

I HCP 2022

Recent results from the Belle II experiment

Shohei Nishida (KEK, SOKENDAI) Belle II Collaboration

10th Large Hadron Collider Physics Conference May 17, 2022

S. Nishida (KEK) May 17, 2022

Contents

- SuperKEKB and Belle II
- Lifetime of D^0, D+ and $\Lambda_{\rm c}^+$
- B⁰ lifetime and mixing frequency
- Measurement of $\varphi_3\left(\gamma\right)$: Belle + Belle II analysis
- More results related to CPV in B
- Semileptonic B Decay
- Search for Dark Sector

Tsukuba, Japan

"B anti-B" like event

S. Nishida (KEK) May 17, 2022

Recent results from the Belle II experiment

- Intensity frontier experiment: Search for New Physics with precise measurements.
- Rich physics programs with B, charm, τ .
- Clean environment (e⁺e⁻ collider) : advantage for the final states with neutral particles and missing particles.

✓ e.g. $B^+ \rightarrow K^+ v \bar{v}$

S. Nishida (KEK) May 17, 2022

SuperKEKB and Belle II

- Belle II experiment at KEK: flavor physics experiment, successor of Belle.
- SuperKEKB asymmetric electron-positron collider: 4 GeV e⁺ + 7 GeV e⁻.
- Nano beam scheme to achieve high luminosity.
- General purpose Belle II detector.
 - ✓ Key components: vertex detector, particle identification.

- Operation with full detector started in 2019.
- Luminosity 4.1 × 10³⁴ cm⁻² s⁻¹ achieved (May 17, 2022).
 - ✓ World record (~ ×2 of KEKB)
 - ✓ Aiming one order higher.
- ~380 fb⁻¹ of data accumulated so far.
 - ✓ Belle: 1 ab⁻¹ (= 1000 fb⁻¹) in 11 years' operation.
 - ✓ Belle II target: 50 ab⁻¹.

```
1 \text{ ab}^{-1} \sim 10^9 \text{ BB}
```


Base: assuming SuperKEKB parameters in 2021 Target: extrapolation with expected improvement

- Long shutdown (LS) 1 starts from summer 2022 for 15 months to fully install VXD.
- A SuperKEKB international taskforce is discussing additional improvements.
- LS2 for machine improvements could happen on the time frame of 2026-27

- Large number of charm hadron s are produced at B factories.
- Belle II has better vertex resolution compared to Belle and BaBar thanks to new vertex detectors located at a closer position to the IP.
- Test of effective theory (weakly decay involving strong interaction at low energy).

S. Nishida (KEK) May 17, 2022

Recent results from the Belle II experiment

Lifetime of D⁰, D⁺ and Λ_c^+

World's most precise measurement

Detector alignment is one of the major systematic error.

S. Nishida (KEK) May 17, 2022

Recent results from the Belle II experiment

(EKB

Mixing-induced CP asymmetry of B mesons

- B⁰ and \overline{B}^{0} decay to a common CP eigenstate f_{CP} .
- CP violation appears as a decay time difference.

$$A_{CP}(\Delta t) = \frac{\Gamma(\overline{B^{0}}(\Delta t) \to f_{CP}) - \Gamma(B^{0}(\Delta t) \to f_{CP})}{\Gamma(\overline{B^{0}}(\Delta t) \to f_{CP}) + \Gamma(B^{0}(\Delta t) \to f_{CP})}$$
$$= S \sin(\Delta m \Delta t) + A \cos(\Delta m \Delta t)$$

$$S = -\xi \sin(2\phi_1)$$
 for $B \to J/\psi K_S$ $(\phi_1 = \beta)$

B⁰ f_{CP}

S : mixing induced CPV A : direct CPV (=-C)

> What is presented today: Hadronic decay $B^0 \rightarrow D^{(*)0-}$ K⁺/ π^+ (instead of f_{CP}) \rightarrow Measurement of mixing frequency (Δ m) and lifetime

S. Nishida (KEK) May 17, 2022

B⁰ Lifetime and Mixing Frequency

- Similar uncertainty as Belle and BaBar results: smaller systematic error.
- Semileptonic mode (D* I ν) not used yet. To be included.
- Next step: measurement of $sin(2\phi_1)$ (= $sin(2\beta)$).

Super KEKB

• $\phi_3(\gamma)$ can be measured using the interference of tree b $\rightarrow c\bar{u}s$ and b $\rightarrow u\bar{c}s$.

 $A_1 r_B e^{i(\delta_B - \phi_3)} \rightarrow \overline{D^0} K$

• Tree process \rightarrow SM reference. Precise measurement of ϕ_3 is necessary to search for New Physics contribution in CKM fit.

 $[f]_D K^-$

• Binned Dalitz plot analysis using $B^- \rightarrow D h^-$ with $D \rightarrow K_{S}h^{+}h^{-}$ (BPGGSZ method [PRD 68. 054018 (2003)])

$$\mathbf{N}_{i}^{\pm} = \mathbf{h}_{\mathrm{B}}^{\pm} \left[\mathbf{F}_{i} + \mathbf{r}_{\mathrm{B}}^{2} \overline{\mathbf{F}}_{i} + 2\sqrt{\mathbf{F}_{i} \overline{\mathbf{F}}_{i}} (\mathbf{c}_{i} \mathbf{x}_{\pm} + \mathbf{s}_{i} \mathbf{y}_{\pm}) \right]$$

 $(x_+, y_+) = r_{\rm B} \left(\cos(\phi_3 + \delta_{\rm B}), \sin(\phi_3 + \delta_{\rm B}) \right)$

 c_i , s_i : parameters of $D^0 - \overline{D^0}$ strong phase difference

(inputs from BES III / CLEO) F_i: fraction of D decays to *i*-th bin

Model-independent method

color favored

A₁

 D^0

S. Nishida (KEK) May 17, 2022

Belle (711 fb⁻¹) and Belle II (128 fb⁻¹) analysis

S. Nishida (KEK) May 17, 2022

Recent results from the Belle II experiment

$\phi_3(\gamma)$ from Belle + Belle II

[JHEP 02 (2022) 063]

150

Belle + Belle II L dt = (711 + 128) fb⁻

Result:

 $\delta_{\mathsf{B}} = (124.8 \pm 12.9 \pm 0.5 \pm 1.7)^{\circ}$ $r_{\rm B}^{\rm DK} = 0.129 \pm 0.024 \pm 0.001 \pm 0.002$ $\phi_3 = (78.4 \pm 11.4 \pm 0.5 \pm 1.0)^\circ$

The third error is due to external strong-phase input from BES III

- Improvements from previous Belle result equivalent to doubling statistics (due to K_s selection and b.g. suppression)
- Latest inputs on strong-phase from BES III highly reduces statistics.
- Expected <3° uncertainty with 10 fb⁻¹, including also more D final states. Uncertainty will still be dominated by the size of the data sample.

$$\gamma = \phi_3 = (66.2 + 3.4)^{\circ}$$
 (HFAG)

68.3%

95.5%

50

100

φ₃ [°]

0.8

0.4

0.2

0

0.6 ' 4 C

S. Nishida (KEK) May 17, 2022

$\mathsf{B}^{+} \rightarrow \rho^{+} (\rightarrow \pi^{+} \pi^{0}) \ \rho^{0} (\rightarrow \pi^{+} \pi^{0-})$

• Constrain ϕ_2 (= α) together with B⁰ $\rightarrow \rho^0 \rho^0$, $\rho^+ \rho^-$ (Belle II can measure all)

$B^0 \rightarrow K_S \pi^0$

- Hint of NP in $A_{CP}(B \rightarrow K\pi)$?
- Check isospin sum rule: $A_{CP}(B^0 \rightarrow K_S \pi^0)$ is important (unique to Belle II).

 $egin{aligned} \mathcal{A}_{\mathsf{CP}} &= -0.41^{+0.30}_{-0.32} \; (ext{stat.}) \pm 0.09 \; (ext{syst.}) \ \mathcal{B} &= (11.0 \pm 1.2 \; (ext{stat.}) \pm 1.0 \; (ext{syst.})) imes 10^{-6} \end{aligned}$

World average: $A_{CP} = 0.00 \pm 0.13$.

S. Nishida (KEK) May 17, 2022

$\mathsf{B}^0\to\mathsf{K}_{\mathsf{S}}\pi^0\gamma$

- SM electroweak is purely left-handed.
 - ✓ Photon from b→s γ is almost left-handed.
- Right-handed current is a signature of NP.
- In the SM, mixing induced CP violation does not occur in $b \rightarrow s\gamma$: S ~ $-2(m_s/m_b) \times sin2\phi_1$.
- Primary mode $B^0 \rightarrow K_S \pi^0 \gamma$: unique to Belle II.
- In preparation to time-dependent analysis, branching fraction is measured.

$$\mathcal{B}=(7.3\pm1.8~(ext{stat.})\pm1.0~ ext{syst}) imes10^{-6}$$

Compatible with world average $\mathcal{B} = (7.0 \pm 0.4) imes 10^{-6}$

S. Nishida (KEK) May 17, 2022

- $|V_{ub}|$ and $|V_{cb}|$ can be measured with semileptonic B decays.
- Longstanding discrepancy between the inclusive and exclusive analyses.
- New measurements of $|V_{ub}|$ and $|V_{cb}|\;$ at Belle II.

Useful technique: tag-side reconstruction

- Full Event Interpretation (FEI): tag side is reconstructed with ~10000 hadronic decays [Comput Softw Big Sci (2019) 3: 6.]
- Tag efficiency ~0.5 (0.3)% for $B^+(B^0)$
- Useful for signal modes with missing particles.

S. Nishida (KEK) May 17, 2022

Semileptonic B Decays

Consistent with PDG, but still statistically limited. More precise measurement expected with larger dataset.

S. Nishida (KEK) May 17, 2022

Recent results from the Belle II experiment

5

10

15

 $q^2 [GeV^2c^{-4}]$

20

25

Semileptonic B Decays

Belle II and Belle have reported several new results on the inclusive analysis.

- q² moments of B \rightarrow X_cI_V (Belle II 62.3 fb⁻¹) [journal paper in preparation]
- Partial B.F. of $B \rightarrow X_u lv$ (Belle) [PRD 104, 012008 (2021)]
- Differential B.F. of $B \rightarrow X_u Iv$ (Belle) [PRL 127, 261801 (2021)]
- q^2 moments of $B \rightarrow X_c lv$ (Belle) [PRD 104, 112011 (2021)]

More results on semileptonic B decays will come

Recent results from the Belle II experiment

CEKB

Dark Sector at Belle II

- The nature of the dark matter (DM) is unknown.
- WIMP DM (@ 30-3000 GeV) has been most intensively searched, but no hint has been seen so far.
- Notable possibility of DM in MeV to GeV mass region.
- Belle II is an ideal place to study it.
 - ✓ ~10 GeV CM energy \rightarrow search DM up to O(1) GeV

Mediator

Collision of galaxy clusters red: matter, blue: DM

Bonus : A', Z' may explain the discrepancy of $(g-2)_{\mu}$ between theory and experiment.

- Standard Model
- Typical process at Belle II
 - ✓ $e^+ + e^- \rightarrow SM$ particles + Mediator
 - ✓ B (or other hadron) \rightarrow SM particles + Mediator
- Some of these processes have not been searched in BaBar or Belle (due to trigger setting etc.) and can be searched with initial Belle II data.

ark Matter

Dark Higgsstrahlung

Next to minimal dark photon model

- Dark photon (A') couples to SM photon via kinetic mixing parameter ε.
- A' mass can be generated via a spontaneous breaking mechanism, adding, dark Higgs boson (h') to the theory [PRD 79, 115008 (2009)].

Mass hierarchy scenarios

S. Nishida (KEK)

May 17, 2022

- M_{h'} > M_{A'} : h' → A'A'^(*) → 4 leptons etc.
 ✓ Investigated by BaBar and Belle.
- $M_{h'} < M_{A'}$: h' is long-lived and thus invisible.
 - ✓ Partially constrained by KLOE.
 - ✓ Exploring unconstrained region at Belle II

BaBar: PRL 108, 211801 (2012) Belle: PRL 114, 211801 (2015) KLOE: PLB 747, 365 (2015)

Belle II

KLOE

Recent results from the Belle II experiment

LHCP 2022 19

 $M_{\Delta'}$

Dark Higgsstrahlung

S. Nishida (KEK) May 17, 2022

Recent results from the Belle II experiment

Summary

- Belle II is running, accumulating close to 400 fb⁻¹ so far.
- Several recent results are presented.
 - $\checkmark\,$ Lifetime of D⁰, D⁺ and $\Lambda_{c}{}^{+}$: world's most precise
 - ✓ B⁰ lifetime and mixing frequency : important step for sin(2 ϕ_1)
 - ✓ Measurement of $\phi_3(\gamma)$: Belle + Belle II analysis
 - ✓ Semileptonic B decays.
 - ✓ Search for Dark Sector.
- Other results that cannot be covered today show the potential of Belle II.
 - ✓ Electroweak penguin B decays $B \rightarrow K^*I^+I^-$, $B^+ \rightarrow K^+\nu\overline{\nu}$.
 - ✓ Hadron spectroscopy (Belle II took energy scan data above Υ (4S) in 2021).
- More results will be coming soon.

Backup

S. Nishida (KEK) May 17, 2022

Recent results from the Belle II experiment

S. Nishida (KEK) May 17, 2022

Recent results from the Belle II experiment

rtainties $D^0 \rightarrow K^-\pi^+$	$D^+ \rightarrow K^- \pi^+ \pi^+$
$ au(D^0)$ [fs]	$ au(D^+)$ [fs]
0.16	0.39
0.24	2.52
t 0.72	1.70
0.19	0.48
0.80	3.10
	rtainties $D^0 \rightarrow K^- π^+$ $\tau(D^0)$ [fs] 0.16 0.24 t 0.72 0.19 0.80

$\Lambda_{\rm c}{}^{\rm +}\!\to {\rm pK}{}^{\rm -}\pi{}^{\rm +}$

Source	Uncertainty [fs]
Resolution model	0.46
Backgrounds	0.20
Detector alignment	0.46
Momentum scale	0.09
Ξ_c contamination	1.39
Total	$0.69_{-1.39}$

World's most precise measurement

S. Nishida (KEK) May 17, 2022

Recent results from the Belle II experiment

 $B^0 \rightarrow K_S \pi^0$

Model independent detection of NP in the B \rightarrow K π system

Sum rule proposed by:

M. Gronau, PLB 627, 82 (2005); D. Atwood & A. Soni, Phys. Rev. D 58, 036005(1998).

S. Nishida (KEK) May 17, 2022

- $|V_{ub}|$ and $|V_{cb}|$ measurements have a longstanding discrepancy between the inclusive and exclusive analyses.
- New measurement of the inclusive B \rightarrow X_c I ν with tagged method at Belle II.
 - The other B is reconstructed with FEI (Full Invent Interpretation) algorithm.
- $B \rightarrow X_c I v$ decay width Γ is expressed with HQE (heavy-quark expansion) parameters.
- Novel idea: reduction of HQE parameters $(13 \rightarrow 8)$ by reparametrization [arXiv:1812.00747].
- Parameter reduction is valid for q² moments: a new measurement of <(q²)ⁿ> for n=1, ..., 4.

 $B \rightarrow X_c I v$

[paper in preparation]

- Belle II measurement with 62.3 fb⁻¹.
- M_X fit to determine the background component.
- q² calibration (reconstructed v.s. generated moments).
- q² moments <(q²)ⁿ> for n=1, ..., 4 as a function of q² threshold are obtained.
- Expect new fit of $|V_{cb}|$ in near future.

S. Nishida (KEK) May 17, 2022

Recent results from the Belle II experiment

Dark Sector

- ✓ $e^+e^- \rightarrow \mu^+\mu^-Z'$, Z'→invisible (0.28 fb⁻¹) [PRL124 (2020), 141801]
- ✓ ALP (Axion-Like Particle) $e^+e^- \rightarrow a(\rightarrow\gamma\gamma) \gamma$ (0.44 fb⁻¹) [PRL125 (2020), 161806]

$B \rightarrow X_c lv$ (untagged)

[BELLE2-CONF-PH-2021-012 arXiv:2111.09405]

S. Nishida (KEK)

May 17, 2022

 $Z' \rightarrow invisible$

$Z'\!\!\rightarrow$ invisible : First physics result from Belle II !!

- 0.276 fb⁻¹ data from Belle II Phase II run.
 - Phase II: commissioning run in 2018 taken without inner vertex detector.
- e⁺e⁻ → μ⁺μ⁻ + missing energy and search for a bump in recoil mass.

[PRL124 (2020), 141801]

 $e^+e^- \rightarrow \mu^+\mu^- Z', \ Z' \rightarrow \chi \chi$

S. Nishida (KEK) May 17, 2022