Performance studies of the Belle II TOP counter

Marko Starič

Jožef Stefan Institute, Ljubljana

RICH 2013 - Shonan, Kanagawa, Japan

M. Starič (IJS)

Performance studies of the Belle II TOP coun

Outline

- Introduction
- Belle II TOP counter
- Performance studies
- Physics cases
- Conclusions

∃ →

Image: A math a math

$\label{eq:time-of-propagation} Time-of-propagation \ (TOP) \ counter$

f-TOP and i-TOP

 \bullet focusing TOP \longrightarrow chromatic error correction

 focusing TOP with expansion prism = imaging TOP
 → choice for Belle II

focusing mirror

Belle II TOP detector

- 16 modules at $R=119~{
 m cm}$
- Quartz bars:
 - $2 \times 45 \ {\rm cm}^2$ in cross section 2.6 m long
- Spherical mirrors:
 - radius of curvature: 6.5 m
- Expansion prisms:
 - 100 mm long, 51 mm high
- MCP-PMT:
 - Hamamatsu SL-10 with quartz window and NaKSbCs photo cathode
 - 2 rows of 16 per module

Belle II detector

TOP counter response

Ring image consists of complicated patterns

Perpendicular impact of a narrow 2.1 GeV/c positron beam (data obtained at Spring-8 facility in Japan)

M. Starič (IJS)

5 December 2013 7 / 22

Particle identification: using extended likelihood method

- PDF in a single channel described with a series of Gaussian distributions
 - positions, widths and normalizations determined analytically
 - method presented at RICH2010 (NIM A 639 (2011) 252-255)

Particle identification: using extended likelihood method

- PDF in a single channel described with a series of Gaussian distributions
 - positions, widths and normalizations determined analytically
 - method presented at RICH2010 (NIM A 639 (2011) 252-255)

TOP counter response: analytic PDF

• Ring image consists of complicated patterns

Perpendicular impact of a narrow 2.1 GeV/c positron beam (data obtained at Spring-8 facility in Japan)

M. Starič (IJS)

5 December 2013 10 / 22

Performance studies

- With realistic simulated events, using $B^0 \to K^+\pi^-$ signal MC
 - EvtGen to generate $B^0\overline{B^0}$ events (with generic decay of other B)
 - add beam background
 - Full simulation of detector response (all components included)
 - Event reconstruction including tracking and TOP

M. Starič (IJS)

Performance studies of the Belle II TOP coun

5 December 2013 11 / 22

Efficiency and fake rate

 $B \rightarrow K\pi$ signal MC

• Overall: 92% pion efficiency, 7.4% kaon fake rate

• No significant azimuthal dependence

M. Starič (IJS)

5 December 2013 12 / 22

Impact of multiple tracks

 $B \rightarrow K\pi$ signal MC

• About 15% chance for two or more reconstructed tracks to hit the same bar

	single/bar	two or more/bar
$\epsilon_{\pi}(\%)$	92.3 ± 0.2	90.8 ± 0.4
$\epsilon_{K}(\%)$	6.9 ± 0.1	10.8 ± 0.5

M. Starič (IJS)

Performance studies of the Belle II TOP coun

5 December 2013 13 / 22

Impact of electronics jitter

• Additional Gaussian smearing of photon arrival times (up to 200 ps)

for each data point different MC sample used

- Quadratic dependence
- Negligible up to 50 ps
- Small performance degradation observed for 100 ps (${\sim}1\%$)

M. Starič (IJS)

Performance studies of the Belle II TOP coun

Impact of T0 jitter

• Varied from 25 ps to 100 ps

for each data point different MC sample used

- Quadratic dependence
- Small performance degradation observed for 50 ps (${\sim}1.5\%$)
- N.B.: at Belle T0 jitter was \sim 40 ps

M. Starič (IJS)

Performance studies of the Belle II TOP coun

Impact of smaller QE

Checked from 100% to 50% of nominal value

for each data point different MC sample used

- Linear dependence
- Relative decrease of QE by 10%:
 - ${\sim}1\%$ smaller pion efficiency
 - ${\sim}1\%$ larger kaon fake rate

M. Starič (IJS)

Impact of beam background

- With 8× nominal background (1 MHz/channel)
 - efficiency: 1.4% decrease
 - fake rate: 1.2% increase
- With nominal background:
 - negligible impact to performance

Physics case: $B^0 \rightarrow \pi^+\pi^-$

Challenge:

- to discriminate against $B^0 o K^+\pi^-$ (4-times larger Br)
- Due to large B-meson mass kinematic discrimination barely possible
 - peaks not resolvable in beam constrained mass
 - only small separation possible in ΔE
 - \rightarrow good pion/kaon separation helps a lot
- K/π momentum range 2-3.5 GeV/c challenging for PID

Continuum and other backgrounds not included in this study

Results: $B^0 \rightarrow \pi^+\pi^-$

M. Starič (IJS)

Performance studies of the Belle II TOP coun

5 December 2013 19 / 22

Physics case: $B^0 \rightarrow \rho^0 \gamma$

Challenge:

- to discriminate against $B^0 o K^{*0}\gamma$ (40-times larger Br)
- Due to large B-meson mass, kinematic discrimination not possible
 - almost no separation in ΔE
 - ρ^0 , K^{*0} resonances too wide for efficient separation
 - \rightarrow good pion/kaon separation mandatory
- K/π momenta up to 2 GeV/c
 - $\bullet\,$ TOP combined with dE/dx measurement

Continuum and other backgrounds not included in this study

Results: $B^0 \rightarrow \rho^0 \gamma$

• $B^0 \rightarrow \rho^0 \gamma$ (red), $B^0 \rightarrow K^{*0} \gamma$ (cyan), 3.0 fb⁻¹

M. Starič (IJS)

Performance studies of the Belle II TOP coun

Conclusions

- Performance of the future Belle II barrel PID has been discussed
- PID is based on an extended likelihood method that uses analytically constructed PDF's
- With $B \rightarrow K\pi$ signal MC we studied the impact of the most critical parameters to the performance of the TOP counter:
 - time resolution: acceptable up to 100 ps (rms)
 - T0 jitter: acceptable up to 50 ps (rms)
 - photon yield: $\Delta\epsilon_{\pi/K}=\mp1\%$ for 10% smaller yield
 - \bullet beam background: negligible up to 2 MHz/PMT
- We also demonstrated the capabilities of Belle II PID in reconstruction of two challenging decay modes: $B^0 \to \pi^+\pi^-$, $B^0 \to \rho^0\gamma$

< 回 ト < 三 ト < 三 ト