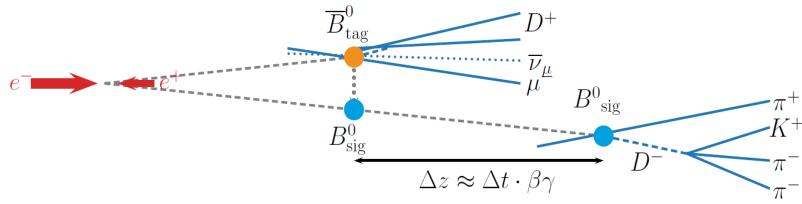
- Short-term plan: shutdown in 2022:
 - Full PXD installation → important to maintain good vertex resolution at high luminosity
- ▶ Goal: 50 ab⁻¹


Detector performance


Phys.Rev.Lett. 127: 211801

Mainly using D^(*) decays to validate

- Excellent vertexing/tracking
- Good K- π separation
- Well simulated photon tagging

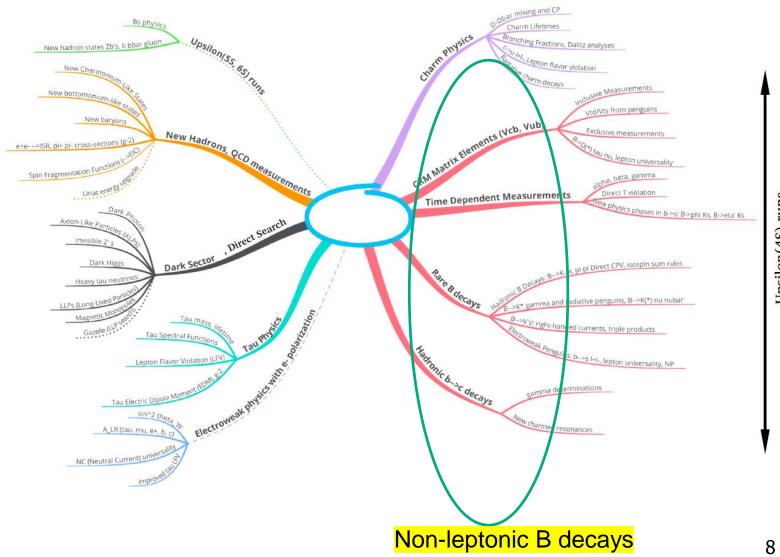


. The output of the FBDT classifier for photons in $D^{*+} \to \overline{D}^0 \pi^+$, $\overline{D}^0 \to K_S^0 \pi^0$, $K_S^0 \to \pi^+ \pi^-$

B flavor tagging at Belle II

Time-dependent analyses at the B factories

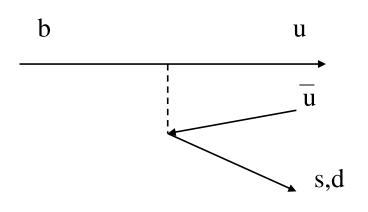
Critical for good time-dependent measurements:

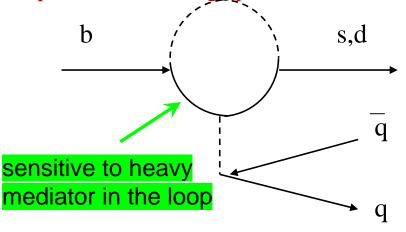

- ► Good vertex resolution
- ▶ High tagging efficiency $\varepsilon_{\mathsf{tag}}$

Belle II:
$$arepsilon_{\mathsf{tag}} = (30.0 \pm 1.3)\%$$

Belle : $arepsilon_{\mathsf{tag}} = (30.1 \pm 0.4)\%$
arXiv:2110.00790

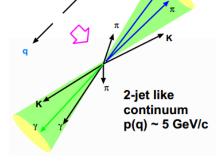
Eur. Phys. J. C 82, 283 (2022)

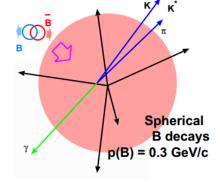

B mixing and life time measurements, see M. Sevior's talk

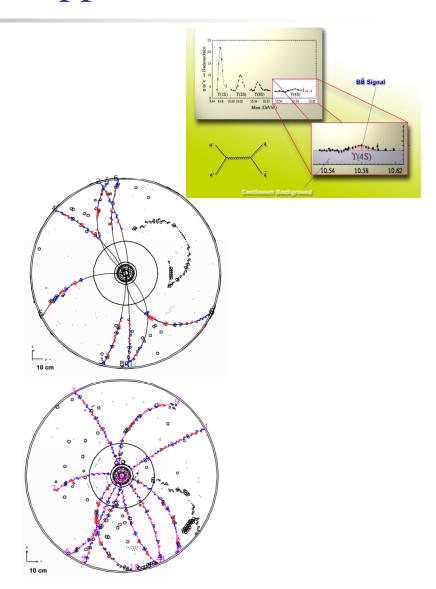

Physics topics at Belle II

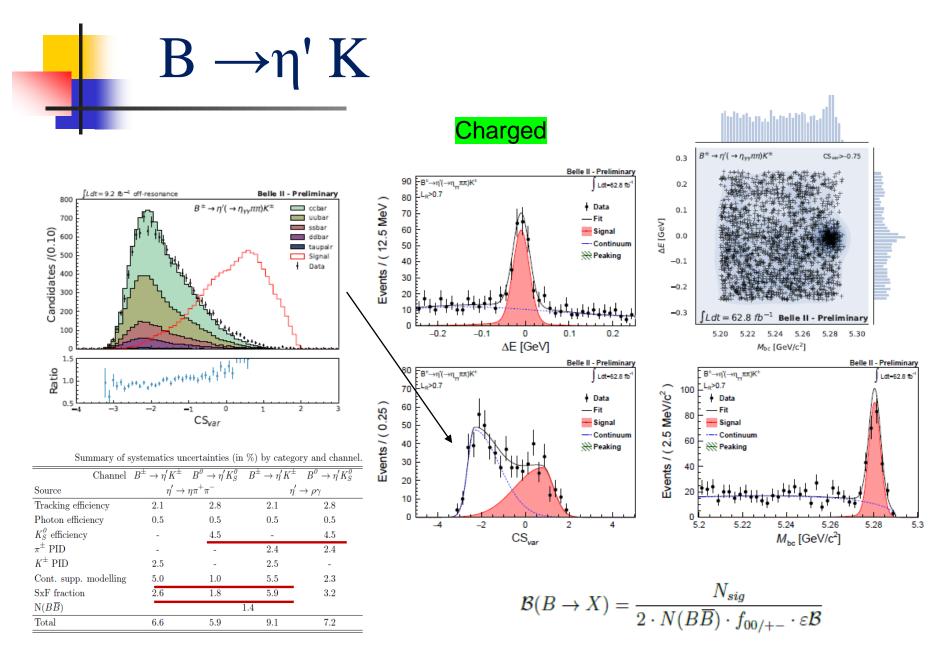
Basic quark diagrams for charmless B decays

interference between comparable amplitudes causes big cp violation



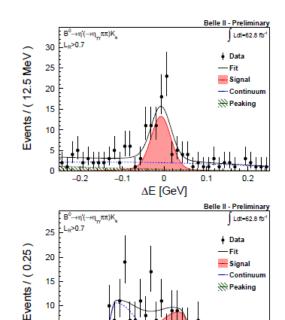

Continuum background suppression


Need to develop good pattern recognition tools (AI) in order to fight against huge continuum background in rare B decays!

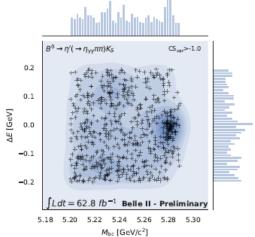

 $q\bar{q}$ pair event

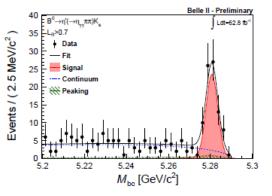
B decay event

systematic uncertainty will shrink after better understanding of detector performance

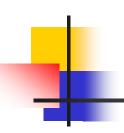


$B \rightarrow \eta' K$


already compatible to the world average

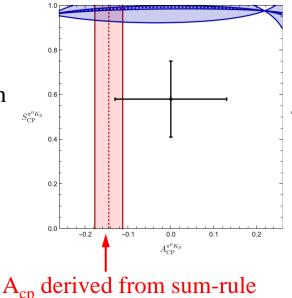

	This analysis World average		
Channel	$\mathcal{B}~(\times 10^6)$		
•	$63.4^{+3.4}_{-3.3}(\mathrm{stat}) \pm 3.4(\mathrm{syst})$	70.4 ± 2.5	
$B^0 \to \eta' K^0$	$59.9^{+5.8}_{-5.5}(\mathrm{stat}) \pm 2.7(\mathrm{syst})$	66 ± 4	

Neutral


0 CS_{var}

Mode	N_{sig}	sig.	$\varepsilon(\%)$	$\varepsilon \mathcal{B}(\%)$ \mathcal{B} (10^{-6})
$B^{\pm} \to \eta'(\to \eta(\to \gamma\gamma)\pi^{+}\pi^{-})K^{\pm}$	$263 ^{\ +18}_{\ -19}$	25.7	31.7 ± 0.03	$5.45 63.9 ^{+4.6}_{-4.4} \pm 4.0$
$B^{\pm} \to \eta'(\rho(\to \pi^+\pi^-)\gamma)K^{\pm}$	$335 {}^{+26}_{-25}$	22.2	24.2 ± 0.04	7.05 $62.9^{+4.8}_{-4.8} \pm 5.5$
$B^0 \to \eta'(\to \eta(\to \gamma\gamma)\pi^+\pi^-)K_S^0$	$80.0_{-10.4}^{+11.2}$	13.8	31.0 ± 0.03	1.80 $61.6^{+8.6}_{-8.0} \pm 3.9$
$B^0 \to \eta'(\rho(\to \pi^+\pi^-)\gamma)K_S^0$	$99.7 {}^{+14.2}_{-12.7}$	14.2	23.6 ± 0.04	2.35 $58.5 ^{+7.9}_{-7.4} \pm 4.4$

-2



$$B^0 \rightarrow K^0 \pi^0$$

- Long standing puzzle in A_{CP} for $B^0 \to K^{\pm}\pi^{\mp}$ vs $B^{\pm} \to K^{\pm}\pi^0$
- Over 5 σ difference between A_{CP} for the two modes.
- · Only change the Spectator quark for the two decays.
- Strong Interaction or New Physics?
- $A_{CP} B \rightarrow K_s \pi^0$ can distinguish
- Paper by Fleischer, Jaarmsa, Vos PLB 785 (2018) 525–529 Shows additional correlation with S_{CP} for $B \to K_s \pi^0$

A golden mode at Belle II since both charged and neutral $B \rightarrow K\pi$ decays, and related isospin modes can be accessed altogether arXiv:2106.03766, arXiv:2106.04111

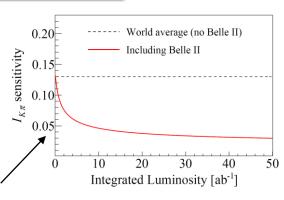
Currently limitation is still dominantly by statistical uncertainty with non-negligible systematic uncertainty

Acp measurement for $B^0 \to K^0 \pi^0$

$$\mathcal{P}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} [1 + q\{\mathcal{A}\cos(\Delta m_d \Delta t) + \mathcal{S}\sin(\Delta m_d \Delta t)\}]$$

SM: direct $CPV \sim 0$

May sensitive to NP if $A_{K^0_{\pi}\pi^0} \neq 0$


SM: time-dependent CPV

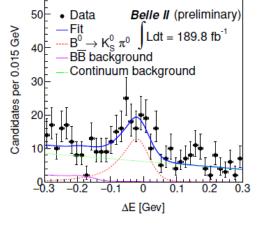
$$S_{K_s^0\pi^0} = sin(2\phi_1)$$

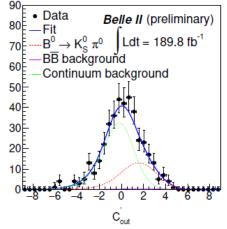
$$I_{K\pi} = \mathcal{A}_{K^{+}\pi^{-}} + \mathcal{A}_{K^{0}\pi^{+}} \frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{+}\pi^{0}} \frac{\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{0}\pi^{0}} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} = 0$$

- $B^0 \to K_S^0 \pi^0$ is important to test isospin sum-rule
- Uncertainty is dominated by $A_{K_S^0\pi^0}$
- Feasible at Belle-II

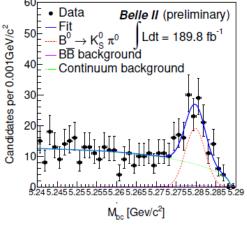
Null sensitivity can be down to 0.03 level in the long run Snowmass 2021 update

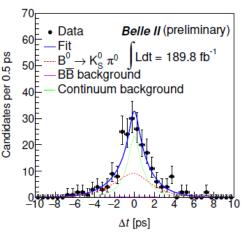
$B^0 \rightarrow K^0 \pi^0$


189.8 fb^{-1}


$$M_{\rm bc}' = \sqrt{E_{\rm beam}^2 - \left(\vec{p}_{K_S^0} + \frac{\vec{p}_{\pi^0}}{|\vec{p}_{\pi^0}|} \sqrt{(E_{\rm beam} - E_{K_S^0})^2 - m_{\pi^0}^2}\right)^2}$$

$$C'_{\text{out}} = \ln \left(\frac{C_{\text{out}} - C_{\text{out,min}}}{C_{\text{out,max}} - C_{\text{out}}} \right)$$

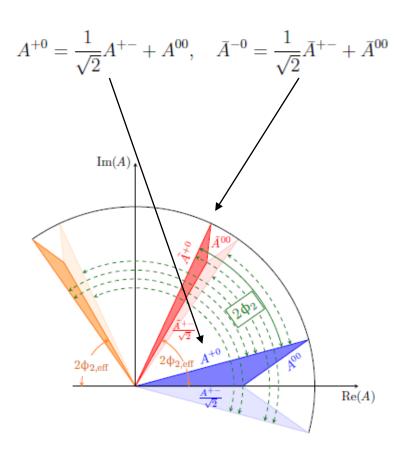

Source	$\delta \mathcal{B}$ (%)	$\delta \mathcal{A}_{CP}$
Tracking efficiency	0.6	_
K_S^0 reconstruction efficiency	4.2	_
π^0 reconstruction efficiency	7.5	_
Continuum suppression efficiency	1.6	_
Number of $B\overline{B}$ pairs	3.2	_
Flavor tagging	_	0.040
Resolution function	_	0.050
Physics parameters	0.4	0.021
$B\bar{B}$ background asymmetry	_	0.002
Signal modelling	1.0	0.015
Background modelling	0.9	0.004
Possible fit bias	2.0	0.010
Tag-side interference	_	0.038
Total	9.6	0.086


Observable	Fitted value	WA	
$BF(B^0 \to K_S^0 \pi^0) \times 10^{-6}$	$11.0 \pm 1.2 \pm 1.0$	9.9 ± 0.5	
A_{CP}	$-0.41^{+0.30}_{-0.32} \pm 0.09$	-0.01 ± 0.10	

andidates per 0.45

$$B^+ \rightarrow \rho^+ \rho^0$$

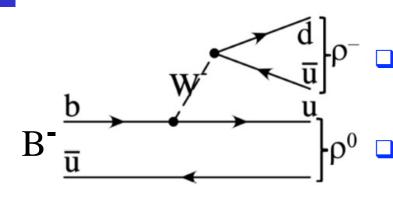
$$B^+ \to \rho^+(\pi^+\pi^0) \rho^0(\pi^+\pi^-)$$

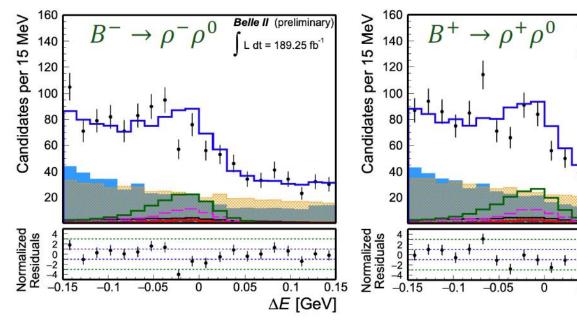

Using combined $\mathbf{B} \to \rho \, \rho$ measurements and isospin symmetries to have better constrain on the hadronic uncertainties

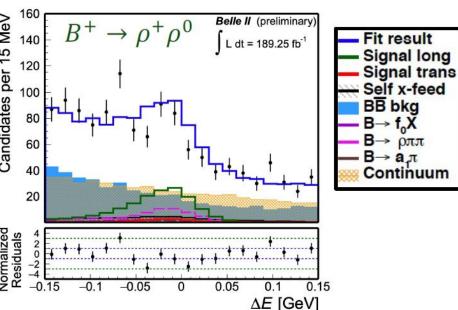
The CKM unitary angle $\frac{\varphi_2}{\varphi_2}$ can be determined by the measurements of BF and A_{CP} of $B \to \rho \rho$

A 6D un-binned fit has been applied to 63 fb⁻¹ data for signal extraction arXiv:2109.11456

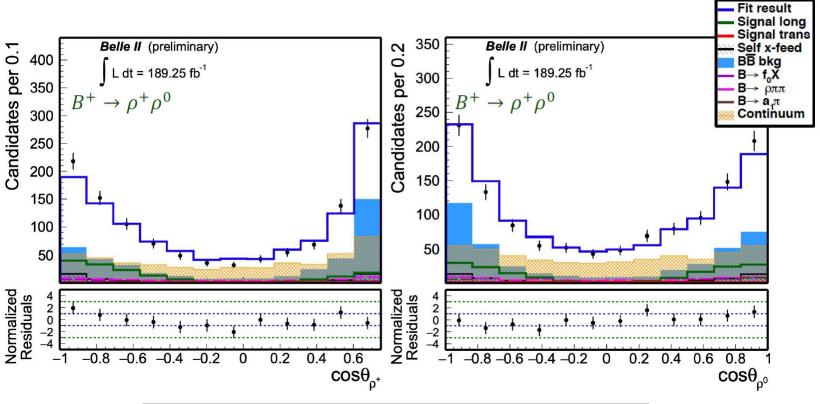
The same method can be applied to $B \to \pi\pi$ in order to extract φ_2


arXiv:2105.04111 arXiv:2107.02373




Update of $B^+ \rightarrow \rho^+ \rho^0$

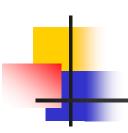
 189.8 fb^{-1}


- Can extract φ_2 using info from three isospinrelated decays $B^+ \to \rho^+ \rho^0$, $B^0 \to \rho^+ \rho^-$, and $B^0 \to \rho^0 \rho^0$ PRL 65 (1990) 3381
 - Belle II is unique having access to all of them

Update of $B^+ \rightarrow \rho^+ \rho^0$

 189.8 fb^{-1}

	Results	PDG
A_{CP}	$-0.069 \pm 0.068 \pm 0.060$	(-0.05 ± 0.05)
$BF (10^{-6})$	$23.2^{+2.2}_{-2.1} \pm 2.7$	(24.0 ± 1.9)
f_L	$0.943^{+0.035}_{-0.033} \pm 0.027$	(0.950 ± 0.016)


Expected physics results

The Belle II Physics Book Prog Theor Exp Phys (2019) arXiv:1808.10567

Snowmass2021 Belle II Physics

Upgrade&update arXiv:2203.11349

Observable	2022	Belle-II	Belle-II
	Belle(II),	$5 { m ~ab^{-1}}$	50 ab^{-1}
	BaBar		
$\sin 2\beta/\phi_1$	0.03	0.012	0.005
γ/ϕ_3 (Belle+BelleII)	11°	4.7°	1.5°
α/ϕ_2 (WA)	4°	2°	0.6°
$ V_{ub} $ (Exclusive)	4.5%	2%	1%
$S_{CP}(B \to \eta' K_{\rm S}^0)$	0.08	0.03	0.015
$A_{CP}(B \to \pi^0 \tilde{K}_{\rm S}^0)$	0.15	0.07	0.025
$S_{CP}(B o K^{*0}\gamma)$	0.32	0.11	0.035
$R(B \to K^* \ell^+ \ell^-)^{\dagger}$	0.26	0.09	0.03
$R(B \to D^* \tau \nu)$	0.018	0.009	0.0045
R(B o D au u)	0.034	0.016	0.008
$\mathcal{B}(B o au u)$	24%	9%	4%
$B(B o K^* uar u)$	_	25%	9%
$\mathcal{B}(\tau \to \mu \gamma)$ UL	42×10^{-9}	22×10^{-9}	6.9×10^{-9}
$\mathcal{B}(\tau \to \mu \mu \mu)$ UL	21×10^{-9}	3.6×10^{-9}	0.36×10^{-9}

Summary

- BelleII will collect ~500 fb⁻¹ data before long shutdown in 2022
- Some new results were obtained with ≤190fb⁻¹ data
- We have prepared analysis tools to better tag neutral final state particles and to suppress continuum background
- LHCb and Belle II are complementary in new physics search