Future prospects for charm physics at Belle II

Marko Starič

CHARM 2015

- $D^0 \overline{D}^0$ mixing and t-dependent CPV
- t-integrated CPV (A_{CP})
- Rare decays (FCNC, LFV, LV)

Mass eigenstates differ from flavor eigenstates

$$|D_{1,2}^0
angle=p|D^0
angle\pm q|\overline{D}^0
angle$$

- $D_{1,2}^0$ with masses m_1, m_2 and partial widths Γ_1, Γ_2
- CP violation if $q \neq p$
- Mixing parameters:

$$x = \frac{\Delta m}{\Gamma} \qquad \qquad y = \frac{\Delta \Gamma}{2\Gamma}$$

• Time dependent decay rates of $D^0 \rightarrow f$ (since mixing is small):

$$\frac{dN_{D^0\to f}}{dt}\propto e^{-\Gamma t}\big|\langle f|\mathcal{H}|D^0\rangle + \frac{q}{\rho}(\frac{y+ix}{2}\Gamma t)\langle f|\mathcal{H}|\overline{D}^0\rangle\big|^2$$

Measurement strategies

$$rac{dN_{D^0
ightarrow f}}{dt} \propto e^{-\Gamma t} \left| \langle f | \mathcal{H} | D^0
angle + rac{q}{p} (rac{y + ix}{2} \Gamma t) \langle f | \mathcal{H} | \overline{D}{}^0
angle
ight|^2$$

- Wrong-sign semileptonic decays $(D^0 o K^+ \ell^-
 u)$
 - WS only via mixing: $\langle f|\mathcal{H}|D^0\rangle=0$
 - measures time integrated mixing rate $R_M = \frac{x^2 + y^2}{2} = \frac{N_{WS}}{N_{RS}}$
- Wrong-sign hadronic decays $(D^0 o K^+\pi^-)$
 - WS via doubly Cabibbo suppressed (DCS) decays or mixing
 - interference between DCS and mixing (strong phase δ)
 - measures $x' = x \cos \delta + y \sin \delta$, $y' = y \cos \delta x \sin \delta$
- Decays to CP eigenstates $(D^0 \to K^+K^-, \pi^+\pi^-)$
 - if no direct CPV: $\langle f|\mathcal{H}|\overline{D}^0\rangle = -\langle f|\mathcal{H}|D^0\rangle$
 - measures y
- ullet Decays to self-conjugate states $(D^0 o K_s^0\pi^+\pi^-)$
 - time dependent Dalitz plot analysis
 - measures x and y

CP violation

$$\frac{dN_{D^0\to f}}{dt}\propto e^{-\Gamma t} \left| \langle f|\mathcal{H}|D^0\rangle + \frac{q}{\rho} (\frac{y+ix}{2}\Gamma t) \langle f|\mathcal{H}|\overline{D}{}^0\rangle \right|^2$$

Two kinds:

- $q/p \neq 1 \Rightarrow \text{indirect CP violation}$
- $\bullet q/p = |q/p| \cdot e^{i\phi}$:
 - $|q/p| \neq 1 \Rightarrow CP$ violation in mixing
 - $\phi \neq 0(\pi) \Rightarrow CP$ violation in interference of decays w/ and w/o mixing
- $|\mathcal{A}(D^0 \to f)|^2 \neq |\mathcal{A}(\bar{D}^0 \to \bar{f})|^2 \Rightarrow \text{direct CP violation}$

Indirect CPV

D⁰ only, common to all decay modes

Direct CPV

• All three species (D^0, D^+, D_s^+) , decay mode dependent

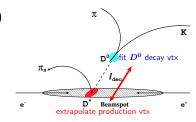
CP violation

Experimental techniques

- Time-dependent analysis:
 - ullet difference in proper decay time distributions of $D^0 o f$ and $ar D^0 o ar f$
 - we measure indirect CPV
- Time-integrated analysis:
 - ullet difference in time-integrated decay rates of $D^0 o f$ and $ar{D}^0 o ar{f}$
 - we measure direct+indirect CPV

Time-integrated analysis

- Asymmetry in time-integrated decay rates: $A_{CP}^f = \frac{\Gamma(D \to f) \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})}$
- Charged D mesons: $A_{CP}^f = a_{\mathrm{dir}}^f$
- ullet Neutral D mesons: $A_{CP}^f = a_{
 m dir}^f + a_{
 m ind}$
 - indirect CPV is universal: $a_{\mathrm{ind}} \equiv -A_{\Gamma}$ (neglecting terms with y_{CP})
 - world average: $A_{\Gamma} = (-0.014 \pm 0.052)\%$ (HFAG, June-2014)



\mathcal{G} D^0 flavor tag

- Usually using $D^{*+} \rightarrow D^0 \pi_{\rm close}^+$
 - ullet flavor tagging by π_{slow} charge
 - provides also considerable background suppression
- Observables:
 - D^0 invariant mass: $M \equiv m(K\pi)$
 - D^{*+} mass difference: $\Delta M \equiv m(K\pi\pi_{\rm slow}) m(K\pi)$ or $Q \equiv \Delta M m_{\pi}$
- Measurements performed mainly at $\Upsilon(4S)$
 - D*+ from B decays can be completely rejected with

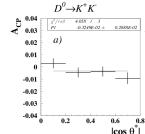
$$p_{D^{*+}}^{CMS} > 2.5 \text{ GeV/c}$$

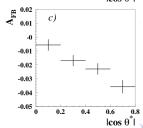
- similar requirement used also when reconstructing charged D mesons
- IP constrained refit of $\pi_{\rm slow}$ to improve ΔM resolution

$$t = \frac{I_{dec}}{c\beta\gamma} \; , \quad \beta\gamma = \frac{p_{D^0}}{M_{D^0}}$$

Time-integrated measurements (A_{CP})

ullet Asymmetry in time-integrated decay rates of $D^0 o f$ and $\overline{D}^0 o \overline{f}$

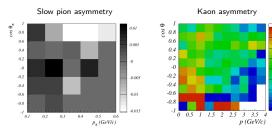

$$A_{CP}^{f} = \frac{\Gamma(D^{0} \to f) - \Gamma(\overline{D}^{0} \to \overline{f})}{\Gamma(D^{0} \to f) + \Gamma(\overline{D}^{0} \to \overline{f})}$$


Raw asymmetry

$$A_{\mathrm{raw}} = \frac{N - \overline{N}}{N + \overline{N}} = A_{\mathrm{prod}} + A_{\epsilon}^f + A_{CP}^f$$

- $A_{\rm prod}$ production asymmetry
- A_{ϵ}^f asymmetry in efficiency
- Production asymmetry at B-factory
 - odd function of CMS polar angle $A_{\text{prod}} \equiv A_{FB}(\cos\theta^*)$
 - can easily be disentangled

$$\begin{array}{l} A_{CP} = \frac{A_{\rm raw}^{\rm cor}(\cos\theta^*) + A_{\rm raw}^{\rm cor}(-\cos\theta^*)}{2} \\ A_{FB} = \frac{A_{\rm raw}^{\rm cor}(\cos\theta^*) - A_{\rm raw}^{\rm cor}(-\cos\theta^*)}{2} \end{array}$$

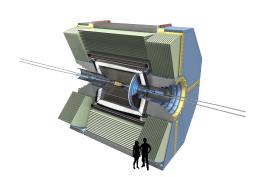


Detection asymmetries A_{ϵ}^f

- Asymmetries in detection efficiency can be measured with sufficient precision using CF decays (direct CPV is very unlikely)
 - must be performed in bins of relevant phase-spaces
 - requires production asymmetries to be known
 - ightarrow at B-factory: $A_{
 m prod} \equiv A_{FB}(cos heta^*)$
- ullet Slow pions: from tagged and untagged $D^0 o K^-\pi^+$ decays
- ullet Kaons: from decays $D^0 o K^-\pi^+$ and $D_s^+ o \phi\pi^+$
- ullet Pions: from decays $D^+ o K^- \pi^+ \pi^+$ and $D^0 o K^- \pi^+ \pi^0$

0.015

-0.01


Belle II experiment

• Successor of Belle experiment (KEK, Tsukuba, Japan)

SuperKEKB accelerator

- upgraded KEKB
- luminosity $40 \times KEKB$ $(8 \times 10^{35} cm^{-2} s^{-1})$
- nano-beam optics

Belle II detector

- upgraded Belle detector
- majority of components replaced

Belle II environment

Critical issues at $\mathcal{L}=8\times10^{35}\mathrm{cm}^{-2}\mathrm{s}^{-1}$

- Higher background ($\times 10$ 20)
 - radiation damage and occupancy
 - fake hits and pile-up noise in EM calorimeter
- Higher event rate $(\times 40)$
 - affects trigger, DAQ and computing

Have to employ and develop new technologies to make such an apparatus work efficiently.


Belle II detector upgrade

- Vertex detector
 - 4-layer DSSD replaced with 2 DEPFET layers + 4 DSSD layers
 - smaller inner radius, larger outer radius
 - → better vertex resolution
 - \rightarrow improved efficiency for slow pions and K_S
- Central drift chamber
 - smaller cells, larger outer radius
 - \rightarrow improved momentum resolution and dEdx
- Hadron ID
 - ACC + TOF replaced with TOP (barrel) and aerogel RICH (forward)
 - ightarrow less material in front of calorimeter
 - \rightarrow improved hadron ID
- Electromagnetic calorimeter
 - · waveform sampling technique to cope with increased background
- K-long and muon detector
 - RPC's in endcaps and first two layers of barrel replaced with scintillator counters to cope with increased neutron background

Belle II schedule

- 2018: start to increase luminosity
- ullet collect $\sim 10~{
 m ab^{-1}}$ by mid 2020
- collect 50 ab^{-1} by 2024

Prospects for charm at Belle II

- ullet Belle measurements extrapolated to 50 ab $^{-1}$
- Systematic uncertainties primarily scale with integrated luminosity, with two exceptions:
 - t-dependent Dalitz: model related systematics (resonance parameters masses, widths, form factors, angular dependence etc.)
 - A_{CP} of modes with K_s^0 : asymmetry of K^0/\overline{K}^0 interactions in material (PRD 84, 111501 (2011)), $\sigma_{\rm ired} \approx 0.02\%$
- Extrapolation:

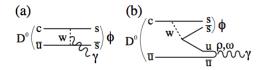
$$\sigma_{\textit{BelleII}} = \sqrt{(\sigma_{\textit{stat}}^2 + \sigma_{\textit{sys}}^2) \frac{\mathcal{L}_{\textit{Belle}}}{50 \text{ ab}^{-1}} + \sigma_{ired}^2}$$

Detector performance improvements are not included in the extrapolation (detailed MC studies are on the way)

Mixing and indirect CPV

$D^0 o K^{(*)-} \ell^+ u$	492 fb $^{-1}$	$50~{ m ab}^{-1}$
R_{M}	$(1.3\pm2.2\pm2.0) imes10^{-4}$	$\pm 0.3 \times 10^{-4}$
$D^0 o K^+K^-, \pi^+\pi^-$	976 fb $^{-1}$	$50~{ m ab}^{-1}$
УСР	$(1.11 \pm 0.22 \pm 0.11)\%$	±0.04%
A_{Γ}	$(-0.03 \pm 0.20 \pm 0.08)\%$	±0.03%
$D^0 o K^+\pi^-$	400 fb $^{-1}$	$50~{ m ab}^{-1}$
x' ²	$(1.8 \pm 2.2 \pm 1.1) imes 10^{-4}$	$\pm 0.22 \times 10^{-4}$
y'	$(0.06 \pm 0.40 \pm 0.20)\%$	$\pm 0.04\%$
A_{M}	0.67 ± 1.20	± 0.11
$ \phi $	0.16 ± 0.44	± 0.04
$D^0 o K_s^0 \pi^+ \pi^-$	921 fb $^{-1}$	$50~{ m ab}^{-1}$
X	$(0.56 \pm 0.19 \pm 0.06 \pm 0.08)\%$	$\pm 0.08\%$
y	$(0.30 \pm 0.15 \pm 0.06 \pm 0.04)\%$	$\pm 0.05\%$
q/p	$0.90 \pm 0.16 \pm 0.04 \pm 0.06$	± 0.06
ϕ	$-0.10 \pm 0.19 \pm 0.04 \pm \textcolor{red}{0.07}$	± 0.07

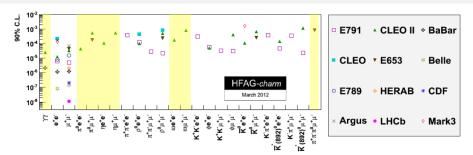
$$|q/p| = 1 + \frac{1}{2}A_{M} \Rightarrow \delta |q/p| = \frac{1}{2}\delta A_{M}$$



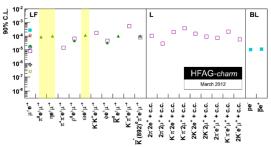
\checkmark Time-integrated measurements (A_{CP})

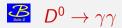
mode	\mathcal{L} (fb $^{-1}$)	A _{CP} (%)	Belle II at 50 ab ⁻¹
$D^0 o K^+K^-$	976	$-0.32 \pm 0.21 \pm 0.09$	± 0.03
$D^0 o\pi^+\pi^-$	976	$+0.55\pm0.36\pm0.09$	± 0.05
$D^0 o\pi^0\pi^0$	966	$-0.03 \pm 0.64 \pm 0.10$	± 0.09
$D^0 o K_s^0\pi^0$	966	$-0.21 \pm 0.16 \pm 0.07$	± 0.03
$D^0 o K_s^0\eta$	791	$+0.54 \pm 0.51 \pm 0.16$	± 0.07
$D^0 o K_s^0\eta'$	791	$+0.98 \pm 0.67 \pm 0.14$	± 0.09
$D^0 o \pi^+\pi^-\pi^0$	532	$+0.43 \pm 1.30$	± 0.13
$D^0 o K^+\pi^-\pi^0$	281	-0.60 ± 5.30	± 0.40
$D^0 ightarrow K^+\pi^-\pi^+\pi^-$	281	-1.80 ± 4.40	± 0.33
$D^+ o \phi \pi^+$	955	$+0.51\pm0.28\pm0.05$	±0.04
$D^+ o \eta \pi^+$	791	$+1.74 \pm 1.13 \pm 0.19$	± 0.14
$D^+ o \eta' \pi^+$	791	$-0.12 \pm 1.12 \pm 0.17$	± 0.14
$D^+ o K_s^0\pi^+$	977	$-0.36 \pm 0.09 \pm 0.07$	± 0.03
$D^+ ightarrow K_s^0 K^+$	977	$-0.25 \pm 0.28 \pm 0.14$	± 0.05
$D_s^+ o K_s^0 \pi^+$	673	$+5.45 \pm 2.50 \pm 0.33$	±0.29
$D_s^+ o K_s^0 K^+$	673	$+0.12 \pm 0.36 \pm 0.22$	±0.05

Direct CPV in $D^0 \rightarrow \phi \gamma, \rho^0 \gamma$

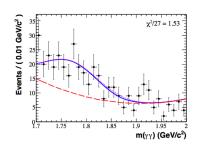


- Direct CPV in radiative decays can be enhanced to exceed 1% (G. Isidori and J. F. Kamenik, PRL 109, 171801 (2012))
 - $D^0 o \phi \gamma$: A_{CP} up to 2%
 - $D^0 o
 ho^0 \gamma$: A_{CP} up to 10%
- $D^0 \rightarrow \phi \gamma$: first observation by Belle with 78 fb⁻¹ (PRL 92, 101803 (2004))
 - measured yield: $27.6^{+7.4+0.5}_{-6.5-1.0}$ \Rightarrow relative error on yield 25% (as would be the error on A_{CP})
- A_{CP} sensitivity at 50 ab⁻¹: $\approx 1\%$



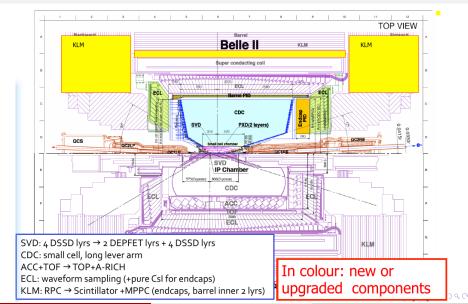


Rare and forbidden decays


- Shaded regions indicate the decays with γ or π^0
- Mostly done by CLEO
- Belle II can improve these UL by several orders of magnitude

- SM predictions: long distance effects dominate $Br \sim {\rm few} \times 10^{-8}$
- Belle II at 50 fb⁻¹:
 - \rightarrow depends how background behaves
 - if UL would scale with \mathcal{L} : UL $\sim 2 \times 10^{-8}$
 - if UL would scale with $\sqrt{\mathcal{L}}$:
 UL $\sim 2 \times 10^{-7}$

PRD 85 (2012) 091107

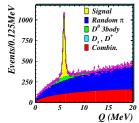


- Perspectives for charm measurements at Belle II have been discussed.
- We focused on D-mixing and CPV.
- ullet Using Belle results and a rough extrapolation to 50 ab^{-1} we found:
 - Sensitivities of most measurements will still be statistically limited.
 - In t-dependent Dalitz analysis of $D^0 \to K_s^0 \pi^+ \pi^-$ the model dependent systematics will probably dominate and saturate the sensitivity.
 - Belle II is in favor (compared to LHCb) in A_{CP} measurements because of equal D and \overline{D} production; the sensitivity would reach in some cases a 0.03% level.
- Belle II can also be competitive in searches of rare and forbidden decays of D-mesons with γ or π^0 in the final state.

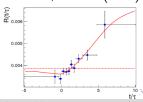
Belle II detector in comparison to Belle

igspace Time-dependent measurements: $D^0 o K^+\pi^-$

Wrong sign (WS) final state: via DCS decays or via mixing


Proper decay time distribution

$$\frac{dN}{dt} \propto [R_D + y'\sqrt{R_D}(\Gamma t) + \frac{x'^2 + y'^2}{4}(\Gamma t)^2]e^{-\Gamma t}$$


DCSinterferencemixing

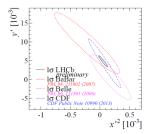
 R_D ratio of DCS/CF decay rates $x' = x \cos \delta + y \sin \delta$ $y' = y \cos \delta - x \sin \delta$ δ strong phase between DCS and CF

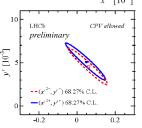
WS events (400 fb $^{-1}$) PRL 96, 151801 (2006)

WS/RS ratio (976 fb $^{-1}$) PRL 112, 111801 (2014)

igspace Time-dependent measurements: $D^0 o K^+\pi^-$

CP violation


- ullet D^0 and $ar{D^0}$ samples analyzed separately $\Rightarrow R_D^{\pm}, x'^{2\pm}, y'^{\pm}$
- direct CPV in DCS decays:


$$A_D = \frac{R_D^+ - R_D^-}{R_D^+ + R_D^-}$$

 \bullet CPV in mixing and interference \to by solving 4 equations for 4 unknowns:

$$x'^{\pm} = \left(1 \pm \frac{1}{2} A_M\right) \cdot \left(x' \cos \phi \pm y' \sin \phi\right)$$
$$y'^{\pm} = \left(1 \pm \frac{1}{2} A_M\right) \cdot \left(y' \cos \phi \mp x' \sin \phi\right)$$

$$\rightarrow x', y', \phi, |q/p| = 1 + \frac{1}{2}A_M$$

\subseteq Time-dependent measurements: $D^0 \to K^+K^-, \pi^+\pi^-$

- Measurement of lifetime difference between flavor specific and decays into CP final states
 - choice of flavor specific: kinematically similar $D^0 \to K^-\pi^+$
- Timing distributions are exponential
 - mixing parameter: $y_{CP} = \frac{\tau(K^-\pi^+)}{\tau(K^+K^-)} 1$
 - $v_{CP} = v$, if CP conserved
- If *CP* violated \to difference in lifetimes of $D^0/\overline{D^0} \to K^+K^-, \pi^+\pi^-$
 - asymmetry in lifetimes:

$$A_{\Gamma} = \frac{\tau(\overline{D}^0 \to K^- K^+) - \tau(D^0 \to K^+ K^-)}{\tau(\overline{D}^0 \to K^- K^+) + \tau(D^0 \to K^+ K^-)}$$

- If direct CPV negligible:
 - $y_{CP} = y \cos \phi \frac{1}{2} A_M x \sin \phi$
 - $A_{\Gamma} = \frac{1}{2} A_{M} y \cos \phi x \sin \phi$

Time-dependent measurements: $D^0 o K_s^0 \pi^+\pi^-$

• This three body decay proceeds via many intermediate states, like

CF:
$$D^0 \rightarrow K^{*-}\pi^+$$

DCS: $D^0 \rightarrow K^{*+}\pi^-$
CP: $D^0 \rightarrow \rho^0 K_s^0$

• Matrix element is Dalitz space dependent, so also time distribution is

$$\frac{dN_{D^0\to f}}{dt}\propto e^{-\Gamma t}\big|\mathcal{A}(m_-^2,m_+^2)+\frac{q}{p}(\frac{y+ix}{2}\Gamma t)\overline{\mathcal{A}}(m_-^2,m_+^2)\big|^2$$

• Total amplitude $\mathcal A$ parametrized as a sum of quasy-two-body amplitudes of resonances $\mathcal A_r$

$$\mathcal{A}(m_{-}^2,m_{+}^2) = \sum_r a_r e^{i\phi_r} \mathcal{A}_r(m_{-}^2,m_{+}^2)$$

- Both mixing parameters, x and y as well as CPV parameters ϕ and |q/p| can be measured
- 3D fit in (m_-^2, m_+^2, t) ; many free parameters