Belle II perspectives on charm

(in the light of recent LHCb results)

Marko Starič

Jožef Stefan Institute, Ljubljana

KEK-FF 2014

M. Starič (IJS)

Belle II perspectives on charm

14 Feb. 2014 KEK Tsukuba 1 / 23

- $D^0 \overline{D}^0$ mixing and t-dependent CPV
- t-integrated CPV (A_{CP})
- Rare decays (FCNC, LFV, LV)

- 3

伺下 イヨト イヨト

$D^0 - \overline{D}^0$ mixing

Mass eigenstates differ from flavor eigenstates

$$|D^0_{1,2}
angle= p|D^0
angle\pm q|\overline{D}^0
angle$$

- $D_{1,2}^0$ with masses m_1, m_2 and partial widths Γ_1, Γ_2
- CP violation if $q \neq p$
- Mixing parameters:

$$x = \frac{\Delta m}{\Gamma}$$
 $y = \frac{\Delta \Gamma}{2\Gamma}$

• Time dependent decay rates of $D^0 \rightarrow f$ (since mixing is small):

$$rac{d {\sf N}_{D^0
ightarrow f}}{dt} \propto e^{-\Gamma t} ig| \langle f | {\cal H} | D^0
angle + rac{q}{p} (rac{y+i x}{2} \Gamma t) \langle f | {\cal H} | \overline{D}{}^0
angle ig|^2$$

M. Starič (IJS)

・ロト ・四ト ・ヨト ・ヨト ・ ヨ

Measurement strategies

$$\frac{dN_{D^0 \to f}}{dt} \propto e^{-\Gamma t} \big| \langle f | \mathcal{H} | D^0 \rangle + \frac{q}{p} (\frac{y + ix}{2} \Gamma t) \langle f | \mathcal{H} | \overline{D}{}^0 \rangle \big|^2$$

- Wrong-sign semileptonic decays $(D^0 \rightarrow K^+ \ell^- \nu)$
 - WS only via mixing: $\langle f | \mathcal{H} | D^0 \rangle = 0$
 - measures time integrated mixing rate $R_M = \frac{x^2 + y^2}{2} = \frac{N_{WS}}{N_{PC}}$
- Wrong-sign hadronic decays $(D^0 \rightarrow K^+ \pi^-)$
 - WS via doubly Cabibbo suppressed (DCS) decays or mixing
 - interference between DCS and mixing (strong phase δ)
 - measures $x' = x \cos \delta + y \sin \delta$, $y' = y \cos \delta x \sin \delta$
- Decays to CP eigenstates $(D^0 \rightarrow K^+ K^-, \pi^+ \pi^-)$
 - if no direct CPV: $\langle f | \mathcal{H} | \overline{D}^0 \rangle = \langle f | \mathcal{H} | D^0 \rangle$
 - measures y
- Decays to self-conjugate states $(D^0 \to K_s^0 \pi^+ \pi^-)$
 - time dependent Dalitz plot analysis
 - measures x and y

CP violation

$\frac{dN_{D^0 \to f}}{dt} \propto e^{-\Gamma t} \big| \langle f | \mathcal{H} | D^0 \rangle + \frac{q}{p} (\frac{y + ix}{2} \Gamma t) \langle f | \mathcal{H} | \overline{D}{}^0 \rangle \big|^2$

- $q/p \neq 1 \Rightarrow$ indirect CP violation
- q/p = |q/p| ⋅ e^{iφ}:
 |q/p| ≠ 1 ⇒ CP violation in mixing
 φ ≠ 0(π) ⇒ CP violation in interference of decays w/ and w/o mixing

•
$$|\mathcal{A}(D^0 \to f)|^2 \neq |\mathcal{A}(\bar{D}^0 \to \bar{f})|^2 \Rightarrow \text{direct CP violation}$$

Experimental techniques

- Time-dependent analysis:
 - difference in proper decay time distributions of $D^0 o f$ and $ar D^0 o ar f$
 - measure indirect CPV
- Time-integrated analysis:
 - difference in time-integrated decay rates of $D^0 o f$ and $ar{D}^0 o ar{f}$
 - measure direct+indirect CPV

M. Starič (IJS)

Experimental method at B-factories

•
$$D^{*+} \rightarrow D^0 \pi^+_{\rm slow}$$

- flavor tagging by $\pi_{\rm slow}$ charge
- background suppression
- D⁰ proper decay time measurement:

$$t = rac{I_{dec}}{ceta\gamma} \;, \qquad eta\gamma = rac{p_{D^0}}{M_{D^0}}$$

- Measurements performed mainly at $\Upsilon(4S)$
 - D^{*+} from *B* decays can be completely rejected with

$$p_{D^{*+}}^{CMS} > 2.5 ~GeV/c$$

t-integrated measurements (A_{CP})

• Asymmetry in time-integrated decay rates of $D^0 o f$ and $\overline{D}^0 o \overline{f}$

$$A_{CP}^{f} = \frac{\Gamma(D^{0} \to f) - \Gamma(\overline{D}^{0} \to \overline{f})}{\Gamma(D^{0} \to f) + \Gamma(\overline{D}^{0} \to \overline{f})}$$

Raw asymmetry

$$A_{\rm raw} = \frac{N-\overline{N}}{N+\overline{N}} = A_D + A_{\epsilon}^f + A_{CP}^f$$

- A_D production asymmetry
- A_{ϵ}^{f} asymmetry in efficiencies
- Production at B-factory is symmetric
 - huge benefit vs. LHC
 - however: odd function of CMS polar angle $A_D \equiv A_{FB}(\cos\theta^*)$
 - can easily be disentangled

$$A_{CP} = \frac{A_{raw}^{cor}(\cos\theta^*) + A_{raw}^{cor}(-\cos\theta^*)}{2}$$
$$A_{FB} = \frac{A_{raw}^{cor}(\cos\theta^*) - A_{raw}^{cor}(-\cos\theta^*)}{2}$$

M. Starič (IJS)

14 Feb. 2014 KEK Tsukuba

- Asymmetries in detection efficiencies can be measured with sufficient precision using CF decays (CPV is very unlikely)
 - must be performed in bins of relevant phase-spaces
 - requires production asymmetries to be known \rightarrow at B-factory: $A_D \equiv A_{FB}(\cos\theta^*)$
- Slow pions: from tagged and untagged $D^0 o K^- \pi^+$ decays
- Kaons: from decays $D^0 \to K^- \pi^+$ and $D^+_s \to \phi \pi^+$
- Pions: from decays $D^+ o K^- \pi^+ \pi^+$ and $D^0 o K^- \pi^+ \pi^0$

Recent LHCb results

• A _Γ (1 fb ⁻¹ @ 7	TeV)	PRL 112, 041801 (2014)
 no evidence 	for CPV	
• $4 \times$ better set	ensitivity compared to Bell	e result at 1 ab $^{-1}$
• $D^0 \rightarrow K^+ \pi^-$ (3)	$ m 8~fb^{-1}$ @ 7-8 TeV)	PRL 111, 251801 (2013)
 observation 	of mixing	
 no evidence 	for CPV	
• $\Delta A_{CP} = A_{CP}^{KK}$ -	$-A_{CP}^{\pi\pi}$ (1 fb ⁻¹ @ 7 TeV)	
 update of pr 	rompt D^* sample	LHCb-CONF-2013-003
• $B ightarrow D^0 \mu X$	sample ($2 \times$ less sensitive)	PLB 723 (2013) 33
 no evidence 	for CPV	
• A_{CP} for $D^+ \rightarrow$	$\phi\pi^+$ (1 fb $^{-1}$ @ 7 TeV)	JHEP 06 (2013) 112
 equal system 	natic and statistic uncertai	nties
 no evidence 	for CPV	
• y _{CP} (0.03 fb ⁻¹)		JHEP 04 (2012) 129
on very sma	II (low luminosity) sample	- no update available yet
		(ロ) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日
M. Starič (IJS)	Belle II perspectives on cha	rm 14 Feb. 2014 KEK Tsukuba 9 / 2

Recent LHCb results compared to Belle

M. Starič (IJS)

- Uncertainty is statistics and systematics added in quadrature
- Naive average of the two LHCb results in case of A_{Γ} and ΔA_{CP}

	LHCb	lumin.	Belle	lumin.	
		fb^{-1}		ab^{-1}	
AΓ	$(-0.017 \pm 0.054)\%$	1	$(-0.03 \pm 0.22)\%$	1	naive av.
ΔA_{CP}	$(-0.15\pm0.16)\%$	1	$(-0.87 \pm 0.41)\%$	1	naive av.
x' ²	$(5.5 \pm 4.9) imes 10^{-5}$	3	$(18 \pm 22) \times 10^{-5}$	0.4	no CPV
y'	$(4.8 \pm 1.0) imes 10^{-3}$	3	$(0.6 \pm 4.0) imes 10^{-3}$	0.4	no CPV
УСР	$(0.55\pm 0.75)\%$	0.03	$(1.11 \pm 0.25)\%$	1	
$A_{CP}^{\phi\pi^+}$	$(-0.04\pm 0.20)\%$	1	$(0.51 \pm 0.28)\%$	1	

• Equivalent Belle II luminosity to obtain the sensitivity of LHCb measurements at 1 fb⁻¹ can be roughly estimated with

$$\mathcal{L}_{\text{BelleII}}^{\text{equiv}} = \left(\frac{\sigma_{\text{Belle}}}{\sigma_{\text{LHCb}}}\right)^2 \frac{\mathcal{L}_{\text{Belle}}}{\mathcal{L}_{\text{LHCb}}}$$
Belle II perspectives on charm
14 Feb. 2014 KEK Tsukuba 10 / 23

LHCb/Belle II schedules

- LHCb (A. Contu, Charm 2013)
 - expect $\sim 8~{\rm fb^{-1}}$ by 2018
 - 2018 mid 2019 upgrade (3 4×increase in D meson yields)
 - then additional 15 fb⁻¹ by 2022
- Belle II
 - 2017: start to increase luminosity
 - collect $\sim 10 \text{ ab}^{-1}$ by mid 2019
 - collect 50 ab⁻¹ by 2023

Equivalent Belle II integrated luminosity

AΓ	$1 \text{ fb}^{-1} \text{ (LHCb)}$	\sim	16 ab $^{-1}$ (Belle II)
ΔA_{CP}	$1 \text{ fb}^{-1} \text{ (LHCb)}$	\sim	7 ab^{-1} (Belle II)
x'^2, y'	$1 \text{ fb}^{-1} \text{ (LHCb)}$	\sim	2.5 ab^{-1} (Belle II)
УСР	$1 \text{ fb}^{-1} \text{ (LHCb)}$	\sim	4 ab^{-1} (Belle II)
$A_{CP}^{\phi\pi^+}$	$1~{ m fb}^{-1}~({ m LHCb})$	\sim	2 ab $^{-1}$ (Belle II)

- Will not be competitive in A_{Γ} and ΔA_{CP}
 - but Belle II can measure A_{CP}^{KK} and $A_{CP}^{\pi\pi}$ separately
- Maybe still competitive in x'^2 , y' and y_{CP}
 - y_{CP} comparison based on initial low luminosity LHCb data (0.03 fb⁻¹) \rightarrow extrapolation to 1 fb⁻¹ might be too optimistic
- t-dependent Dalitz ?
- A_{CP} measurements: Belle II in favor because of symmetric production

通 ト イヨ ト イヨト

Prospects at Belle II for mixing and CPV

- $\bullet\,$ Belle measurements extrapolated to 50 ab^{-1}
- Systematics primarily scales with integrated luminosity, with two exceptions:
 - t-dependent Dalitz: model related systematics (resonance parameters masses, widths, form factors, angular dependence etc.)
 - A_{CP} of modes with K_s^0 : asymmetry of K^0/\overline{K}^0 interactions in material (PRD 84, 111501 (2011)), $\sigma_{\rm ired} \approx 0.02\%$
- Extrapolation:

$$\sigma_{BelleII} = \sqrt{(\sigma_{stat}^2 + \sigma_{sys}^2) \frac{\mathcal{L}_{Belle}}{50 \text{ ab}^{-1}} + \sigma_{ired}^2}$$

Mixing and indirect CPV

$D^0 o K^{(*)-} \ell^+ u$	492 fb ⁻¹	50 ab^{-1}
R _M	$(1.3\pm2.2\pm2.0) imes10^{-4}$	$\pm 0.3 imes 10^{-4}$
$D^0 ightarrow K^+ K^-, \pi^+ \pi^-$	976 fb ⁻¹	50 ab^{-1}
Уср	$(1.11\pm 0.22\pm 0.11)\%$	$\pm 0.04\%$
AΓ	$(-0.03\pm0.20\pm0.08)\%$	$\pm 0.03\%$
$D^0 o K^+ \pi^-$	400 fb ⁻¹	50 ab^{-1}
x' ²	$(1.8\pm2.2\pm1.1) imes10^{-4}$	$\pm 0.22 imes 10^{-4}$
<i>y</i> ′	$(0.06\pm0.40\pm0.20)\%$	$\pm 0.04\%$
A_M	0.67 ± 1.20	± 0.11
$ \phi $	0.16 ± 0.44	±0.04
$D^0 ightarrow K^0_s \pi^+ \pi^-$	921 fb ⁻¹	50 ab^{-1}
X	$(0.56 \pm 0.19 \pm 0.06 \pm 0.08)\%$	$\pm 0.08\%$
У	$(0.30 \pm 0.15 \pm 0.06 \pm 0.04)\%$	$\pm 0.05\%$
q/p	$0.90 \pm 0.16 \pm 0.04 \pm 0.06$	± 0.06
ϕ	$-0.10\pm0.19\pm0.04\pm0.07$	± 0.07

$$|q/p| = 1 + \frac{1}{2}A_{\mathcal{M}} \Rightarrow \delta|q/p| = \frac{1}{2}\delta A_{\mathcal{M}}$$

M. Starič (IJS)

Belle II perspectives on charm

14 Feb. 2014 KEK Tsukuba

Direct CPV

mode	\mathcal{L} (fb $^{-1}$)	A _{CP} (%)	Belle II at 50 ab^{-1}
$D^0 ightarrow K^+ K^-$	976	$-0.32 \pm 0.21 \pm 0.09$	±0.03
$D^0 o \pi^+\pi^-$	976	$+0.55 \pm 0.36 \pm 0.09$	± 0.05
$D^0 o \pi^0 \pi^0$	976	$\sim\pm0.60$	± 0.08
$D^0 o K^0_s \pi^0$	791	$-0.28 \pm 0.19 \pm 0.10$	± 0.03
$D^0 o K^0_s \eta$	791	$+0.54 \pm 0.51 \pm 0.16$	± 0.07
$D^0 o K^0_s \eta'$	791	$+0.98 \pm 0.67 \pm 0.14$	± 0.09
$D^0 ightarrow \pi^+\pi^-\pi^0$	532	$+0.43\pm1.30$	± 0.13
$D^0 ightarrow K^+ \pi^- \pi^0$	281	-0.60 ± 5.30	± 0.40
$D^0 ightarrow K^+ \pi^- \pi^+ \pi^-$	281	-1.80 ± 4.40	± 0.33
$D^+ o \phi \pi^+$	955	$+0.51 \pm 0.28 \pm 0.05$	±0.04
$D^+ o \eta \pi^+$	791	$+1.74 \pm 1.13 \pm 0.19$	± 0.14
$D^+ o \eta' \pi^+$	791	$-0.12 \pm 1.12 \pm 0.17$	± 0.14
$D^+ o K^0_s \pi^+$	977	$-0.36 \pm 0.09 \pm 0.07$	± 0.03
$D^+ o K^0_s K^+$	977	$-0.25 \pm 0.28 \pm 0.14$	± 0.05
$D_s^+ o K_s^0 \pi^+$	673	$+5.45 \pm 2.50 \pm 0.33$	±0.29
$D^+_s o K^0_s K^+$	673	$+0.12 \pm 0.36 \pm 0.22$	± 0.05

M. Starič (IJS)

14 Feb. 2014 KEK Tsukuba

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Direct CPV in $D^0 \rightarrow \phi \gamma, \rho^0 \gamma$

 Direct CPV in radiative decays can be enhanced to exceed 1% (G. Isidori and J. F. Kamenik, PRL 109, 171801 (2012))

•
$$D^0
ightarrow \phi \gamma$$
: A_{CP} up to 2%

•
$$D^0
ightarrow
ho^0 \gamma$$
: A_{CP} up to 10%

• $D^0 \rightarrow \phi \gamma$: first observation by Belle with 78 fb⁻¹ (PRL 92, 101803 (2004))

- measured yield: 27.6^{+7.4+0.5}_{-6.5-1.0}
 - \Rightarrow relative error on yield 25% (as would be the error on A_{CP})
- A_{CP} sensitivity at 50 ab⁻¹: $\approx 1\%$

Rare and forbidden decays

M. Starič (IJS)

Belle II perspectives on charm

14 Feb. 2014 KEK Tsukuba

 $D^0 \to \gamma \gamma$

• SM predictions: long distance effects dominate $Br \sim {\rm few} \times 10^{-8}$

• BaBar, 470 fb⁻¹ $Br < 2.2 \times 10^{-6}$ @ 90% CL

PRD 85 (2012) 091107

• Belle II at 50 fb⁻¹:

- \rightarrow depends how background behaves
 - if UL would scale with ${\cal L}:$ UL $\sim 2\times 10^{-8}$
 - if UL would scale with $\sqrt{\mathcal{L}}$: UL $\sim 2 \times 10^{-7}$

Conclusions

- Perspectives for charm measurements at Belle II have been discussed in the light of recent LHCb results.
- We focused on D-mixing and CPV.
- Using Belle results and a rough extrapolation to 50 ab^{-1} we found:
 - Belle II cannot compete with LHCb in measurements of A_{Γ} and ΔA_{CP} , but might still be competitive in x'^2 , y' and y_{CP} measurements.
 - In t-dependent Dalitz analysis of $D^0 \rightarrow K_s^0 \pi^+ \pi^-$ the model dependent systematics will probably dominate and saturate the sensitivity.
 - Belle II is in favor in A_{CP} measurements because of symmetric D-meson production; the sensitivity would reach in some cases a 0.03% level.
- Belle II can also be competitive in searches of rare and forbidden decays of D-mesons with γ or π^0 in the final state.

t-dependent measurements: $D^0 \rightarrow K^+ \pi^-$

• Wrong sign (WS) final state: via DCS decays or via mixing

$D^0 = K^{\dagger} \pi^{-}$

Proper decay time distribution

$$\frac{dN}{dt} \propto [R_D + y'\sqrt{R_D}(\Gamma t) + \frac{x'^2 + y'^2}{4}(\Gamma t)^2]e^{-t}$$

$$\bigcirc DCS \quad \bigcirc \text{ interference } \quad \text{mixing}$$

$$R_D \text{ ratio of DCS/CF decay rates}$$

$$x' = x\cos\delta + y\sin\delta$$

$$y' = y\cos\delta - x\sin\delta$$

$$\delta \text{ strong phase between DCS and CF}$$

t-dependent measurements: $D^0 \rightarrow K^+ \pi^-$

CP violation

- D^0 and $\overline{D^0}$ samples analyzed separately $\Rightarrow R_D^{\pm}, x'^{2\pm}, y'^{\pm}$
- direct CPV in DCS decays:

$$A_D = rac{R_D^+ - R_D^-}{R_D^+ + R_D^-}$$

CPV in mixing and interference → by solving 4 equations for 4 unknowns:

$$\begin{aligned} x'^{\pm} &= \left(1 \pm \frac{1}{2} A_M\right) \cdot \left(x' \cos \phi \pm y' \sin \phi\right) \\ y'^{\pm} &= \left(1 \pm \frac{1}{2} A_M\right) \cdot \left(y' \cos \phi \mp x' \sin \phi\right) \end{aligned}$$

 $ightarrow x', \ y', \ \phi, \ |q/p| = 1 + \frac{1}{2}A_M$

t-dependent measurements: $D^0 \rightarrow K^+ K^-, \pi^+ \pi^-$

- Measurement of lifetime difference between flavor specific and decays into *CP* final states
 - choice of flavor specific: kinematically similar $D^0 o K^- \pi^+$
- Timing distributions are exponential
 - mixing parameter:

$$y_{CP} = \frac{\tau(K^- \pi^+)}{\tau(K^+ K^-)} - 1$$

- $y_{CP} = y$, if CP conserved
- If CP violated \rightarrow difference in lifetimes of $D^0/\overline{D^0} \rightarrow K^+K^-, \pi^+\pi^-$
 - asymmetry in lifetimes:

$$A_{\Gamma} = \frac{\tau(\overline{D}{}^0 \rightarrow K^- K^+) - \tau(D^0 \rightarrow K^+ K^-)}{\tau(\overline{D}{}^0 \rightarrow K^- K^+) + \tau(D^0 \rightarrow K^+ K^-)}$$

• If direct CPV negligible:

•
$$y_{CP} = y \cos \phi - \frac{1}{2} A_M x \sin \phi$$

• $A_{\Gamma} = \frac{1}{2} A_M y \cos \phi - x \sin \phi$

t-dependent measurements: $D^0 ightarrow K_s^0 \ \pi^+\pi^-$

• This three body decay proceeds via many intermediate states, like CF: $D^0 \rightarrow K^{*-}\pi^+$ DCS: $D^0 \rightarrow K^{*+}\pi^-$ CP: $D^0 \rightarrow \rho^0 K_s^0$

• Matrix element is Dalitz space dependent, so also time distribution is

$$\frac{dN_{D^0 \to f}}{dt} \propto e^{-\Gamma t} \left| \mathcal{A}(m_-^2, m_+^2) + \frac{q}{p} (\frac{y + ix}{2} \Gamma t) \overline{\mathcal{A}}(m_-^2, m_+^2) \right|^2$$

• Total amplitude A parametrized as a sum of quasy-two-body amplitudes of resonances A_r

$$\mathcal{A}(m_{-}^2, m_{+}^2) = \sum_r a_r e^{i\phi_r} \mathcal{A}_r(m_{-}^2, m_{+}^2)$$

- Both mixing parameters, x and y as well as CPV parameters ϕ and |q/p| can be measured
- 3D fit in (m_{-}^2, m_{+}^2, t) ; many free parameters

★ = ► ★ = ► ● 9 < 0</p>