Prospects of the new physics search at Belle II by precise measurements of the CKM matrix elements

Yun-Tsung Lai*

Kavli IPMU, Univ. of Tokyo On behalf of the Belle II Collaboration

2022 Spring JPS 15pA561 15th Mar., 2022

Introduction

- Cabibbo-Kobayashi-Maskawa (CKM) matrix
 - Three generations of quarks.
 - Each element $(V_{qq'})$ describes mixing of quacks via weak interaction in Standard Model (SM).

$$V_{\rm CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

• Unitarity triangle:

$$\beta = \phi_1 = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right)$$
$$\alpha = \phi_2 = \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right)$$
$$\gamma = \phi_3 = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$

CKM @ Belle II

- Precise measurement on UT angles and sides is a powerful SM test at energised much higher than directly achieved at the energy frontier.
 - Deviation from theoretical results may indicate to new physics (NP).
- The potential of Belle II:
 - Much larger data set (target at 50 ab⁻¹) thanks to SuperKEKB.
 - New hardware and software tools also improve the detection resolution and reduce systematic uncertainty in various aspects.
 - Belle II has unique/world leading access to many key decay modes, specially those involving neutral particle: K^0 , π^0 , $\eta^{()}$, and missing particle (v).

Extrapolation @ 50 ab⁻¹

SuperKEKB

- Asymmetric energy collider:
 - 7.0 GeV e^- and 4.0 GeV e^+ for Y(4S) $\rightarrow B\overline{B}$.
- Upgrade from KEKB.
 - More than 30 times larger luminosity of KEKB with nano beam scheme.

Goal: > 6 x 10³⁵ cm⁻²s⁻¹

Updated on 2022/02/21 16:27 JST

Date

Belle II detector

- Newly-designed sub-detectors set to improve detection performance.
 - Vertexing: $1.5 \sim 2$ times improvement compared with Belle.
 - PID: ~4 σ for K/ π suppression.
 - Pixel detector full installation will be complete in 2022 shut down.

Belle II physics program

Outline

- This report will mainly introduce the methodology of measuring them, improvement and prospect in Belle II.
- Recent results will be also reported.

UT element	Mode	Methodology	Improvement from Belle II (other than statistics)
[V _{ub}]	$\begin{array}{l} B \rightarrow \pi l \nu \ (excl.) \\ B \rightarrow X_{u} l \nu \ (incl.) \end{array}$	Tagged / Untagged	Tagging package (FEI)
V _{cb}	$\begin{split} B &\to D^{(*)} I \nu \text{ (excl.)} \\ B &\to X_c I \nu \text{ (incl.)} \end{split}$	Tagged / Untagged	Tagging package (FEI)
φ	$b \rightarrow ccs$ $b \rightarrow sqq$	Time-dependent CP violation	Vertexing, flavor tagging
(ϕ_2)	$B \to hh \ (h=\pi,\rho)$	Isospin study with BF, A _{CP} , Time-dependent CP violation	Time-dependent CP violation of $B^0 \to \pi^0 \pi^0$
φ ₃	$B \rightarrow D^{(*)}K^{(*)}$	Amplitude ratio between D eigenstates	More decay modes with neutral particles

$|\mathsf{V}_{\mathsf{ub}}|$ & $|\mathsf{V}_{\mathsf{cb}}|$

- $|V_{ub} / V_{cb}|$: Constrains the length opposite to $\phi_1 (R_u)$ in the unitary condition.
 - SM reference as mainly from tree-level.
- Using semileptonic B decay.
 - Longstanding discrepancy (~3σ) between inclusive and exclusive results.
 - Hint of NP such as right-handed current? PRD 90, 094003 (2014)

Tagging method

- New full event interpretation (FEI) package for Belle II Comput Softw Big Sci 3, 6 (2019) from the Belle version (FR). NIM A 654, 432-440 (2011)
- Hierarchical reconstruction on > 5000 B decays with MVA tool.
- Reduce systematic uncertainty due to tag-side calibration.
- 30%~50% increase on efficiency with same purity.

$|V_{cb}|$ inclusive: $B \rightarrow X_c \mid v$

|V_{cb}| is extracted by differential branching fraction (dBF) on the spectral moments (of lepton energy or hadron mass). JHEP 02 (2019) 177

New for JPS

90

80

70

60

50

40

30

2

3

(q⁴) [(GeV²/c⁴)²]

Belle II

 $\int L dt = 62.8 \, \text{fb}^{-1}$

• Non-perturbative elements can be determined at the same time.

 $\mathcal{B}(B \to X_c e \nu_e) = (9.97 \pm 0.03 (\text{stat}) \pm 0.38 (\text{syst}))\%$ $\mathcal{B}(B \to X_c \mu \nu_{\mu}) = (9.47 \pm 0.05 (\text{stat}) \pm 0.45 (\text{syst}))\%$ $\mathcal{B}(B \to X_c \ell \nu_{\ell}) = (9.75 \pm 0.03 (\text{stat}) \pm 0.47 (\text{syst}))\%$

 $q^2 (=(p_1 + p_y)^2)$ moment for n = 1-4 order determined as a function of q^2 threshold.

4

5

 $q_{th}^2 [Gev^2/c^4]$

6

Measurement

8

x_c Model

7

Belle II $B \rightarrow X_c I v$

62.8 fb⁻¹ tagged

To be submitted to PRD

Main source of syst.: X_c composition.

$|V_{cb}|$ exclusive: $B \rightarrow D^{(*)} | v$

- Fit on data to obtain dBF on hadron recoil parameter (w)
- Extract $|V_{cb}|$ by dBF/dw with phenomenological form-factor.

 $\mathcal{B}\left(B^0 \to D^{*-} l^+ \nu_\ell\right) = 0.0527 \pm 0.0022 \text{(stat.)} \pm 0.0038 \text{(syst.)}$ $|V_{cb}| = 0.0373 \pm 0.0029 \text{ (stat.+syst.)}$

$|V_{ub}|$ exclusive: $B \rightarrow \pi I \nu$

$\begin{array}{c} \text{Belle II} B \to \pi \ I \ \nu \\ \text{189.3 fb}^{-1} \ tagged \end{array}$
Belle II Preliminary $\int \mathcal{L} dt = 189.26 \text{fb}^{-1}$
$B^{\circ+\pi^-e\nu} = 0 \text{ GeV}^2/c^4 \le q^2 < 8 \text{ GeV}^2/c^4$
$\pi^{-} e v$
Determined of the second secon
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 $3.0M_{\text{miss}}^2 [GeV2/c4]$
Decay mode Fitted $ V_{\rm ub} $
$B^0 \to \pi^- e^+ \nu_e \ (3.71 \pm 0.55) \ \times 10^{-3}$
$B^+ \to \pi^0 e^+ \nu_e \ (4.24 \pm 0.55) \ \times 10^{-3}$
Combined fit $(3.94 \pm 0.42) \times 10^{-3}$

- Tagging by FEI.
- Fit on $M_{miss}^2 = (p(e^+e^-) p(B_{tag}) p(\pi) p(I))^2$ to extract signal within $q^2 (=(p_1 + p_y)^2)$ bins.
- Extract $|V_{ub}|$ by the dBF(q²) with form factor.

$$\frac{d\mathcal{B}(B \to \pi l\nu)}{dq^2} = |V_{ub}|^2 \frac{G_F^2 \tau_B}{24\pi^3} p_\pi^3 |f_+^{B\pi}(q^2)|^2$$

|V_{ub}| & |V_{cb}|: Belle II prospect

- Belle II: both inclusive and exclusive measurement. LHCb: mainly exclusive Λ_{b} and B_{s} decays
- Exclusive: Uncertainty from lattice QCD dominates for now.
- Inclusive $|V_{ub}|$: Unknown shape function (b quark motion with B meson).
 - Simultaneous fit on $X_c I v + X_u I v + X_s \gamma$.

Time-dependent CP violation

- Time-dependent CP violation (TDCPV)
 - To determine ϕ_1 (mixing) and ϕ_2 (mixing + b \rightarrow u).
- Decay rate asymmetry as a function of decay time:
 - $\Delta m_{\rm B}$: Mass difference between eigenstates.

$$\mathcal{A}_f(\Delta t) = \frac{\Gamma(\bar{B}^0 \to J/\psi K_S^0) - \Gamma(B^0 \to J/\psi K_S^0)}{\Gamma(\bar{B}^0 \to J/\psi K_S^0) + \Gamma(B^0 \to J/\psi K_S^0)}$$
$$= S_f \sin(\Delta m_B \Delta t) + A_f \cos(\Delta m_B \Delta t)$$

S_f: mixing-induced CPV

A_f: Direct CPV

At tree-level: $S_f \sim sin 2\phi_1$, $A_f \sim 0$

TDCPV measurement @ Belle II

- 1. Flavor tagging: Obtain the flavor of B mesons.
- **2.** Vertexing: $\Delta z \rightarrow \Delta t$.
- **3.** Δ t distributions for B⁰ and \overline{B}^0 separately.
- **4.** Asymmetry(Δt): S_f ~ sin($2\phi_1$) at tree-level.

Flavor tagging

- Study B⁰-B⁰ mixing and CP violation by identify the flavor of B mesons.
- Belle II new algorithm: arXiv:2110.00790 [hep-ex] arXiv:2008.02707 [hep-ex] MVA-based, more variables included.
- Effective tagging efficiency with Belle II MC:
 - (37.16±0.03)%, ~30% for Belle package.
 - Validated with Belle MC/data.

Concept:

1. Final state info (kaon, pion, proton, lepton).

 $\overline{B}{}^0 \to D^{*+} \overline{\nu}_{\ell} \ell^- \qquad \overline{B}{}^0 \to D^+ \pi^- (K^-)$

 $\overline{B}{}^0 \to \Lambda_c^+ \quad X^-$

 $\begin{tabular}{cccc} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

2. Flavor of charmed particle (D, Λ_c).

 $\rightarrow X K^{-}$

3. Flavor of B.

Decay time measurement

- Improved resolution in spite of reduced boost (βy):
 - New inner vertex detectors: pixel vertex detector and silicon strip tracker.
 - Improved vertex fit softwares. IEEE TNS, 58, 434 444 (2011) CMS-NOTE-2008-033 NIMA552, 566–575 (2005)

$$\Delta z = \beta \gamma c \Delta t$$
$$\Delta t = t_{CP} - t_{\text{tag}}$$

• A factor of 1.5~2 improvement compared to that of Belle.

2022/03/15

Time-dependent mixing measurement

- $\Delta m_{\rm B}$: Mass difference between eigenstates.
 - From $B^0-\overline{B}^0$ mixing measurement using flavor tagging.
- Belle II recent result:
 - Systematic uncertainty is smaller than that in Belle and BaBar.

ϕ_1 : $b \rightarrow c\overline{c}s$

- ϕ_1 measurement with $b \rightarrow c\overline{cs}$
 - Theoretical clean. Small contribution from other diagrams. $S_f \sim \xi_f \sin 2\phi_1, \xi_f$: CP eigenstate. $B^0 \rightarrow J/\Psi K^0$ golden mode. PRL 95, 221804 (2005)
- $sin(2\phi_1)$ world average: 0.699 ± 0.017
- Belle II sensitivity of $B^0 \rightarrow J/\psi \ K_S^0 \ @ 50 \ ab^{-1}$
 - Penguin pollution is not negligible: Constraint from $b \rightarrow c\bar{c}d e.g. B^0 \rightarrow J/\psi \pi^0$ or other SU(3) related modes.

Belle II $B^0 \rightarrow J/\psi K_1^0$ 62.8 fb⁻¹

- Systematic uncertainty dominates.
- < 0.01 uncertainty on S_f.

2022/03/15

ϕ_1 : $b \rightarrow sq\overline{q}$

- $b \rightarrow sq\overline{q}$:
 - $S_f = -\xi_f \sin 2\phi_1^{\text{eff}} \sim -\xi_f \sin 2\phi_1$ assuming only SM penguin.
 - Difference from $\mathbf{b} \rightarrow \mathbf{ccs}$: NP in penguin loop.
- Belle II Golden modes: $B^0 \rightarrow \eta' K^0$, $B^0 \rightarrow \phi K^0$, $B^0 \rightarrow K^0 K^0 K^0$.
 - Advantage: neutral particle. Expect to have the best sensitivity.
- Belle II simulation @ 50 ab⁻¹
 - $S_f \text{ of } B^0 \rightarrow \eta' \text{ K}^0 \text{ and } B^0 \rightarrow J/\psi \text{ K}^0$
 - Able to see the difference if any.

New heavy

loop?

 \bar{B}^0

bosons in the

- ϕ_2 measurement: From $b \rightarrow u$ tree with non-negligible $b \rightarrow d$ penguin.
 - Isospin analysis with $B \rightarrow hh$ modes (h= π , ρ).
- Compared with LHCb, Belle II can measure all of these isospin modes.

$\phi_2 \colon B \to hh$

- Charmless hadronic B decays:
 - Challenge: large combinatorial background from $e^+e^- \rightarrow q\overline{q}$ continuum process.
 - PID: K/ π suppression.
 - Continuum suppression: Based on MVA tool (BDT).
- Belle II recent results:
 - 2D fit with ΔE and M_{bc} .

$$\Delta E \equiv E_B^* - \sqrt{s/2}$$
$$M_{\rm bc} \equiv \sqrt{s/(4c^4) - (p_B^*/c)^2}$$

defined in center-ofmomentum frame

```
Belle II B^0 \rightarrow h^+\pi^- 62.8 fb^-1
```

arXiv:2106.03766 [hep-ex]

Also see: Belle II $B^+ \rightarrow h^+\pi^0$ 62.8 fb⁻¹ arXiv:2105.04111 [hep-ex]

$\phi_2 \colon B \to \rho \rho$

- $B^0 \rightarrow \rho^0 \rho^0$: Golden mode for ϕ_2 determination.
- $B^+ \rightarrow \rho^0 \rho^+$: Estimate penguin pollution
- Challenge: Combinatorial background due to pion-only final state and wide ρ peak.
- 6D fit:
 - Angular analysis: need to measure longitudinal polarization fraction (f₁).
 - ΔE , continuum suppression, ρ masses (2), cosine of the helicity angle of ρ (2).

$$\mathcal{B}(B^+ \to \rho^+ \rho^0) = [22.1^+_{-2.0}(\text{stat}) \pm 2.6(\text{syst})] \times 10^{-6},$$

 $f_{\rm L} = 0.943^+_{-0.035}(\text{stat}) \pm 0.026(\text{syst}),$

 $\mathcal{A}_{\rm CP} = -0.069 \pm 0.068(\text{stat}) \pm 0.039(\text{syst}).$

φ₂: Belle II prospect

- TDCPV of $B^0 \rightarrow \pi^0 \pi^0$ is unique for Belle II with target full data.
 - Use π^0 Dalitz decay (\rightarrow y e⁺ e⁻) and y (\rightarrow e⁺ e⁻) conversion for vertexing.
 - @ 50 ab⁻¹: Expect ~270 signal yields, uncertainty of $S(\pi^0\pi^0) \sim 0.28$

- Belle II prospect:
 - S($\pi^{0}\pi^{0}$): reduce the ambiguity in ϕ_{2} determination by a factor of 2 or 4.
 - Combining all $\rho\rho$ + $\pi\pi$ + S($\pi^{0}\pi^{0}$): ϕ_{2} sensitivity ~ 0.6° @ 50 ab⁻¹

- ϕ_3 is measured by the phase difference between tree amplitudes of $B \rightarrow D^{(*)}K^{(*)}$ decays
 - Interference between $b \rightarrow c$ (favored) and $b \rightarrow u$ (suppressed).
 - As no penguin contribution, theoretical uncertainty is small. $\delta\phi_{_3}/\phi_{_3}\sim 10^{_{-7}}~_{_{\rm JHEP\,01,\,015\,(2014)}}$

ϕ_3 : GGSZ

- Belle II Golden mode: GGSZ with amplitude analysis
 - Model-independent amplitude analysis:
 ~9% uncertainty due to amplitude modeling at Belle and BaBar.
 - Fit on symmetrical bins to obtain yields from D flavor eigenstates.

 $d\Gamma_{B^-}(m_+^2, m_-^2) \propto |A_+|^2 + r_B^2 |A_-|^2 + 2r_B |A_+| |A_-| \left(\cos \delta_D \cos(\delta_B + \phi_3) - \sin \delta_D \sin(\delta_B + \phi_3)\right) dp$

ϕ_3 : GGSZ, Belle II prospect

 The latest result with Belle (771 fb⁻¹) + Belle II (128 fb⁻¹): 1st paper with combined data! JHEP 02 2022, 063 (2022)

- Belle II prospect:
 - Present precision by LHCb: 4°.
 - Assume 10 fb⁻¹ $\psi(3770)$ data from BES-III: $\delta \phi_3(50 \text{ ab}^{-1}) = 3^\circ \text{ using GGSZ}$ $\delta \phi_3(50 \text{ ab}^{-1}) = 1.6^\circ \text{ with other D decay modes.}$

Belle: PRD 85, 112014 (2012)

$$\phi_3 = (77.3^{+15.1}_{-14.9} \pm 4.1 \pm 4.3)^{\circ}$$
Belle + Belle II:

$$\phi_3 = (78.4 \pm 11.4 \pm 0.5 \pm 1.0)^{\circ}, \quad \stackrel{3^{rd} \text{ uncertainty:}}{\text{ext. input}}$$

$$r_B^{DK} = 0.129 \pm 0.024 \pm 0.001 \pm 0.002,$$

$$\delta_B^{DK} = (124.8 \pm 12.9 \pm 0.5 \pm 1.7)^{\circ}.$$

- Measurements on CKM matrix elements offer a good probe for SM precision test and NP search in flavor sector.
- Belle II will play a key role in it.
 - Much larger data set.
 - Improvements on software, methodologies, and systematics.
 - Unique sensitivity and capability of most decay modes.
 - Preliminary studies with Belle II early data have been performed for each.

• Stay tuned with us to look forward to more results from Belle II.

LS1: Full pixel detector installation, readout upgrade for DAQ, etc.

Other Belle II talks with new results @ JPS Spring 2022

- 15aA561
 - 10. 伊藤慎太郎「Belle-II 実験における heavy QCD axion を伴った B⁺ → K⁺ a 崩壊の探索」
- 16pA573
 - 8. 植松祐真 「Belle II 実験における B0→K_s^oπ^oγ 過程の時間依存 CP 非対称度の解析に向けた研究」
 - 9. 杉浦亮平 「Belle II 実験における B0→K⁺K⁻K⁰_s崩壊過程の時間依存 CP 非対称度の解析に向け た研究」
 - 10. 古賀太一朗 「 Bellell 実験における B->D*lnu 崩壊分岐比と CKM 行列要素 |Vcb| の測定」
 - 11. 裵漢郁 「 Belle II 実験における B⁰ → eta' K_s崩壊課程での時間依存 CP 対称性破れ測定の研 究」
 - 12. 楠戸愛美 「Belle II 実験における B⁰→ J/ψK^{*0}(→K⁺π⁻) モードによるフレーバー識別の較正と Δt 分解能の評価」
 - 13. 谷川輝 「Belle II 実験における B0→K_s^oK_s^oW_s^o過程の時間依存 CP 非対称度の測定」
- 19pS06
 - 4. 大強度ビームと標的技術が拓く素粒子・原子核実験の新展開
 吉原圭亮「高ルミノシティマシンで探す新たな物理法則」

Backup

2022/03/15

CKM matrix

- Cabibbo-Kobayashi-Maskawa (CKM) matrix
 - Describes mixing of quacks via weak interaction in Standard Model (SM).

• Unitarity:

UT angles

• Current results:

Global git by CKM fitter $\beta = \phi_1 = (23.7 \stackrel{+1.3}{_{-1.2}})^{\circ}$ $\alpha = \phi_2 = (91.8 \stackrel{+2.7}{_{-2.1}})^{\circ}$ $\gamma = \phi_3 = (65.6 \stackrel{+0.9}{_{-2.6}})^{\circ}$

World average by HFLAV $\beta = \phi_1 = (22.2 \pm 0.7)^\circ$ $\alpha = \phi_2 = (85.2 + 4.8)^\circ$ $\gamma = \phi_3 = (66.2 + 3.4)^\circ$

• Current results:

$|V_{cb}|$ exclusive determination

- dBF of $B \rightarrow D^{(*)}$ I v as a function of W: Prog. Theor. Phys. 49, 652 Phys. Rept. 245, 259
 - η_{FW} is electroweak correction: 1.006

$$\frac{d\Gamma}{dw} = \frac{\eta_{\rm EW}^2 G_F^2}{48\pi^3} m_{D^*}^3 (m_B - m_{D^*})^2 g(w) F^2(w) |V_{cb}|^2$$

Nucl. Phys. B 196 (1982) 83-92 PRD 79 (2009) 014506 Nucl. Phys. B 530 (1998) 153-181

$$w = \frac{P_B \cdot P_{D^*}}{m_B m_{D^*}} = \frac{m_B^2 + m_{D^*}^2 - q^2}{2m_B m_{D^*}}$$
$$g(w)F^2(w) = h_{A_1}^2(w)\sqrt{w^2 - 1}(w+1)^2 \left\{ 2\left[\frac{1 - 2wr + r^2}{(1 - r)^2}\right] \right\}$$
$$\times \left[1 + R_1^2(w)\frac{w - 1}{w + 1}\right] + \left[1 + (1 - R_2(w))\frac{w - 1}{1 - r}\right]^2 \right\}$$
$$r = \frac{m_{D^*}}{m_B}$$

- $h_{A1}(w)$, $R_1(w)$, $R_2(W)$: form factors, CLN parameterization: $h_{A1}(w) =$
- ρ , $h_{A1}(1)$, $R_1(1)$, $R_2(1)$: form factor constants.

$$h_{A_1}(w) = h_{A_1}(1) \left[1 - 8\rho^2 z + (53\rho^2 - 15)z^2 - (231\rho^2 - 91)z^3 \right]$$

$$R_1(w) = R_1(1) - 0.12(w - 1) + 0.05(w - 1)^2$$

$$R_2(w) = R_2(1) - 0.11(w - 1) - 0.06(w - 1)^2$$

$$z = \frac{\sqrt{w + 1} - \sqrt{2}}{\sqrt{w + 1} + \sqrt{2}}$$

	Statistical	Systematic	Total Exp	Theory	Total
		(reducible, irreducible)			
$ V_{ub} $ exclusive (had. tagged)					
$711 \ {\rm fb}^{-1}$	3.0	(2.3, 1.0)	3.8	7.0	8.0
5 ab^{-1}	1.1	(0.9,1.0)	1.8	1.7	3.2
50 ab^{-1}	0.4	(0.3,1.0)	1.2	0.9	1.7
$ V_{ub} $ exclusive (untagged)					
$605 \ {\rm fb}^{-1}$	1.4	(2.1, 0.8)	2.7	7.0	7.5
5 ab^{-1}	1.0	(0.8, 0.8)	1.2	1.7	2.1
50 ab^{-1}	0.3	(0.3, 0.8)	0.9	0.9	1.3
$ V_{ub} $ inclusive					
$605 \text{ fb}^{-1} \text{ (old } B \text{ tag)}$	4.5	(3.7, 1.6)	6.0	2.5 - 4.5	6.5 - 7.5
5 ab^{-1}	1.1	(1.3, 1.6)	2.3	2.5 - 4.5	3.4 - 5.1
50 ab^{-1}	0.4	(0.4,1.6)	1.7	2.5 - 4.5	3.0 - 4.8
$ V_{ub} B \to \tau \nu \text{ (had. tagged)}$					
$711 { m ~fb}^{-1}$	18.0	(7.1, 2.2)	19.5	2.5	19.6
5 ab^{-1}	6.5	(2.7, 2.2)	7.3	1.5	7.5
50 ab^{-1}	2.1	(0.8, 2.2)	3.1	1.0	3.2
$ V_{ub} B \to \tau \nu \text{ (SL tagged)}$					
711 fb^{-1}	11.3	$(10.4,\ 1.9)$	15.4	2.5	15.6
5 ab^{-1}	4.2	(4.4, 1.9)	6.1	1.5	6.3
50 ab^{-1}	1.3	(2.3, 1.9)	2.6	1.0	2.8

ϕ_1 : b \rightarrow ccs, Belle II prospect

- $B^0 \rightarrow J/\psi K_S^0$ @ 50 ab⁻¹: Systematic uncertainty dominates.
- Penguin pollution is not negligible @ 50 ab^{-1} : constraint from $b \rightarrow ccd$ such as ٠ $B^0 \rightarrow J/\psi \pi^0$ or other SU(3) related modes.

Belle $B^0 \rightarrow J/\psi K_s^0$ PRL, 108, 171802 (2012) $S_{J/\psi K_s^0} = +0.670 \pm 0.029 (\text{stat}) \pm 0.013 (\text{syst}), \quad \text{sin(2q_1) = 0.699 \pm 0.017}$ (world average) $A_{J/\psi K_s^0} = -0.015 \pm 0.021 (\text{stat}) + \frac{0.045}{-0.023} (\text{syst}).$

Assume 50%

Ultimate sensitivit	у	Refer to Belle	improvement on vertexing related syst,	use only leptonic categories in flavor tagging		
on $B^0 \rightarrow J/\psi K^0_1$		No	Vertex	Leptonic		
@50 ab ⁻¹		improvement	improvement	categories		
-	$S_{J/\psi K_S^0} (50 \text{ ab}^{-1})$					
	stat.	0.0035	0.0035	0.0060		
rreducible syst.:	syst. reducible	0.0012	0.0012	0.0012		
Alignment of the vertex detector	syst. irreducible	0.0082	0.0044	0.0040		
	$A_{J/\psi K_S^0} (50 \text{ ab}^{-1})$					
	stat.	0.0025	0.0025	0.0043		
	syst. reducible	0.0007	0.0007	0.0007		
-	syst. irreducible	$+0.043 \\ -0.022$	$+0.042 \\ -0.011$	0.011		

Belle II Physics Book PTEP 2019, 123C01

ϕ_1 : b \rightarrow ccq, Belle II prospect (cont'd)

- $b \to ccs @ 50 ab^{-1}$.
- ξ_f (CP eigenstate) = -1 : $B^0 \rightarrow J/\psi \ K^0_S$, $B^0 \rightarrow \psi(2S) \ K^0_S$, $B^0 \rightarrow \chi_{c1} \ K^0_S$. ξ_f (CP eigenstate) = +1 : $B^0 \rightarrow J/\psi \ K^0_L$
- Other $b \to c\overline{c}X$ modes: $B^0 \to \psi(X) \ K^0_S$, $B^0 \to J/\psi \ V$, $B^0 \to D^{(*)+}D^{(*)-}$.

Belle all $b \rightarrow c\overline{c}s$

 $S_{c\bar{c}s} = 0.667 \pm 0.023 (\text{stat}) \pm 0.012 (\text{syst}),$

$$A_{c\bar{c}s} = 0.006 \pm 0.016 (\text{stat}) \pm 0.012 (\text{syst}),$$

$$sin(2\phi_1) = 0.699 \pm 0.017$$
 (world average)

use only leptonic

Assume 50%

improvement on

Rollo II consitivity		Refer to Belle	vertexing related syst,	categories in flavor tagging
on all $b \rightarrow ccs$		No	Vertex	Leptonic
@50ab ⁻¹		improvement	$\operatorname{improvement}$	categories
	$S_{c\bar{c}s} (50 \text{ ab}^{-1})$			
	stat.	0.0027	0.0027	0.0048
	syst. reducible	0.0026	0.0026	0.0026
	syst. irreducible	0.0070	0.0036	0.0035
	$A_{c\bar{c}s} (50 \text{ ab}^{-1})$			
	stat.	0.0019	0.0019	0.0033
	syst. reducible	0.0014	0.0014	0.0014
	syst. irreducible	0.0106	0.0087	0.0035

Belle II Physics Book PTEP 2019, 123C01

$sin(2\phi_1^{\text{eff}})$ for $b \rightarrow sq\overline{q}$ penguin

	sin(2	β ^{eff}) ≡	≡ sin	n(2 ¢	(^{eff})	HFLAV Moriond 2021 PRELIMINARY
b→ccs	World Avera	age		: :	:	0.70 ± 0.02
φK ⁰	Average			Н	+- 1	0.74 ^{+0.11} -0.13
η΄ K⁰	Average			+★		0.63 ± 0.06
K _s K _s K _s	Average			•	*	0.83 ± 0.17
$\pi^{0} K^{0}$	Average			⊢★	1	0.57 ± 0.17
ρ⁰ K _S	Average		F	*		0.54 ^{+0.18} -0.21
ωK _S	Average					0.71 ± 0.21
$f_0 K_S$	Average			H	-1	0.69 ^{+0.10} -0.12
$f_2 K_S$	Average	۲		*		0.48 ± 0.53
f _x K _s	Average		*		1	0.20 ± 0.53
$\pi^0 \pi^0 K_S$	Average			-		0.66 ± 0.28
$\phi \: \pi^0 \: K_{S}$	Average				*	0.97 +0.03 -0.52
π ⁺ π ⁻ K _S Ι	NAverage		÷			0.01 ± 0.33
$K^+ K^- K^0$	Average			-	-1	0.68 ^{+0.09} -0.10
-1.6 -1.4 -	1.2 -1 -0.8 -0.6	-0.4 -0.2	0 0.2 0	.4 0.6	0.8 1	1.2 1.4 1.6

ϕ_2 : Isospin analysis

φ₂: Belle II Prospect

- $S(\pi^0\pi^0)$ would reduce the ambiguity in ϕ_2 determination by a factor of 2 or 4, depending on the measured central value.
- $(85.2_{-4.3}^{+4.8})^{\circ}$ by World average (HFLAV)
- (91.8^{+2.7}_{-1.0})° by Global fit (CKM fitter)
- Belle II combining all $\rho\rho + \pi\pi + S(\pi^0\pi^0)$:
 - ϕ_2 sensitivity ~ 0.6° @50 ab⁻¹

• Other prospect: All $B \rightarrow \rho \pi$ by $B \rightarrow \pi \pi \pi$ amplitude analysis.

Phys. Rev. D 48, 2139 (1993)

- Main methods based on different D decay modes:
 - CP eigenstates (GLW): K^+K^- , $\pi^+\pi^-$ (CP-even), $K^0_S\pi^0$, $K^0_S\eta$ (CP-odd). PLB 253, 483 (1991) PLB 265, 172 (1991)
 - Cabibbo-favored and doubly-Cabibbo-suppressed decays (ADS): K⁺ + n π PRD 63, 036005 (2001)
 - Self-conjugate three-body decays (GGSZ): PRD 68, 054018 (2003)
 K⁰_S h⁺h⁻ with amplitude analysis
 Golden mode for Belle II
 - Singly-Cabibbo-suppressed decays (GLS): PRD 67 071301 (2003) $K^0_S K^+ \pi^-$

ϕ_3 : Belle II prospect

- Current limit:
 - (78⁺¹⁵₋₁₆)° by Belle
 - (69⁺¹⁷₋₁₆)° by BaBar PRD 87 052015 (2013)
 - (67±4)° by LHCb LHCb-CONF-2018-002 LHCb-CONF-2020-003
 - $(66.2 + 3.4)^{\circ}$ by World average (HFLAV)
 - $(65.6^{+0.9}_{-2.6})^{\circ}$ by Global fit (CKM fitter)

- Belle II prospect:
 - Neutral reconstruction: More D decay modes at Belle II.
 - Strong phase: external input from BES-III.
 - Assume 10 fb⁻¹ $\psi(3770)$ data from BES-III, expected by Belle II: $\delta \phi_3(50 \text{ ab}^{-1}) = 3^\circ \text{ using GGSZ}$ $\delta \phi_3(50 \text{ ab}^{-1}) = 1.6^\circ \text{ with other D decay modes.}$

