Dark sector and tau physics at Belle II

Navid K. Rad (DESY) on behalf of the Belle II collaboration

Rencontres de Moriond: Electroweak Interactions & Unified Theories March 12-19, 2022

Dark-sector and tau physics

Light dark matter

- dark (hidden) sector coupled to SM only via light meditator (portal)
- portals can take different forms...
 - Vector portals (dark photon)
 - (pseudo) scalar, heavy-neutral lepton...
- MeV-GeV scenarios can be probed at B-factories

Tau physics:

- new physics may couple to 3rd gen.
- precision measurements of tau properties
 - deviations from SM indirect signs of NP
- searches for forbidden decays
 - observation would be direct and unambiguous signs of NP!

experimental requirements:

- good missing energy reconstruction
 - hermetic detector
 - clean initial state
- excellent vertexing capabilities
- ability to trigger low-multiplicity events

new for Moriond: search for dark Higgsstrahlung

SuperKEKB

• energy-asymmetric e⁺e⁻ collider in Tsukuba, Japan

• collision energy (mostly) at Υ (4S) \sqrt{s} =10.58 GeV

• target:

- instantaneous lumi: 6x10³⁵cm⁻²s⁻¹
 30 larger than KEKB
- integrated lumi: 50 ab⁻¹
 50 times larger than KEKB
- improvement achieved via the nanobeam scheme (20x smaller beam spot) and higher beam current

SuperKEKB

• energy-asymmetric e⁺e⁻ collider in Tsukuba, Japan

• collision energy (mostly) at Υ (4S) \sqrt{s} =10.58 GeV

• target:

KEKB e+/e-

E (GeV): 3.5/8.0

- instantaneous lumi: 6x10³⁵cm⁻²s⁻¹
 30 larger than KEKB
- integrated lumi: 50 ab⁻¹
 50 times larger than KEKB
- improvement achieved via the nanobeam scheme (20x smaller beam spot) and higher beam current

⇒ World record inst. luminosity of 3.8x10³⁴ cm²/s achieved! (even with smaller beam currents compared to KEKB)

Belle II detector

Trigger performance

• essential for dark-sector and tau physics

- typical signatures include low-multiplicity of tracks, and energy deposits in EM calorimeter
- large background from radiative Bhabha and two-photon processes

• some of the dedicated low-multiplicity triggers:

- single muon
 - combine drift chamber and muon detector information
- single track:
 - neural-net based hardware trigger
- single photon:
 - high efficiency for E(γ) > 1 GeV

Tau physics: precision measurements

 Precision measurements of the tau mass and tau lifetime are crucial for lepton flavor universality tests of the SM:

Tau mass

preliminary measurement, already compatible systematics with Belle

Tau lifetime

- use IP-constraint to get production vertex
- 2x better decay-time resolution compared to Belle

⇒ Challenging systematics!

Tau physics: forbidden decays?

- Lepton flavor violation
 - for charged leptons?
 - allowed within SM (via neutrino osc. in loops) but highly suppressed
 - observation would be clear sign of NP
 - $\circ \quad \tau {\rightarrow} \ell \ell \ell, \tau {\rightarrow} \ell \vee_{0'} \tau {\rightarrow} \ell \gamma, \dots$
 - extensively studied at Belle and BaBar
 - but not $\tau \rightarrow \ell \alpha!$

τ→ℓα:

- α: any invisible gauge boson (possible DM candidate)
- best limits are currently by ARGUS
- p_{ℓ} expected to peak in the **tau pseudo-rest frame** (approximated tau rest-frame from 3π system)
- expected limits show we can already improve the sensitivity reach!

Dark sector

Dark Higgsstrahlung

Dark Higgsstrahlung

- U(1)' extension of the SM
 - massive dark photon (A') as the mediator
 - spontaneous symmetry breaking (analogous to SM)
 ⇒ a dark higgs (h')
 - A' couples to SM only via kinetic mixing (ϵ)
 - \circ α_{D} : dark coupling constant
- Mass hierarchy scenarios:
 - $M_{h'} > M_{A'}$:
 - dominant decay: $h' \rightarrow A' A'^{(*)}$
 - signature: 6 charged tracks
 - probed by Belle, BaBar
 - $M_{h'} < M_{A'}$ (considered in this analysis)
 - long-lived (invisible) h'
 - signature: missing energy and
 OS charged tracks (here μ⁺μ⁻)
 - partly probed by KLOE

⇒ Exploring unconstrained territories at BelleII! Navid K. Rad

Dark Higgsstrahlung: signature and strategy

• Signature:

- 2D peak in $M_{\mu\mu}$ vs M_{rec} :
 - dimuon invariant mass (M_{III})
 - invariant mass of the system recoiled against dimuons (M_{rec})

$$M_{rec}^2 = s + M_{\mu\mu}^2 - 2\sqrt{s}E_{\mu\mu}$$

• Search strategy: scan and count

- exploit correlations: $M_{reco} \& M_{\mu\mu} (M_{h}, M_{A'}, dependent)$
- search windows:
 - ~9000 2D elliptical mass windows in $M^2_{reco} \& M^2_{\mu\mu}$ \Rightarrow large look-elsewhere effect
 - overlapping windows to maximize signal efficiency
 - on average, one event in ~3 windows

Dark Higgsstrahlung

- Backgrounds
 - dominant backgrounds:
 - μ⁺μ⁻(γ) (79%)
 - τ τ⁺(γ) (18%)
 - e⁻e⁺μ⁻μ⁺ (3%)
 - different contributions in different regions
- Background suppression:
 - helicity angle $(C_{\eta} = \cos(\theta_{\text{helicity}}))$
 - flat for signal
 - peak at 1 for bkg
 - cut value optimized in each search window (<u>Punzi F.o.M</u>)

Dark Higgsstrahlung: systematics

- Control studies:
 - $\mu^+\mu^-(\gamma)$: require an energetic photon (instead of vetoing γ 's)
 - ep: require an electron instead of muon
 - Split mass-plane in non-overlapping "macro-regions"
 - each mostly dominated by a single source of bkg
 - Check for global agreement, bkg shape modelling, recoil mass resolution
 - discrepancies are assigned as systematics

• Systematics:

- impacting both signal and background: 2.2%-12.7%
- impacting signal only:
 - differences in M resolution in data/MC (1-5%), BR theory uncert. 4%

Moriond 2022

• **Results:** interpreted as $N = \epsilon_{sig} x L x \sigma + B$

⇒ No significant deviation from the SM bkg expectation is observed

Navid K. Rad

Dark Higgsstrahlung: results

- Upper limits are set on σ and $\epsilon^2 \alpha_{\rm p}$:
 - covered region: $1.65 < M_{A'} < 10.51 \text{ GeV}$ and $M_{h'} < M_{A'}$
 - \circ 90% CL UL on σ ranges from 1.7 to 5 fb
 - in the most sensitive regions ($4 < M_{A'} < 9.7 \text{ GeV}$)
 - for $M_{A'}$ < 4 GeV: low sensitivity due to trigger efficiency
 - for $M_{A'}$ > 9 GeV: large dimuon background

Moriond 2022

Dark Higgsstrahlung: results

Summary

• Tau physics at Belle II:

- may provide direct and indirect insights into new physics
- Belle II will be the leading tau factory in the coming years

• Dark-sector at Belle II:

- dark-sector mediators in the MeV-GeV range are being explored at Belle II
- brand-new results: search for dark Higgsstrahlung
 - large previously-unexplored regions of parameter space are probed
 - world's most stringent limits on ϵ^2 for a wide range of α_{D} values!
- More results in the pipelines:
 - Invisible Z' search, $\tau \rightarrow \ell \alpha$, tau mass measurement ...

Thank you!

See more from Belle II:

- **Time-dependent CP violation and charmless decays** (Thibaud Humair)
- Charm and B to charm decays at Belle II (Riccardo Manfredi)
- **EW penguins and radiative B decays at Belle II** (Elisa Manoni)
- Semileptonic B decays at Belle II (William Sutcliffe)

Projection of integrated luminosity delivered by SuperKEKB to Belle II

Target scenario: extrapolation from 2021 run including expected improvements.

Base scenario: conservative extrapolation of SuperKEKB parameters from 2021 run

- We start long shutdown I (LSI) from summer 2022 for 15 months to replace VXD. There will be other maintenance/improvement works of machine and detector.
- We resume physics running from Fall 2023.
- A SuperKEKB International Taskforce (aiming to conclude in summer 2022) is discussing additional improvements.
- An LS2 for machine improvements could happen on the time frame of 2026-2027

Dark Higgsstrahlung

Dark Higgsstrahlung: signal efficiency

Limits on effective coupling $\epsilon^2 \times \sigma$

 α_D

×

Dark Higgsstrahlung

The invisible Z' and dark Higgsstrahlung searches

- (next-to) minimal U(1) extensions of SM
- Signature:
 - pair of OS leptons and missing energy
- Strategy: bump search $M_{rec}^2 = s + M_{\mu\mu}^2 2\sqrt{s}E_{\mu\mu}$
 - invisible Z': peak in **M**_{recoil}
 - dark Higgsstrahlung: 2D peak in M_{recoil} vs. M_{μμ}

- Backgrounds:
 - $\circ \quad \mu^{+}\mu^{-}(\gamma) \ , \ \tau^{-}\tau^{+}(\gamma) \ , \ e^{-}e^{+}\mu^{-}\mu^{+}$
 - Common challenge.... Trigger!
 - trigger on events w/ two CDC tracks
 - opening angle in transverse plane larger than 90°

Invisible Z' (L_{μ} - L_{τ} and LFV)

- New light gauge boson Z'
 - $L_{\mu}-L_{\tau} Z'$ (standard Z'):
 - only interacts with 2nd and 3rd gen. leptons
 - may explain: DM, (g-2) anomaly, b->sll anomalies
 - LFV Z': $e-\mu$ coupling
- Signature:
 - **standard Z':** $\mu^+\mu^-$ + missing energy
 - **LFV Z':** μ^+e^- + missing energy
 - bump search in M_{recoil}
- First physics publication by Bellell
 - 2018 pilot-data taking run (276pb⁻¹)
 - sensitivity M_z < 5-6 GeV/c2

PhysRevLett.124.141801

29

Invisible Z': strategy

- Mass windows in M_{reco}
 - selected as $\pm 2\sigma$ of M_{recoil} resolution of Z' signal
 - data/MC resolutions validated in $\mu\mu\gamma$, $e\mu\gamma$ and ee
- Background suppression
 - optimized using a Punzi F.o.M in each mass window
 - exploit differences in recoil kinematics
 - transverse components of P_{recoil} w.r.t to the leptons

Moriond 2022

- Systematics:
 - tracking/trigger efficiency, PID (1-6%)
 - data/MC agreements in control samples (12.5-22%)

Navid K. Rad

Invisible Z': results

No significant deviations are observed

 \Rightarrow Limits are set for the g' for the standard Z' and the $\epsilon\sigma$ for LFV Z'

Z': future

• Invisible Z':

- New optimized analysis in the pipelines
 - using a novel "Punzi-net" approach (Eur. Phys. J. C (2022) 82: 121)
 - more inclusive trigger
 - much larger data set
 (almost 300 times larger)

⇒ Updated Z' results expected very soon!!

Probing the dark-sector at Belle II

• Why at Belle II?

- relatively "clean" initial e⁺e⁻ state
- Hermetic detector
- vertex identification capabilities
- dedicated low multiplicity triggers (single γ, single track, ECL trigger...)
- portals to the dark-sector can take different forms...
 - Vector portals (dark photons, Z')
 - Scalar portals
 - pseudo-scalar portal (ALPs)
 - heavy-neutral-lepton portals
 - and many more!

⇒ BelleII can probe scenarios in MeV-GeV with wide range of signatures!

Tau lifetime, teaser

• at Belle:

- the 3x3 tau decays
- o 700/fb

• at Bellell:

- Factor 5 gain in stat. by using 3x1 instead of 3x3
- With 200/fb already statistically compatible with Belle results
- Systematics still to be studied... but, proper time resolution already 2x better than Belle!

33

Tau Mass: Systematics

- Important systematics include:
 - Dominant systematic is the momentum SF
 - expected to improve with updated b-field map and momentum corrections
 - Beam energy systematics reduced significantly (w.r.t to Belle)
 - Belle: BE correction of 1 MeV
 - Bellell: BE uncertainty of 0.2 MeV (stat only)
 - Remaining systematics come from estimator bias mostly due to limited MC samples which also affects fit function and fit window

Systematic uncertainty	MeV/c^2
Momentum shift due to the B-field map	0.29
Estimator bias	0.12
Choice of p.d.f.	0.08
Fit window	0.04
Beam energy shifts	0.03
Mass dependence of bias	0.02
Trigger efficiency	≤ 0.01
Initial parameters	≤ 0.01
Background processes	≤ 0.01
Tracking efficiency	≤ 0.01

⇒ Total systematic uncertainty = 0.33 MeV

Belle Systematics: hep-ex/0608046v2

Source of systematics	σ , MeV/ c^2
Beam energy and tracking system	0.26
Edge parameterization	0.18
Limited MC statistics	0.14
Fit range	0.04
Momentum resolution	0.02
Model of $\tau \to 3\pi\nu_{\tau}$	0.02
Background	0.01
Total	0.35

Tau Mass: Systematics

Lepton ID

• electron and muon identification efficiencies measured in data

Navid K. Rad

Trigger Efficiency

- Measured in 3x1 tau decays:
 - CDC track trigger efficiencies measured w.r.t to ECL trigger

BELLE2-NOTE-PL-2020-015

Moriond 2022

SuperKEKB designed machine parameters

2017/September/1	LER	HER	unit	
E	4.000	7.007	GeV	
1	3.6	2.6	А	
Number of bunches	2,500			
Bunch Current	1.44	1.04	mA	
Circumference	3,016.315		m	
ε _x /ε _y	3.2(1.9)/8.64(2.8)	4.6(4.4)/12.9(1.5)	nm/pm	():zero current
Coupling	0.27	0.28		includes beam-beam
βx*/βy*	32/0.27	25/0.30	mm	
Crossing angle	83		mrad	
α _p	3.20x10 ⁻⁴	4.55x10 ⁻⁴		
σδ	7.92(7.53)x10 ⁻⁴	6.37(6.30)x10 ⁻⁴		():zero current
Vc	9.4	15.0	MV	
σz	6(4.7)	5(4.9)	mm	():zero current
Vs	-0.0245	-0.0280		
v_x/v_y	44.53/46.57	45.53/43.57		
Uo	1.76	2.43	MeV	
τ _{x,y} /τ _s	45.7/22.8	58.0/29.0	msec	
ξ _× /ξ _y	0.0028/0.0881	0.0012/0.0807		
Luminosity	8×10 ³⁵		cm ⁻² s ⁻¹	

Machine Parameters