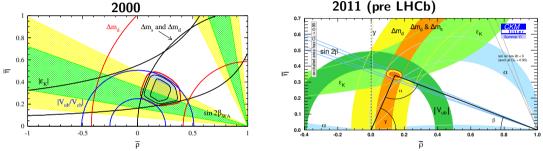
Time-dependent *CP*-violation and charmless decays

Thibaud Humair, on behalf of the Belle II collaboration thumair@mpp.mpg.de


Moriond EW 2022, La Thuile

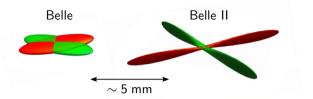
17 March 2022

CP-violation from the perspective of Belle II

BaBar and Belle collected data between 1999 and 2010. Using CP-violation measurements with B mesons, they experimentally established the CKM structure of the SM.

Belle II will collect a dataset much larger than Belle's, will be able to:

- Refine measurements of the CKM triangle;
- ▶ More generally, put the SM at test using *CP*-violation.

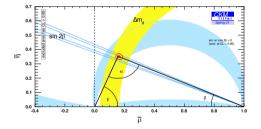

Main strength of *B* factories vs LHC: clean environment with constrained kinematics \Rightarrow can analyse a wider range of *B* decays, in particular with neutrals (π^0 , γ , K_L ...)

2 Moriond EW 2022

Belle II and SuperKEKB

SuperKEKB e^+e^- collider achieves higher instant luminosity using so-called nano beam scheme.

- Goal: $L = 6 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$ (30× Belle)
- Achieved: 3.8 × 10³⁴ cm⁻²s⁻¹ World record!


Belle II: all sub-detectors underwent a major a upgrade from Belle, improving performance in spite of higher beam background, *e.g.*:

- \Rightarrow Enhanced K/π separation
- \Rightarrow Improved vertex resolution (more later...)

Outline

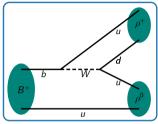
Today: 4 Belle II brand new measurements related to CKM studies or *CP*-violation, using 190 fb⁻¹ of Belle II data collected until November 2021 ($1/4^{\text{th}}$ of Belle dataset).

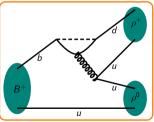
- CP asymmetry in $B^+ \to \rho^+ \rho^0 \ (\alpha)$
- B^0 lifetime and oscillation frequency
- *CP* asymmetry with $B^0 \rightarrow K_S \pi^0$
- ▶ $B^0 \to K_S \pi^0 \gamma$ branching fraction

Measurements related to CKM angle γ covered later by Riccardo Manfredi.

4 Moriond EW 2022

 $B^+ o
ho^+
ho^-$


Can access CKM angle α using combination of three decays:

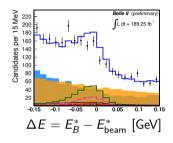

 $B^+ \to \rho^+ (\to \pi^+ \pi^0) \rho^0 (\pi^+ \pi^-), \ B^0 \to \rho^0 \rho^0, \ B^0 \to \rho^+ \rho^-$

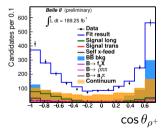
Belle II is a unique place to measure all three!

To do that, measure direct CP-asymmetry in decays where ρ^+ and ρ^0 are longitudinally polarised, need:

- 1) Longitudinal polarization fraction f_L ;
 - \Rightarrow Get it from distribution of helicity angles of the $\pi^+ {\rm s}$
- 2) Asymmetry in rate $B^+ \to \rho^+ \rho^0$ vs $B^- \to \rho^- \rho^0$ \Rightarrow Direct *CP*-violation from interference between tree and penguin

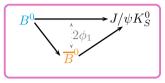
New $B^+ \rightarrow \rho^+ \rho^0$ angular analysis


- ▶ Large background from $e^+e^- \rightarrow u\overline{u}, \ d\overline{d}, \ c\overline{c}, \ s\overline{s}$.
- \Rightarrow Reduced with multavariate algorithm
- 6D template fit taking correlations into account
- \Rightarrow Templates from MC, calibrated using control channels
- ▶ Instrumental asymmetry measured with $D^+ \to K^0_S \pi^+$:


$$\Rightarrow A_{\rm det} = 0.0040 \pm 0.0048$$

Result compatible with previous measurements:

$$egin{aligned} & A_{\mathsf{CP}} = -0.069 \pm 0.068 \; (ext{stat.}) \pm 0.060 \; (ext{syst.}) \ & \mathcal{B}(B^+ o
ho^+
ho^0) = ig(23.2^{+2.2}_{-2.1} \; (ext{stat.}) \pm 2.7 \; (ext{syst.}) ig) imes 10^{-6} \ & f_L = 0.943^{+0.035}_{-0.033} \; (ext{stat.}) \pm 0.027 \; (ext{syst.}) \end{aligned}$$


World average: $A_{CP} = -0.05 \pm 0.05$

6 Moriond EW 2022

Time-dependent analyses

CP-asymmetry in interference between mixing and decay:

$$\mathcal{A}_{ ext{CP}}(t) = rac{N(B^0 o f_{ ext{CP}}) - N(\overline{B}^0 o f_{ ext{CP}})}{N(B^0 o f_{ ext{CP}}) + N(\overline{B}^0 o f_{ ext{CP}})}(t) = (S_{ ext{CP}} \sin(\Delta m_d t) + A_{ ext{CP}} \cos(\Delta m_d t))$$

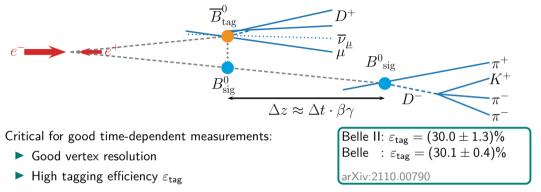
with S_{CP} : time-dependent asymmetry and A_{CP} : direct *CP*-asymmetry.

Time-dependent analyses

CP-asymmetry in interference between mixing and decay:

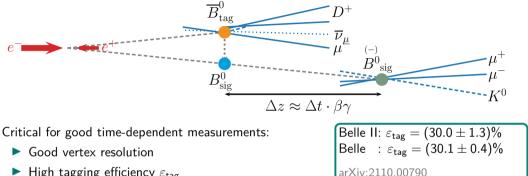
$$\mathcal{A}_{ ext{CP}}(t) = rac{N(B^0 o f_{ ext{CP}}) - N(\overline{B}^0 o f_{ ext{CP}})}{N(B^0 o f_{ ext{CP}}) + N(\overline{B}^0 o f_{ ext{CP}})}(t) = (S_{ ext{CP}} \sin(\Delta m_d t) + A_{ ext{CP}} \cos(\Delta m_d t))$$

with S_{CP} : time-dependent asymmetry and A_{CP} : direct *CP*-asymmetry.


 $B^0 - \overline{B}^0$ mixing:

$$\mathsf{mix}(t) = rac{N(B^0 o B^0) - N(B^0 o \overline{B}^0)}{N(B^0 o B^0) + N(B^0 o \overline{B}^0)}(t) = \cos(\Delta m_d t)$$

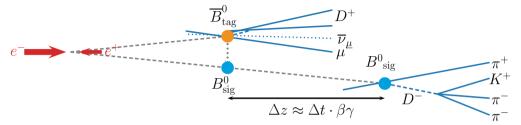
with Δm_d the oscillation frequency.


7 Moriond EW 2022

Time-dependent analyses at the B factories

Today: precision oscillation frequency and lifetime measurement.

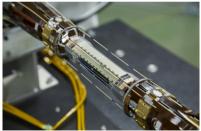
Time-dependent analyses at the B factories

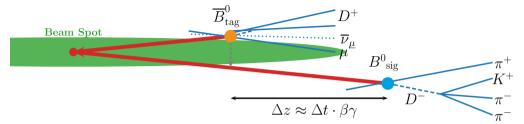

High tagging efficiency ε_{tag}

Today: precision oscillation frequency and lifetime measurement.

Also a crucial foundation for flagship measurement of $S_{CP} = \sin 2\beta$ with $B^0 \rightarrow J/\psi K_S$. which uses $10 \times$ smaller dataset.

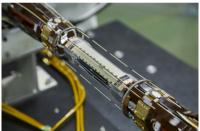
Moriond EW 2022 8


Time-dependent CP-violation at the B factories

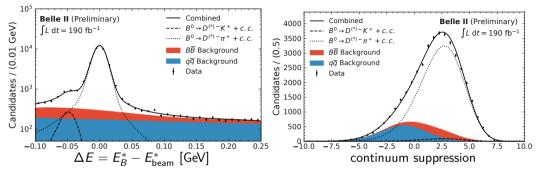

New beam scheme means reduced boost wrt Belle:

 $\beta \gamma = 0.43 \longrightarrow \beta \gamma = 0.29$ $\Delta z \approx 200 \ \mu m \longrightarrow \Delta z \approx 130 \ \mu m$

 \Rightarrow added a pixel detector directly around the beam pipe (radius \approx 1.4 cm) to recover precision on Δt .


Time-dependent CP-violation at the B factories

New beam scheme means reduced boost wrt Belle:


 $\beta \gamma = 0.43 \longrightarrow \beta \gamma = 0.29$ $\Delta z \approx 200 \ \mu m \longrightarrow \Delta z \approx 130 \ \mu m$

 \Rightarrow added a pixel detector directly around the beam pipe (radius \approx 1.4 cm) to recover precision on Δt .

Use beam spot profile to increase precision on vertex fit \Rightarrow new beam scheme means smaller beam spot and stronger constraint Moriond EW 2022

New mixing and lifetime measurement: backgrounds

Use $\sim 40k$ decays reconstructed from hadronic $B^0 \rightarrow D^{(*)-}\pi^+/K^+$ modes.

2 backgrounds: $e^+e^- \rightarrow q\overline{q}$ and misreconstructed $e^+e^- \rightarrow B\overline{B}$ Discriminate signal and backgrounds using ΔE and event-shape multivariate classifier.

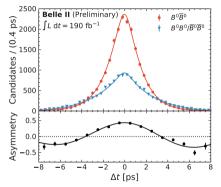
- 1. Subtract backgrounds from sidebands (sWeights) to obtain background-free signal sample.
- 2. Fit background-subtracted Δt distribution, with a model taking into account wrong-tag fraction and finite vertex resolution

10 Moriond EW 2022

New mixing and lifetime measurement: result

Result compatible with world average:

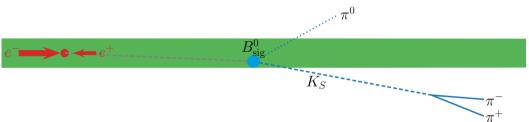
 $au_{B^0} = 1.499 \pm 0.013 \, ({
m stat.}) \pm 0.008 \, ({
m syst.}) \, {
m ps},$


 $\Delta m_d = 0.516 \pm 0.008 \, ({
m stat.}) \pm 0.005 \, ({
m syst.}) \, {
m ps}^{-1}.$

Compared to Belle and BaBar's best measurement:

- ▶ Slightly worse stat. uncertainty because not using $B^0 \rightarrow D^{*-} \ell^+ \nu$ modes yet.
- better alignment and background systematics.
- comparable resolution modelling systematics.

Milestone in Belle II program: we are fully ready for time dependent analyses! **Next steps:** τ , Δm_d with $B^0 \rightarrow D^{*-}\ell^+\nu$ and competitive sin 2β measurement.



$B^0 \rightarrow K_S \pi^0$ and $K \pi$ puzzle

 $B\to K\pi$ decay are rare, therefore sensitive to New Physics. In particular, long-standing discrepancy in Isospin sum rule:^1

$$2\mathsf{A}_{\mathsf{CP}}(B^0 \to K^+\pi^-) + 1.3\mathsf{A}_{\mathsf{CP}}(B^+ \to \mathsf{K}_{\mathsf{S}}\pi^+) - 1.2\mathsf{A}_{\mathsf{CP}}(B^+ \to K^+\pi^0) - \mathsf{A}_{\mathsf{CP}}(B^0 \to \mathsf{K}_{\mathsf{S}}\pi^0) \approx 0$$

Uncertainty on this null test dominated by $A_{CP}(B^0 \rightarrow K_S \pi^0)$, only feasible at Belle II.

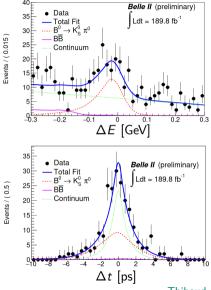
Need good performance with neutrals and beam spot constraint.

¹More accurate formula takes into account branching fractions and lifetimes

New $K_S \pi^0 A_{CP}$ measurement

Perform 4D fit (including Δt and ΔE)

Use $B^0 o J/\psi(\mu^+\mu^-)K_S$ to calibrate Δt shapes


Wrong-tag fraction measured from mixing measurement

Constrain S_{CP} using previous measurements to maximise precision on A_{CP} .

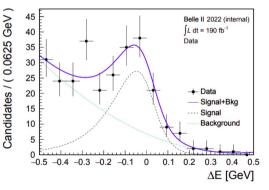
Result:

$$\begin{split} A_{\mathsf{CP}} &= -0.41^{+0.30}_{-0.32} \text{ (stat.)} \pm 0.09 \text{ (syst.)} \\ \mathcal{B} &= (11.0 \pm 1.2 \text{ (stat.)} \pm 1.0 \text{ (syst.)}) \times 10^{-6} \end{split}$$

World average: $A_{CP} = 0.00 \pm 0.13$.

13 Moriond EW 2022

New $B^0 \rightarrow K^0_S \pi^0 \gamma$ branching fraction measurement


In the SM, γ is RH in $B^0 \to K^0_S \pi^0 \gamma$ and LH in $\overline{B}^0 \to K^0_S \pi^0 \gamma$ \Rightarrow expect no time-dependent asymmetry in $B^0 \to K^0_S \pi^0 \gamma$. However, can occur in BSM models with different chirality structure.

Belle II unique place where to measure asymmetry.

In preparation for time-dependent analysis, performed branching fraction measurement:

 $\mathcal{B} = (7.3 \pm 1.8 \ (\mathsf{stat.}) \pm 1.0 \ \mathsf{syst}) imes 10^{-6}$

Compatible with world average $\mathcal{B} = (7.0 \pm 0.4) \times 10^{-6}$

Conclusions and prospects

Start of a new chapter for Belle II B physics program.

Today:

- ▶ Angular *CP*-violation analysis with $B^+ \rightarrow \rho^+ \rho^0$;
- > Precision time-dependent lifetime and B^0 oscillation frequency measurement;
- Measurements using modes with many neutrals.

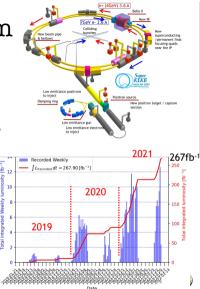
To come soon:

- Refined CP-violations analyses with higher statistical power and more decay modes;
- Competitive measurement of CKM angle β .

Looking further into the future: improving analyses techniques, e.g.:

- Dalitz analyses with 3-body charmless modes;
- Improving flavour tagger performance and vertex-related systematics;
- \Rightarrow preparing to attack systematic limit on β .

15 Moriond EW 2022


Backup

The SKB/Belle II program

- Phase 1(2016): no detector, no collision, test the rings
- Phase 2 (2018): first collisions with complete accelerator
 - Incomplete detector: Vertex detector replaced by dedicated background detector (Beast 2)
- Phase 3 (2019-): luminosity run with complete detector
 - Pixel Detector (PXD): layer 1 + only 2 ladders in layer 2
 - Full 4-layers strip detector (SVD)
 - First physics paper appeared in January 2020
- New and difficult accelerator. Additional operational complexity during the pandemic.
- Record peak luminosity $3.81 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$.
- Path to reach $2 \times 10^{35} \text{cm}^{-2} \text{s}^{-1}$ identified.
- Still large factors to reach the target peak luminosity of $6.5 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$.

INFN Feb 23, 2022

F.Forti - Belle II Upgrades

17 Moriond EW 2022

Short term luminosity projections

• Base scenario: conservative extrapolation of SKB parameters from 2021

• Target scenario: extrapolation including possible improvement during LS1

- LS1 starts in summer 2022 for 15 months to replace VXD. There will be other maintenance/improvement work on machine and detector.
- We resume machine operation from fall 2023.
- An International Taskforce (aiming to conclude in summer 2022) is discussing additional improvements.

Int. Lumi (Delivered)

F.Forti - Belle II Upgrades

