Prospects of $|V_{ub}|$ **measurement at Belle II**

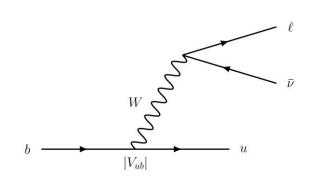
MITP Flavour at the Crossroads

27 April 2022

Tommy Martinov, on behalf of the Belle II collaboration

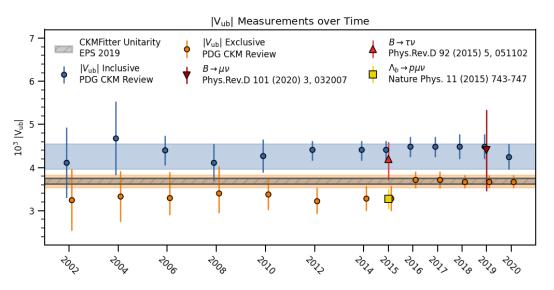
Outline of the talk

- i Physics motivation
- i SuperKEKB/Belle II
- **Event reconstruction**
- Exclusive decays: theory, experiment, prospects
- Inclusive decays: theory, experiment, prospects

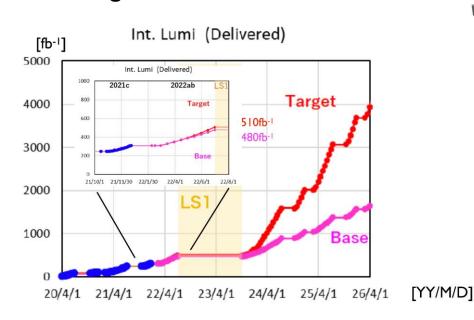

Motivation

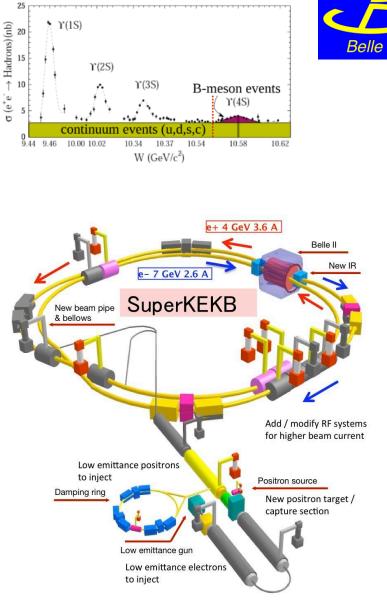
Yet another discrepancy

- **Inclusive/exclusive** semi-leptonic decays: 6 _____L
- Results from CLEO, BaBar, Belle, LHCb
 - ~2/3 discrepancy between the
 two


$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$$

$$Im_{V_{ud}V_{ub}^{*}} (\overline{\rho}, \overline{\eta}) (\overline{\phi_{2}}, \overline{\psi_{td}V_{tb}^{*}}) (\overline{\psi_{cd}V_{cb}^{*}}) (\overline{\phi_{3}}, \overline{\phi_{1}}) (\overline{\psi_{cd}V_{cb}^{*}}) (\overline{$$

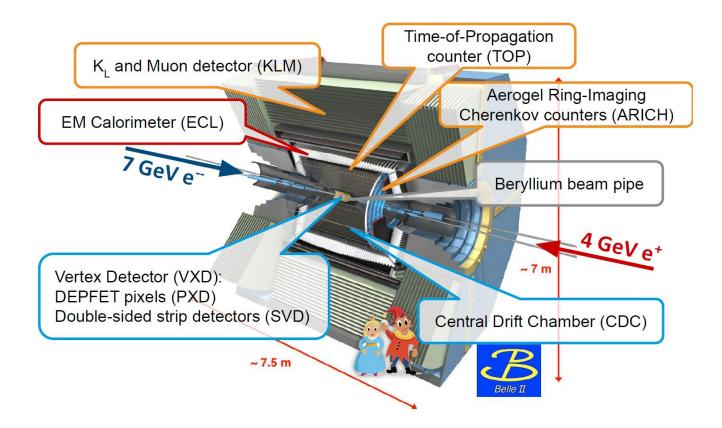

$$|V_{ub}| = (3.70 \pm 0.10 \pm 0.12) \times 10^{-3}$$
 PDG excl.
 $|V_{ub}| = (4.25 \pm 0.12^{+0.15}_{-0.14} \pm 0.23_{\Delta BF}) \times 10^{-3}$ PDG incl.



SuperKEKB

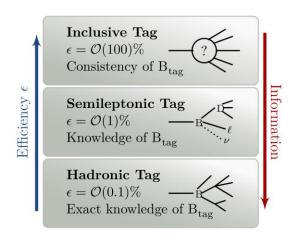
Tsukuba, Japan

- collider at $\sqrt{-}$ = Energy **asymetric** 10.58 GeV
 - with BR > 96% (B factory)
- Nano-beam + higher beam currents
- **Record luminosity**. ' ", ³⁴% cm⁻ℓJs⁻¹% \$ Ultimate target: 50 ab-1

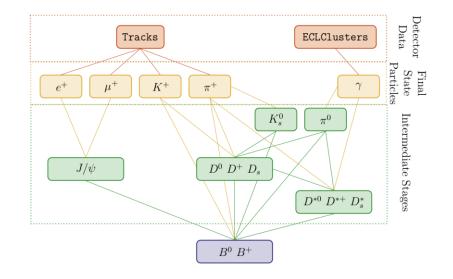


The Belle II Detector

Where the magic happens


Event reconstruction

Full Event Interpretation


- i 3 types of tagging:
 - i Inclusive (untagged)
 - i Semi-leptonic
 - _i Hadronic

i

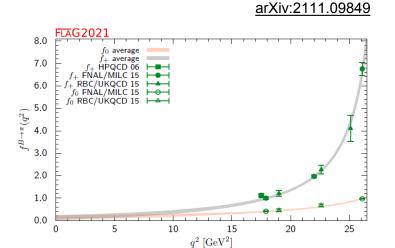
FEI: multivariate technique to reconstruct the B-tag side (arXiv:1807.08680)

MC tag-side efficiency @10% purity	Had. B ⁺ /B ⁰ [%]	SL. B ⁺ /B ⁰ [%]	
Full Reconstruction Belle	0.28/0.18	0.67/0.63	
FEI Belle	0.76/0.46	1.80/2.04	
N of correct B_{tag} per 1 fb ⁻¹ in Belle (FEI)	8350/5060	19800/22440	

Computing and Software for Big Science (2019) 3:6

- i Expect better performance
- i Calibration remains a challenge
- ¡ @YUX]b[ibWY-fleptouhijc debanyns Zcf gYa]

DESY. | |Vub| at Belle II | Tommy Martinov | 27 April 2022


Exclusive decays

A word from theory

- i Ï 6 Y g h Đ**expa. e theo.): f**d
- i General equation:

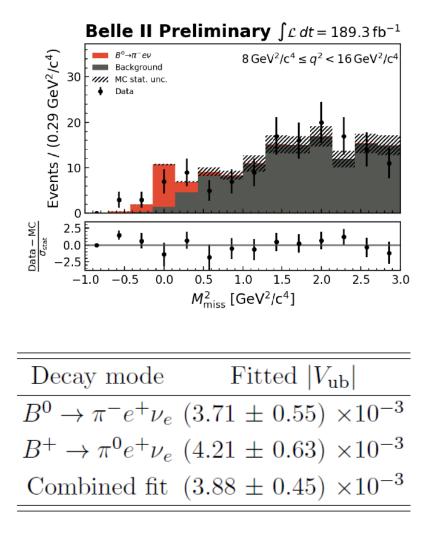
$$\frac{d\Gamma}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{24\pi^3} |p_\pi|^3 |f_+(q^2)|$$

- Form factor extracted from:
 - $_{i}$ q² ~ q²_{max} = (m_B \ddot{E} m)²: Lattice QCD
 - q² ~ 0: QCD sum rules
 - , , : heavy, unstable, broad resonances

J. High Energ. Phys. 2012, 92

Exclusive decays

6 **àt Belle II**

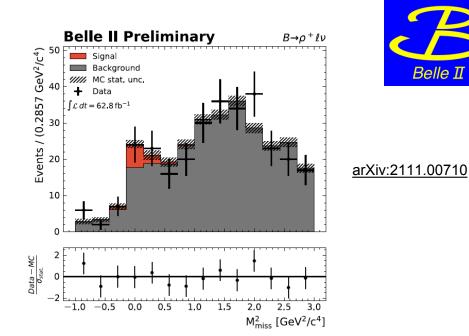

So far: 189.3 fb⁻¹

fit [·]

- i Hadronic tagged 6 e ; dominant systematic uncertainty: FEI calibration
- i Distributions in **bins of q**² [8;16;26.4] GeV² $V_{\Omega b}$ extraction
- Yields are corrected by unfolding

Belle II Preliminary $\int \mathcal{L} dt = 189.3 \text{ fb}^{-1}$ $f_{0}^{+} 0.50$ $g_{0.00}^{+} 0.50$ $g_{0.00}^{+} 0.50$

$$m_{miss}^2 = (p_{e^+e^-} - p_{B_{\text{tag}}} - p_{\pi} - p_{\ell})^2$$

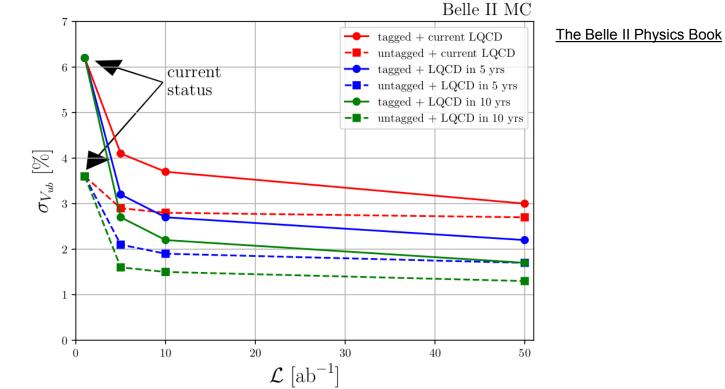

6 **at Belle II**

- So far: 62.8 fb⁻¹
- decay (almost) exclusively to
- i *M* [0.333, 1.217] GeV
- i Low signal significance: <2
- i 95% CL upper limits on BR

$$\mathcal{B}(B^0 \to \rho^- \ell^+ \nu_\ell) < 3.37 \times 10^{-4}$$

i PDG

 $(2.94 \pm 0.11 \pm 0.18) \times 10^{-4}$

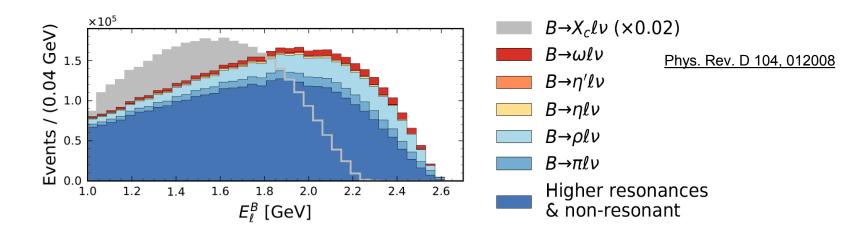

$$\mathcal{B}(B^+ \to \rho^0 \ell^+ \nu_\ell) < 1.97 \times 10^{-4}$$

$$(1.58 \pm 0.11) \times 10^{-4}$$

Exclusive decays

Prospects

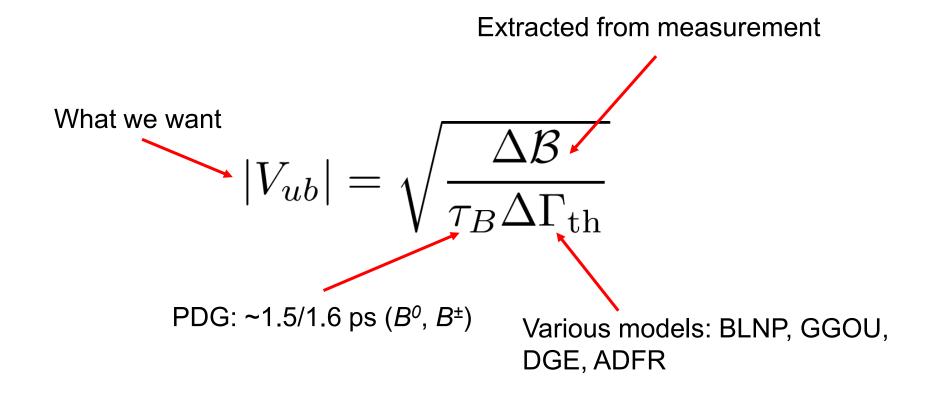
- i Ongoing tagged and untagged analyses with more statistics
- i Potential to reduce uncertainty on $|V_{ub}|$ by a significant margin

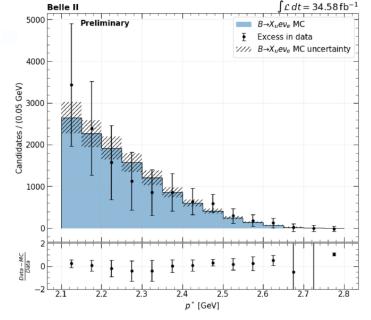


Inclusive decays

A word from theory

- i Overwhelmed by V == *\cuts in phase space
- i Kinematic regions: lepton momentum/energy spectrum endpoint, low m_X
- i But **HQE breaks down** flbch `] b W` i g] j Y ` Y b c i [\ ` Y g d Y `


- Decay rate described by (non-perturbative) shape function: motion of *b* quark inside *B* meson (PDFs equivalent)
- i Universal for *b* transitions to light quarks (data-driven fits: SIMBA, NNVub)


How to actually measure $|V_{ub}|$

Inclusive decays

At Belle II

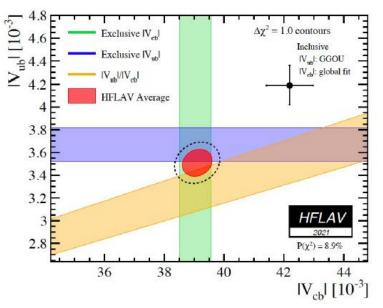
- **Untagged** inclusive 6 $u e^{-1}$ with 34.6 fb⁻¹
- Endpoint region: 2.1 E 2.8 GeV
- Significance.

arXiv:2103.02629

Inclusive decays

Prospects

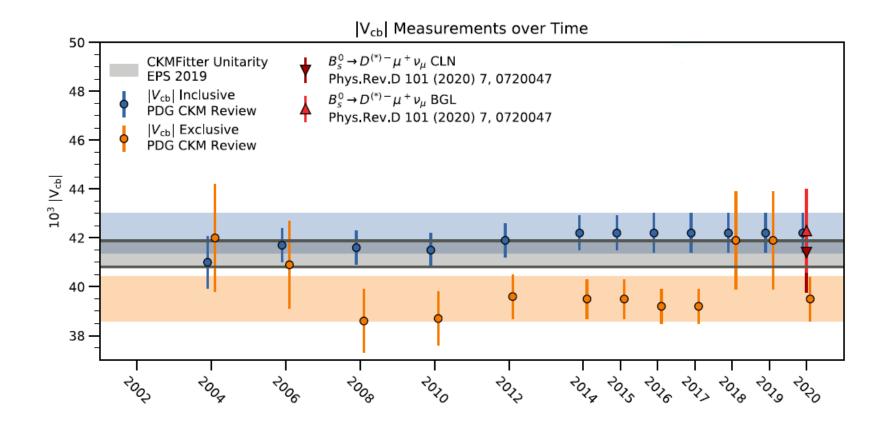
- i Inclusive hadronic tagged analysis
- Start from Belle strategy: signal/background modeling, BDT/NN selection,
 Z] h Å
- i Improved hardware/software + larger data set (ultimately 50 ab⁻¹)

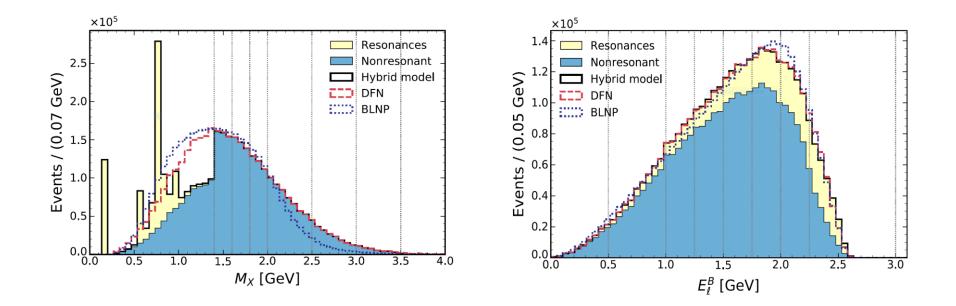

	Statistical	Systematic (reducible, irreducible)	Total Exp	Theory	Total
5 ab^{-1}	1.1	(1.3, 1.6)	2.3	2.5 - 4.5	3.4 - 5.1
50 ab^{-1}	0.4	(0.4, 1.6)	1.7	2.5 - 4.5	3.0 - 4.8

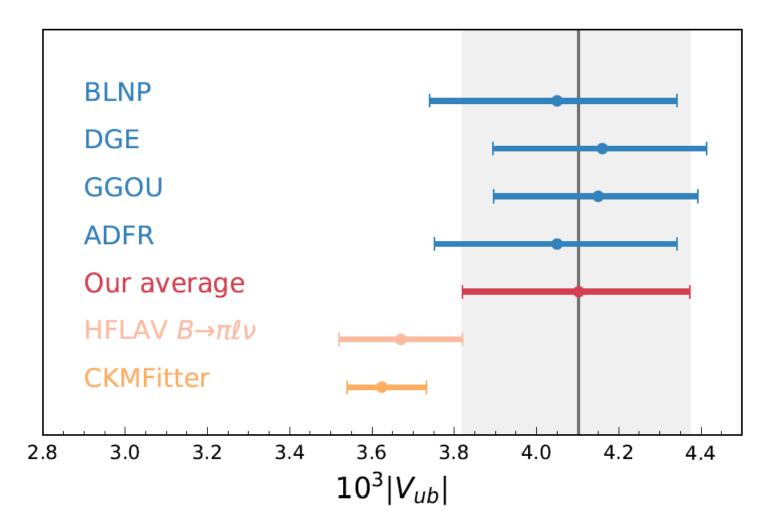
The Belle II Physics Book

Model independent/global fit: **differential spectra** measurement: q^2 , m_X , E Å

Conclusions

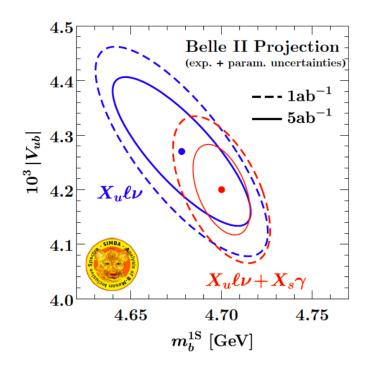

- Tensions in CKM elements (**V_{ub} , V_{cb}Å** Ł
- i Belle II ``Uf[Yf'VUW_[fci
- i Better statistics but real issue is **systematics**
- These analyses are still young
- i More model-independence ?
- i Results from LHCb ?


Thank you


|V_{cb}| descrepancy

Hybrid model

Belle |*V*_{*ub*}| **inclusive measurement results**



theoretical predictions for $|V_{ub}|$

- i BLNP: NLO in $_{s}$, interpolation between SF and OPE region (arXiv:hepph/0504071v3)
- GGOU: corrections up to $O(s^2_0)$ (perturbative) and $O(1/m_b^3)$ (non-perturbative), SF dependence via light-cone functions, kinetic scheme (arXiv:0707.2493v2)
- DGE: no direct use of SFs, predictions for hadronic observables from on-shell *b*-quark mass, _____ scheme (<u>arXiv:0806.4524v2</u>)
- ADFR: ratio of 6 u^{+} L to 6 X_{c}^{+} , soft-gluon resummation at NNLO, effective QCD coupling approach, scheme (arXiv:0711.0860v2)

Systematics exclusive |V_{ub}| Belle II measurement

Source		% of			% of		
	${\mathcal B}$	$\mathcal{B}(B^0 \to \pi^- e^+ \nu_e)$			$\mathcal{B}(B^+ \to \pi^0 e^+ \nu_e)$		
q^2 bin index	1	2	3	1	2	3	
$N_{B\bar{B}}$				2.9			
$f_{\pm 0}$				1.2			
FEI calibration		3.2			3.1		
Tracking		0.6			0.3		
π^0 efficiency					4.8		
Signal efficiency	$\epsilon 1.3$	1.2	1.4	1.3	1.2	1.3	
Electron ID	1.0	0.4	0.4	1.0	0.5	0.5	
Pion ID	0.4	0.4	0.4		_		
Total	4.8	4.7	4.8	6.7	6.7	6.7	

