QCD Program at Belle II

Anselm Vossen representing the Belle II collaboration

Based on

"Opportunities for precision QCD physics in hadronization at Belle II -- a snowmass whitepaper" e-Print: 2204.02280 [hep-ex]

Research supported by the

Overview

- Belle and Belle II experiments at KEK
- Highlights of Fragmentation studies at Belle
- Opportunities for Fragmentation studies with the Belle II dataset
- Hadronization Studies $\leftarrow \rightarrow$ MC Model Tuning
- Jet studies
- More QCD topics
 - -Input to g-2

$$-\alpha_S$$

-Jet mass

— . . .

e^+e^- has a long history in studying QCD

• PETRA at DESY \rightarrow Discovery of the gluon (shown 1979)

KEK facility

Belle Experiment (1999 - 2010)

From: PTEP 2019 (2019) 12, 123C01, PTEP 2020 (2020) 2, 029201

+About $4x10^6$ events per fb^{-1} off-resonance

The future is now: Next Generation B factory SuperKEKB

factor of two higher than KEKB (~PEPII)

key; vertical beam size is 50nm at the IP

Int. L[ab⁻¹]

- Belle II already delivered world record luminosity ٠
- Belle II will have $50 \times$ Belle luminosity ($100 \times$ BaBar) •

Study of Fragmentation Functions

PDF in SIDIS \Leftrightarrow *FF* in e^+e^-

• E.g. Sivers $\Leftrightarrow \Lambda^{\uparrow}$ production

Spacelike SIDIS

Timelike SIA

Fragmentation Functions appear almost always when accessing partonic structure of the nucleon

- Proton Structure extracted using QCD factorization theorem
- FFs contribute to virtually all processes
- Particular important for transverse spin structure

Belle II Strength: Complex Final states. Example: Polarized Final States

- Similar to PDFs: Encode spin/orbit correlations
- Determining final state polarization needs self analyzing decay (Λ)

Polarized Hyperon Production

- Large Λ transverse polarization in unpolarized pp collision PRL36, 1113 (1976); PRL41, 607 (1978)
- Caused by polarizing FF $D_{1T}^{\perp}(z, p_{\perp}^2)$?
- Polarizing FF is chiral-even, has been proposed PRL105,202001 (2010) as a test of universality.
- FF counterpart of the Sivers function.
- OPAL experiment at LEP has studied transverse Λ polarization, no significant signal was observed.

Belle II Makes Precision Λ program possible!

First observation of Λ^{\uparrow} at Belle! (Here feed-down corrected)

Not shown: Associate production in tension with theory prediction→needs to be understood

• Opportunities at Belle II:

- Feed down correction for p_T dependence and associated production
 - (currently only for z dependence, introduces large uncertainties)
 - $\Lambda^{\uparrow} \Lambda^{\uparrow}$ correlations
 - Extension to tensor polarized FFs: e-Print: 2206.11742 [hep-ph]

•

- Explore low p_T region (not shown here) with higher statistics and better tracking resolution 12

Belle II Strength: Complex Final states. Example: Dihadron Fragmentation Functions

Additional Observable:

 $\overrightarrow{R} = \overrightarrow{P_1} - \overrightarrow{P_2}$: The relative momentum of the hadron pair is an additional degree of freedom:

the orientation of the two hadrons w.r.t. each other and the jet direction can be an indicator of the quark transverse spin

Parton polarization \rightarrow	Spin averaged	longitudinal	transverse
spin averaged	$D_1^{h/q}(z,M) \qquad \qquad \bullet $		$H_1^{\perp h/q}(z, p_T M, (Ph), \theta)$ 'Di-hadron Collins'
longitudinal			
Transverse	Type equation here.	G_1 [⊥] $(z,M,P_h,θ)$ = T-odd, chiral-even → jet handedness QCD vaccum strucuture	H ₁ *(z,M, (P _h), θ)=. T-odd, chiral-odd Colinear

c.m.

- Relative momentum of hadrons can carry away angular momentum
 - Relative and total angular momentum \rightarrow In principle endless tower of FFs

More degrees of freedom \rightarrow More information about correlations in final state

 \rightarrow See e.g. recent extraction of e(x) (e-Print: 2203.14975 [hep-ph])

Access to polarization dependent di-hadron FFs in di-hadron back-to-back correlations

Statistics Hungry, only possible at B-factories

First measurement of Interference Fragmentation Function $a_{12} \propto H_1^{<} * H_1^{<}$

Acceptance Impact on Partial Wave composition

 P_1

θ

Higher order PWs lead to different moments in θ and φ
 → These are different FFs that are mixed by the acceptance

Belle Collaboration Phys.Rev. D96 (2017) no.3, 032005

Belle II prospects: Sufficient statistics for full partial wave decomposition

Belle II prospects

- Higher order PWs lead to different moments in θ and ϕ
- In models, evolution of the different PWs different

- Important to have a full picture to understand mixing effects in ratios/partial integrals/acceptance
- Missing info from partial wave estimated to have effects up to 10% e.g. on extraction of transversity
- Full partial wave decomposition → full description of two-particle correlations in hadronization

→ Describe hadronization dynamics

→ Bridge between FFs and MCEGs

Relation to Monte Carlo Event Generators (MCEGs)

Compare Partial Wave Decomposition in MC and Data

• Comparing to Polarized Lund model here (StringSpinner, A. al, Comput.Phys.Commun. 272 (2022))

Twist-2 A_{III} Amplitudes

a

 $(\mathbf{q})\overline{\mathbf{q}}$

Color Flux Tube

ā

Twist-2 A_{III} Amplitudes

MC tuning studies

- Event Shapes
- Jet rates vs resolution, hemisphere,
- Event rates relative to event plane (and z, p_T), including baryons
- Multiplicities of resonance production (ρ , ω , K^* , ϕ , Λ , Σ , Ξ , Ω)
 - Ratios between pseudo-scalar and vector mesons (also important for cosmic events)
- Charge/strangeness/baryon number compensation along event axis

Current Status of HF FFs from Belle, BaBar

- Single hadron differential cross sections for Λ, Σ, Ξ, Ω, Λ_c, Σ_c, Ξ_c, Ω_c (etc) vs x_p available
- Heavier particles generally plotted vs normalized momentum
- Unlike light hadrons charmed hadrons contain large fraction of charm quark momentum
 → peaked at larger x_p
- Belle II prospects: Multidimensional extraction, p_T dependence

PRL.95, 142003 (2005)(Babar) PRD73, 032002 (2006) (Belle) PRD75, 012003 (2007)(Babar) PRL 99, 062001 (2007)(Babar)

Brand New Opportunities at Belle II: Precision Jet Physics in e^+e^-

- Jet physics (will) play an important role at the EIC and LHC
- Precision measurements in e⁺e⁻ annihilation will test current theoretical understanding
- Lower energies like Belle in particular sensitive to hadronization effects
- Example: Transverse
 Momentum Imbalance
 ← → TMD framework

Using $R = 1.0, E_{jet} > 3.75 \ GeV$,

Motivation: Belle II needed to reduce uncertainty on Muon anomalous magnetic moment $a_{\mu} = \frac{g_{\mu}-2}{2}$

- Currently: $a_{\mu}^{exp} a_{\mu}^{SM} \cong 4.2\sigma$ with uncertainty on a_{μ}^{exp} , a_{μ}^{SM} comparable
- Plan to reduce σ_{a^{exp}}_μ by a factor 4:
 →Discovery potential of experiment limited if σ_{aSM}_μ is not reduced as well.
- "The dominant sources of theory error are by far the hadronic contributions, in particular, the O(α²)HVP term and the O(α³) HLbL term"

 $e(\mu)$

- Muon anomalous magnetic moment $a_{\mu} = \frac{g_{\mu}-2}{2}$
- Currently: $a_{\mu}^{exp} a_{\mu}^{SM} \cong 4.2\sigma$ with uncertainty on a_{μ}^{exp} , a_{μ}^{SM} comparable
- Plan to reduce $\sigma_{a_{\prime\prime}^{exp}}$ by a factor 4:

→Discovery potential of g-2 experiment limited if $\sigma_{a_{\mu}^{SM}}$ is not reduced as well.

• "The dominant sources of theory error are by far the hadronic contributions, in particular, the $\mathcal{O}(\alpha^2)$ HVP term and the $\mathcal{O}(\alpha^3)$ | term"

 $e(\mu)$

- Gold Standard for HVP determination: Experimental measurement or
 - e^+e^- hadronic cross-section (*R* measurement)
 - E.g. New lattice calculations (Nature 593, 51–55 (2021)) reduce tension to 2σ
 - But: Tension between KLOE/BaBar measurement make up ~1/3rd of HVP uncertainty

Tension in existing KLOE/BaBar measurements

Need to be resolved !

Figures from JHEP 03, 173 (2018), arXiv:1711.03085 [hep-ex]

- Muon anomalous magnetic moment $a_{\mu} = \frac{g_{\mu}-2}{2}$
- Currently: $a_{\mu}^{exp} a_{\mu}^{SM} \cong 4.2\sigma$ with uncertainty on a_{μ}^{exp} , a_{μ}^{SM} comparable
- Plan to reduce $\sigma_{a_{\mu}^{exp}}$ by a factor 4: \rightarrow Discovery potential of g-2 experiment limited if $\sigma_{a_{\mu}^{SM}}$ is not reduce well.
- "The dominant sources of theory error are by far the hadronic contri in particular, the $\mathcal{O}(\alpha^2)$ HVP term and the $\mathcal{O}(\alpha^3)$ HLbL term"
- Gold Standard for HVP determination: Experimental measuremer hadronic cross-section (*R* measurement)
 - E.g. New lattice calculations (Nature 593, 51–55 (2021)) reduce ten
 - But: Tension between KLOE/BaBar measurement make up ~1/3rd c uncertainty
- Belle II will provide new input to resolve current tensions and work on reducing uncertainties on *R* measurements → Crucial for discovery potential of g-2 experiment

 $e(\mu)$

Standard Model theor

contribution

 A host of other measurements possible to reduce subdominant uncertainties and provide complementary information on HVP, HIbI →more confidence in results

- Measurements of α_S generally also test QCD calculation framework
- $\alpha_S = 0.1179 \pm 0.0009$, (Z pole) $\Rightarrow \frac{\delta \alpha_S}{\alpha_S} \approx 0.8\%$:

→ Order of magnitude larger than QED, weak, gravitational coupling uncertainties!

• Need reduction of $\delta \alpha_S$ to improve uncertainties on all pQCD observables

- Measurements of α_S generally also test QCD calculation framework
- $\alpha_S = 0.1179 \pm 0.0009$, (Z pole) $\rightarrow \frac{\delta \alpha_S}{\alpha_S} \approx 0.8\%$:

→ Order of magnitude larger than QED, weak, gravitational coupling uncertainties!

• Need reduction of $\delta \alpha_S$ to improve uncertainties on all pQCD observables

Belle II can contribute to reduce uncertainties on α_S through

• τ spectral functions (currently $\approx 1.6\%$ uncertainty on α_S extraction) - In particular some 2,4 π final states still dominated by LEP

- Measurements of α_S generally also test QCD calculation framework
- $\alpha_S = 0.1179 \pm 0.0009$, (Z pole) $\rightarrow \frac{\delta \alpha_S}{\alpha_S} \approx 0.8\%$:

→ Order of magnitude larger than QED, weak, gravitational coupling uncertainties!

• Need reduction of $\delta \alpha_S$ to improve uncertainties on all pQCD observables

Belle II can contribute to reduce uncertainties on α_S through

- τ spectral functions (currently $\approx 1.6\%$ uncertainty on α_S extraction) - In particular some 2,4 π final states still dominated by LEP
- $e^+e^- \operatorname{\mathsf{R}}$ ratio ($\sigma(e^+e^- \to \operatorname{hadrons})/\sigma(e^+e^- \to \mu^+\mu^-)$)
 - -Belle II could provide independent *R* measurement from $\sqrt{s} \approx 2 10$ through radiative return technique

- Measurements of α_S generally also test QCD calculation framework
- α_S = 0.1179 ± 0.0009, (Z pole) → ^{δα_S}/_{α_S} ≈ 0.8%:
 → Order of magnitude larger than QED, weak, gravitational coupling uncertainties!
- Need reduction of $\delta \alpha_S$ to improve uncertainties on all pQCD observables

Belle II can contribute to reduce uncertainties on α_S through

- τ spectral functions (currently $\approx 1.6\%$ uncertainty on α_S extraction) - In particular some 2,4 π final states still dominated by LEP
- $e^+e^- \operatorname{\mathsf{R}}$ ratio ($\sigma(e^+e^- \to \operatorname{hadrons})/\sigma(e^+e^- \to \mu^+\mu^-)$)
 - Belle II could provide independent *R* measurement from $\sqrt{s} \approx 2 10$ through radiative return technique
- e^+e^- event shapes, EEC (currently few percent α_S uncertainty)
 - Advances in theory to NNLL, progress to reduce dependence on hadronization uncertainties (e.g. groomed jet)
- FFs
 - From MLLA
 - From scaling violations combining FFs at Belle II with FFs at higher energies

- Measurements of α_S generally also test QCD calculation framework
- α_S = 0.1179 ± 0.0009, (Z pole) → ^{δα_S}/_{α_S} ≈ 0.8%:
 → Order of magnitude larger than QED, weak, gravitational coupling uncertainties!
- Need reduction of $\delta \alpha_S$ to improve uncertainties on all pQCD observables

Belle II can contribute to reduce uncertainties on α_S through

- τ spectral functions (currently $\approx 1.6\%$ uncertainty on α_S extraction) - In particular some 2,4 π final states still dominated by LEP
- $e^+e^- \operatorname{\mathsf{R}}$ ratio ($\sigma(e^+e^- \to \operatorname{hadrons})/\sigma(e^+e^- \to \mu^+\mu^-)$)
 - Belle II could provide independent *R* measurement from $\sqrt{s} \approx 2 10$ through radiative return technique
- e^+e^- event shapes, EEC (currently few percent α_S uncertainty)
 - Advances in theory to NNLL, progress to reduce dependence on hadronization uncertainties (e.g. groomed jet)
- FFs
 - From MLLA
 - From scaling violations combining FFs at Belle II with FFs at higher energies

Jet mass

- Proposal to polarize electron beam at SuperKEKB \rightarrow Whitepaper: e-Print: 2205.12847
- Can access jet mass
- "QCD Higgs mechanism"

See also A. Accardi, A. Signori, Phys.Lett.B 798 (2019) 134993

Summary and Outlook

- e^+e^- annihilation allow for precision studies of QCD
- Belle II will provide world record statistics for
 - Precision measurements of fragmentation functions with complex final states
 - -Tune MC generators
 - Probe Jet calculations at low scales where hadronization effects play a significant role
 - Constrain HVP, HIbI contributions to g-2
 - Constrain α_S
 - Test QCD calculations of event shapes
 - . . .

Save the Date

25th International Symposium on Spin Physics will be hosted by Duke University in Durham, NC September 24-29 2023

Future measurement to study hadronization in e^+e^-

- Back-to-back hadrons to explore k_T spectrum
- Event shapes
 - -Rich topic at LEP
 - -LEP did flavor tagged/ q/\overline{q}
 - \rightarrow can this be done with jet charge?
 - Energy-Energy Correlations
- Jet topic still to be explored further in e^+e^-
 - Reanalysis of ALPEH data (MITHIG-MOD-NOTE-21-001)
 - Start of program at Belle
 - Initially focused on
 - q_T distributions in di-jets, jet-hadron correlations,
 - T-odd jets
 - WTA vs standard jet axis

- ...

Z. Kang at INT FF worskhop 2021

"Ridge" Correlations

- Example of QCD correlation analysis 'off the beaten path'
- Makes use of clean
 e⁺e⁻ environment

hep-ex:2008.04187

Di-hadron fragmentation functions

- Additional degree of freedom ($\vec{R} = \vec{P_1} \vec{P_2}$) - Plus z, P_T
- Relative momentum of hadrons can carry away anç momentum
 - Partial wave decomposition in $\boldsymbol{\theta}$
 - Relative and total angular momentum →In principle endless tower of FFs

 $q \sim n$

Φ

c.m.

θ

 $\Lambda\Lambda$ a

- -Analogue of 1h production with spin in final state
- Transverse polarization dependence in collinear fra
- Makes 'new' FFs possible, such as G₁[⊥]: T-odd chir case, this needs polarized hadron in the final state
- Similar to ∧ FF, chiral-even, T-odd: Import t = ineck factorization

KEKB →SuperKEKB: Deliver Instantaneous Luminosity x 40

Need for precise extraction of TMD FFs to extract TMD PDFs

• Example: variation in Sivers effect varying $\xi = \frac{k_T}{p_T}$

 SIDIS necessary to extract flavor dependence of FFs but cannot disentangle source of pT

JHEP 1311 (2013) 194

Unpolarized SIDIS@EIC

Same precision and kinematic coverage for π±, K±, p± should provide great input to <u>simultaneously</u> constrain TMD PDFs and FFs

From M Boglione PoS QCDEV2016 (2017) 026

Soft gluon radiation

Intrinsic q_

Hard gluon emission

Transverse momentum dependence

- Goal: Extract $D(z, k_T)$
- Several ways to be sensitive to k_T
 - -Vs thrust or jet direction \rightarrow Have to relate measured p_T to k_T
 - -Relative in back-to-back hadrons \rightarrow sensitive to $D(z_1, k_{Tt}) \otimes D(z_2, k_{T2})$

Transverse momentum distributions

- 0.85< Thrust T < 0.9
 - Transverse momenta mostly Gaussian
 - -Possible deviations for large P_{hT} tails, but also large uncertainties
 - \rightarrow TMD evolution

Phys.Rev.D 99 (2019) 11, 112006

Transverse Momentum: Gaussian widths

- 0.85 < T < 0.9
 - -Fit Gauss to low P_{hT} data
 - -Mostly well described with possible exception at high z
 - Deviation from Gauss at large P_{hT}
 - $-\operatorname{Clear}$ increase in width with z for low values of z

M. Boglione, A. Simonelli, "Factorization of $e^+e^- \rightarrow$ *HX* cross section, differential in z_h , P_T and thrust, in the 2-jet limit", 2011.07366 [hep-ph]

Mass Dependence of $\sigma \rightarrow$ test hadronization model

Found consistent with di-quark model

PRD 97, 072005 (2018)

Perturbative QCD tests

- Time like splitting functions have singulari like important for DIS)
- MLLA \rightarrow test for resummation
- Observed shape consistent with QCD cale
- FCC-ee might go to lower z. Impact?

- Muon anomalous magnetic moment $a_{\mu} = \frac{g_{\mu}-2}{2}$
- Currently: $a_{\mu}^{exp} a_{\mu}^{SM} \cong 4.2\sigma$ with uncertainty on a_{μ}^{exp} , a_{μ}^{SM} comparable
- Plan to reduce $\sigma_{a_{\mu}^{exp}}$ by a factor 4: → Discovery potential of experiment limited if $\sigma_{a_{\mu}^{SM}}$ is not reduced as well.
- "The dominant sources of theory error are by far the hadronic contribution in particular, the $\mathcal{O}(\alpha^2)$ HVP term and the $\mathcal{O}(\alpha^3)$ HLbL term"

- Muon anomalous magnetic moment $a_{\mu} = \frac{g_{\mu}-2}{2}$
- Currently: $a_{\mu}^{exp} a_{\mu}^{SM} \cong 4.2\sigma$ with uncertainty on a_{μ}^{exp} , a_{μ}^{SM} comparable
- Plan to reduce $\sigma_{a_{\mu}^{exp}}$ by a factor 4: → Discovery potential of g-2 experiment limited if $\sigma_{a_{\mu}^{SM}}$ is not reduced as well.
- "The dominant sources of theory error are by far the hadronic contributic -- in particular, the $\mathcal{O}(\alpha^2)$ HVP term and the $\mathcal{O}(\alpha^3)$ HLbL term"
- Gold Standard for HVP determination: Experimental measurement of $e^+\epsilon$ hadronic cross-section (*R* measurement)
 - + E.g. New lattice calculations (Nature 593, 51–55 (2021)) reduce tension to 2σ
 - But: Tension between KLOE/BaBar measurement make up ~1/3rd of HVP uncertainty

- Muon anomalous magnetic moment $a_{\mu} = \frac{g_{\mu}-2}{2}$
- Currently: $a_{\mu}^{exp} a_{\mu}^{SM} \cong 4.2\sigma$ with uncertainty on a_{μ}^{exp} , a_{μ}^{SM} comparable
- Plan to reduce $\sigma_{a_{\mu}^{exp}}$ by a factor 4: → Discovery potential of g-2 experiment limited if $\sigma_{a_{\mu}^{SM}}$ is not reduced as well.
- "The dominant sources of theory error are by far the hadronic contributions, in particular, the $\mathcal{O}(\alpha^2)$ HVP term and the $\mathcal{O}(\alpha^3)$ HLbL term"
- Gold Standard for HVP determination: Experimental measurement of e^+e^- hadronic creation (*R* measurement)
 - E.g. New lattice calculations (Nature 593, 51–55 (2021)) reduce tension to 2σ
 - But: Tension between KLOE/BaBar measurement make up ~1/3rd of HVP uncertainty
- Belle II will provide new input to resolve current tensions and work on reducing uncertainties on *R* meausurements → Crucial for discovery potential of g-2 experiment
- A host of other measurements possible to reduce subdominant uncertainties and provide complementary information on HVP, Hlbl →more confidence in results

How to measure HVP in e^+e^-

• Use dispersion relation

$$a_{\mu}^{HVP,LO} = \frac{\alpha^2}{2\pi^2} \int_{M_{\pi}^2}^{\infty} \frac{K(s)}{s} R(s) ds$$

- *R*: hadronic *R* ratio: $R(s) = \frac{3s}{4\pi\alpha^2}\sigma_h(e^+e^- \rightarrow hadrons)$
- *R* is dominated by

low s region

$$\rightarrow e^+e^- \rightarrow \pi\pi$$
 (70%)

 \rightarrow resonance region around ρ , ω Fixed energy B factories: ISR technique

• E.g. at BaBar effectively the ratio $\frac{\sigma(e^+e^- \rightarrow \pi\pi)}{\sigma(e^+e^- \rightarrow \mu\mu)}$ is measured

 \rightarrow dominant systematic cancel

ightarrowremaining systematics dominated by PID, ISR calculations

Additional Measurements related to g-2

- Conserved vector current (CVC): $\tau \rightarrow \pi^0 \pi \nu_{\tau} \leftrightarrow e^+ e^- \rightarrow \pi \pi$
 - However: isospin breaking effects not fully understood
 →tension between τ decay and CVC e⁺e⁻
 →Future theory developments could bring this channel into play again
 - Belle II will provide further input
- Hadronic Light-by-Light (HLbL)
 - HLbL is $\mathcal{O}(\alpha^3) \rightarrow$ needs to be known to within $\approx 10\%$
 - 4-point function → significantly more complex than HVP →experimental input is needed to validate theory models →See whitepaper for measurements validating different aspects of the calculations

Summary and Take away message

• a_{μ} measurements among the most sensitive to New Physics BUT:

Discovery potential needs experimental input from e^+e^- to reduce theory uncertainty to same level as expected experimental uncertainties

Need:

 \rightarrow HVP from $e^+e^- \rightarrow \pi\pi$

→ HLbL from form factors and $\gamma\gamma$ → hadrons

Belle II is a second generation *B*-factory

- State of the art detector optimized for precision physics with identified hadrons
- Will reduce systematics by resolving current experimental tension in HVP
- Excellent opportunity to reduce systematics to expected precision of a_{μ}^{exp}
- Must do experiment to validate theory calculations for HVP and HLbL

Details in "Opportunities for precision QCD physics in hadronization at Belle II -- a snowmass whitepaper" (2204.02280 [hep-ex])

