Hadronic B decays at Belle II

Sebastiano Raiz (University and INFN Trieste) on behalf of the Belle II collaboration

BEACH2022
June 6, 2022
Hadronic B decays

Charmed decays: Cabibbo-favoured $b \rightarrow c$ tree transitions
($B \rightarrow D(\ast)K$, $B \rightarrow D(\ast)\pi \ldots$).

Charmless decays: Cabibbo-suppressed $b \rightarrow u$ trees and $b \rightarrow d, s$ penguins
($B \rightarrow K\pi$, $B \rightarrow \rho\rho \ldots$).

Probe SM dynamics in all three CKM angles
- γ with theoretically clean modes $B \rightarrow DK$
- α with $B \rightarrow \rho\rho$, $B \rightarrow \rho\pi$, $B \rightarrow \pi\pi$ isospin analyses
- β with $B^0 \rightarrow J/\psi K_S^0$, $B^0 \rightarrow \eta'K_S^0$, $B^0 \rightarrow \phi K_S^0$

and by testing isospin sum rules, chiral structure, ...

Charmed: competitive on channels with neutrals (e.g. $B \rightarrow D(K_S^0\pi^0)h$)
→ challenging reconstruction. Key control channels for other analyses.

Charmless: highly sensitive to new physics but

pheno challenges: predictions limited by complicated calculations of non-perturbative QCD,

exp. challenges: rare, $BF \sim O(10^{-5})$, same final states of the dominant background ("continuum" $e^+e^- \rightarrow q\bar{q}$ at Belle II).

Today: γ direct determination, $B^+ \rightarrow \rho^+\rho^0$ towards α, time-dependent measurements.
The Belle II detector

- SuperKEKB: 7-on-4 GeV $e^- e^+$ collider at 10.58 GeV;
- Aim at 700 $B \bar{B}$ pairs/second in low-bkg environment;
- 400 fb$^{-1}$ (440 x106 $B \bar{B}$ pairs) of data collected;
- Record peak luminosity: 4.1x1034 cm$^{-2}$ s$^{-1}$

- EM Calorimeter (ECL)
 Energy resolution: 4%-1.6%

- Central Drift Chamber
 Spatial resolution: 100 μm
 dE/dx resolution: 5%
 p_T resolution: 0.4%

- Vertex Detector
 Vertex resolution: 15 μm

- Particle identification
 K eff. 90%, fake π rate 5%

Main Belle II strength: unique reach on final states with multiple neutrinos and π^0/photons.
Analysis workflow

-1/5 of hadronic events from e^+e^- are $B\bar{B}$.

Typical B hadronic event: 10 tracks/clusters — easy to trigger on unbiasing variables (e.g. number of tracks) — isotropically distributed in space.

Main backgrounds: $e^+e^- \rightarrow q\bar{q}$ (collimated jets, very different event shape), other misidentified B events.

Reconstruction
- combine final state particles (K, π, ...) in kinematic fits to form the B decay

Selection
- optimize event-shape multivariate classifier (CS) and particle ID criteria

Fit
- extract models from simulation (calibrate on data), fit in to data and calculate physics quantities

Systematic uncertainties
- with control modes and simulations
Measurement of γ
γ from $B \rightarrow DK$ decays

γ: phase between $b \rightarrow u$ and $b \rightarrow c$ transitions. Accessible via tree-level decays: no direct new physics \rightarrow strong constraints on SM.

Current WA dominated by LHCb:

$$\gamma[^{\circ}] = 65.9 \pm 3.3 \pm 3.5 \quad \text{HFLAV}$$

Use $D \rightarrow K_S^0 h^+ h^-$ decays and model-independent method: divide Dalitz plot in bins (less information, but no amplitude-model systematics):

$$N_i^\pm = h_B^\pm \left[F_i + r_B^2 \bar{F}_i + 2 \sqrt{F_i \bar{F}_i} (c_i x^\pm + s_i y^\pm) \right]$$

$$(x^\pm, y^\pm) = r_B \left(\cos(\gamma + \delta_B), \sin(\gamma + \delta_B) \right)$$

c_i, s_i: $D^0-\bar{D}^0$ strong phase differences (inputs from BES III/CLEO)

F_i: fraction of D decays to i-th bin

Results limited by sample size (small branching fractions).
Signal yield determination

128 fb\(^{-1}\) Belle II + 711 fb\(^{-1}\) Belle.

Improvements wrt previous Belle:
- \(K_S^0\) selection
- background suppression
- signal determination
- include \(D^0 \rightarrow K_S^0 KK\)
- new inputs from BESIII

Simultaneous fit of \(B \rightarrow DK\) and \(B \rightarrow D\pi\): \(K/\pi\) misID rate is extracted from data.

Signal yields

Belle:
- \(K_S^0 \pi\pi\): 1467 ± 53
- \(K_S^0 \pi\pi\): 280 ± 21
- \(K_S^0 KK\): 194 ± 17
- \(K_S^0 KK\): 34 ± 7

Belle II:
- \(K_S^0 \pi\pi\): 280 ± 21
- \(K_S^0 \pi\pi\): 34 ± 7

\[D^0 \rightarrow K_S^0 \pi^+\pi^-\]

\[D^0 \rightarrow K_S^0 K^+K^-\]
Determination of CPV parameters

Simultaneous fit in Dalitz bins to extract CP observables \((x_\pm, y_\pm)\). MisID fixed from previous fit.

Extract \(F_i\) directly in data to cancel associated systematics and reduce reliance on simulation.

\[
\begin{align*}
\delta_B[^\circ] &= 124.8 \pm 12.9 \text{ (stat)} \pm 0.5 \text{ (syst)} \pm 1.7 \text{ (ext)} \\
r_B^{DK} &= 0.129 \pm 0.024 \text{ (stat)} \pm 0.001 \text{ (syst)} \pm 0.002 \text{ (ext)} \\
\gamma[^\circ] &= 78.4 \pm 11.4 \text{ (stat)} \pm 0.5 \text{ (syst)} \pm 1.0 \text{ (ext)}
\end{align*}
\]

Still not competitive with LHCb, but most precise result from a \(B\)-factory.

Latest inputs on strong-phase from BESIII highly reduce systematics.

Expect < 3° uncertainty with 10 \(ab^{-1}\), including also more \(D\) final states.

Uncertainty dominated by the data sample size.
Towards CKM angle α
\(\alpha \) and \(B^+ \to \rho^+ \rho^0 \) analysis

\[\alpha = \arg \left[-V_{td} V_{tb}^*/V_{ud} V_{ub}^* \right] \] less precisely known angle, may limit the global testing power of CKM fits.

Determined using \(B \to \rho \rho \), \(B \to \rho \pi \), and \(B \to \pi \pi \) isospin analyses (to reduce impact of hadronic uncertainties — non-perturbative QCD).

Unique Belle II capability to study in consistent way all channels. \(B \to \rho \rho \) best probes.

Current best \(B^+ \to \rho^+ \rho^0 \) measurement is from BaBar (424 fb\(^{-1}\)).

Goal: measure \(B^+ \to \rho^+ \rho^0 \) branching fraction, \(A_{CP} \), and fraction of longitudinal polarised decays \(f_L \).

\[\alpha[^\circ] = 85.2 \pm 4.8 \pm 4.3 \text{ (HFLAV)} \]
$\mathcal{B}^+ \to \rho^+\rho^0$ challenges

Pion-only final state $(\pi^+\pi^0)(\pi^+\pi^-)$ and broad ρ peak \to large background.

Intermediate ρ states have spin $= 1$ \to need to fit also angular distributions to determine fraction of longitudinal polarization.

6D fit with multidimensional shapes to take correlations into account.

Shapes calibrated using BtoCharm control mode.

A_{CP} is corrected for instrumental asymmetries (use $D^+ \to K_S^0\pi^+$).
$B^+ \rightarrow \rho^+\rho^0$ results

\[B = [23.2^{+2.2}_{-2.1}(\text{stat}) \pm 2.7(\text{syst})] \times 10^{-6} \]

\[A_{CP} = -0.069 \pm 0.068(\text{stat}) \pm 0.060(\text{syst}) \]

\[f_L = 0.943^{+0.035}_{-0.033}(\text{stat}) \pm 0.027(\text{syst}) \]

First $A_{CP}(B^+ \rightarrow \rho^+\rho^0)$ measurement in Belle II data.
B^0 lifetime and $B^0 - \bar{B}^0$ mixing
Analyses of time evolution

Lifetime (τ_B) and oscillation frequency (Δm_d) measurement: fundamental validation for time-dependent CP-violation analyses.

Must-have elements:
- good vertex resolution
- high tagging efficiency (flavour-tagger)

Belle II

$\epsilon_{\text{tag}} = (30.0 \pm 1.3)\%$

Belle II *Eur. Phys. J. C* 82, 283 (2022)
Use $B^0 \to D^{(*)-}\pi^+/K^+$ modes (~40k total events).

Strategy:

- 2D fit to ΔE and CS;
- subtract background (sWeights) to obtain background-free signal sample;
- fit background-subtracted Δt distribution.

Main challenge:

- complicated likelihood taking into account wrong-tag fraction, finite vertex resolution.
Lifetime and mixing results

\[\tau_{B^0} = 1.499 \pm 0.013 \text{(stat)} \pm 0.008 \text{(syst)} \text{ ps} \]

\[\Delta m_d = 0.516 \pm 0.008 \text{(stat)} \pm 0.005 \text{(syst)} \text{ ps}^{-1} \]

Not yet competitive with global best results, but systematic uncertainties already on par with best Belle/Babar results.

Milestone in Belle II program: we are fully ready for time-dependent analyses (e.g. \(\sin 2\beta \)).

Next step: improve precision by using also \(B^0 \rightarrow D^*-l^+\nu \) modes.
Time evolution of $B^0 \rightarrow K_{S}^{0}\pi^{0}$
Isospin sum rule and $B^0 \rightarrow K_S^0 \pi^0$

Stringent null test of SM, sensitive to presence of non-SM dynamics. Inconsistency between current measurements: “$K\pi$ puzzle” (anomalously enhanced amplitudes or new physics):

$$I_{K\pi} = A_{CP}^{K^+\pi^-} + A_{CP}^{K^0\pi^+} \frac{\mathcal{B}(K^0\pi^+)}{\mathcal{B}(K^+\pi^-)} \frac{\tau_{B^0}}{\tau_{B^+}} - 2A_{CP}^{K^0\pi^0} \frac{\mathcal{B}(K^+\pi^-)}{\mathcal{B}(K^+\pi^-)} \frac{\tau_{B^0}}{\tau_{B^+}} - 2A_{CP}^{K^0\pi^0} \frac{\mathcal{B}(K^0\pi^0)}{\mathcal{B}(K^+\pi^-)} \approx 0$$

Belle II: unique access to $B^0 \rightarrow K^0\pi^0$ (major limitation in $I_{K\pi}$). Need time-dependent A_{CP}.

Challenges:
Requires K_S^0 and π^0 reconstruction.
Vertexing with K_S^0 decay products only.

Strategy:
Perform 4D fit (ΔE, M_{bc}, Δt, and CS).
Use $B^0 \rightarrow J/\psi K_S^0$ to calibrate Δt shapes.
Constrain $\tau_{B_{sig}}$, Δm_d, and S_{CP} from WA.
$B^0 \rightarrow K^0_S \pi^0$ results

$$\mathcal{B}(B^0 \rightarrow K^0 \pi^0) = [11.0 \pm 1.2(\text{stat}) \pm 1.0(\text{syst})] \times 10^{-6}$$

$$A_{CP}(B^0 \rightarrow K^0 \pi^0) = -0.41^{+0.30}_{-0.32}(\text{stat}) \pm 0.09(\text{syst})$$

Extrapolate uncertainty on $I_{K\pi}$ (capability of measuring a deviation from its SM value) using also LHCb prospects:

dominant uncertainty coming from $A_{K^0\pi^0}$.

Fundamental role of Belle II in improvement of precision.
Hadronic decays important element in Belle II B physics program.

- Most precise CKM γ determination from B-factories (combine Belle and Belle II data to be impactful with early data).

- Angular CP-violation analysis with $B^+ \to \rho^+\rho^0$: key element in $B \to \rho\rho$ analysis.

- Precision lifetime and B^0 oscillation frequency measurement, important validation for time-dependent analyses.

- Time-dependent $B^0 \to K^0_S\pi^0$: unique to Belle II (multiple neutrals).

Competitive physics results even with initial data sets
Backup
Projections of integrated luminosity delivered by SuperKEKB to Belle II

Target scenario: extrapolation from 2021 run including expected improvements.

Base scenario: conservative extrapolation of SuperKEKB parameters from 2021 run.

- We start long shutdown I (LS I) from summer 2022 for 15 months to replace VXD. There will be other maintenance/improvements works of machine and detector.
- We resume physics running from Fall 2023.
- A SuperKEKB International Taskforce (aiming to conclude in summer 2022) is discussing additional improvements.
- An LS2 for machine improvements could happen on the time frame of 2026-2027.
Fit of Belle data

\[D^0 \rightarrow K_S^0 \pi^+ \pi^- \]

\[D^0 \rightarrow K_S^0 K^+ K^- \]
Greatly improved time resolution compared to previous B-factories.

Flavor tagging efficiency comparable to Belle.

Strong charged particle identification. Good momentum resolution. High γ efficiency.