Charmless B Decay Measurements at Belle II

Sagar Hazra

Tata Institute of Fundamental Research,
Mumbai 400 005, India

E-mail: sagar.hazra@tifr.res.in

We report the measurements of CP asymmetry and branching fraction of various charmless B decays at the Belle II experiment. We use a sample of electron-positron collisions at the $\Upsilon(4S)$ resonance delivered by the SuperKEKB collider that corresponds to 62.8 fb^{-1} of integrated luminosity. All the results agree with the previous determinations and contribute important information to an early assessment of Belle II performance.
1. Introduction

The study of charmless B decays is a keystone of the flavor physics program to test the standard model (SM) and its extension. These decays mediated by Cabibbo-suppressed $b \rightarrow u$ tree and $b \rightarrow d, s$ loop transitions are sensitive to non-SM contributions. The CKM angle θ_{13} can be measured directly only by an analysis of charmless $B \rightarrow \pi \pi, \rho \rho$ decays related by isospin symmetry. Isospin symmetry can be used also the make sum-rules, i.e. linear combination of B and $C\bar{P}$ asymmetries of charmless decays, that can provide test of the standard model with precision generally better than 1%. Belle II has a unique capability of studying jointly, and within a consistent experimental environment for, all relevant final states of isospin-related B decays to improve the knowledge of alpha and put stringent bound on sum-rule tests.

Belle II [2] is a magnetic spectrometer having almost 4π solid-angle coverage, designed to reconstruct final-state particles of e^+e^- collisions delivered by the SuperKEKB asymmetric-energy collider [3], located at the KEK laboratory in Tsukuba, Japan. Belle II experiment started collecting data from March 2019. In this proceeding, we will focus on the result based on 62.8 fb^{-1} dataset which was collected at $\Upsilon(4S)$ resonance. With this dataset, charmless B decay mainly focus the early assessment of detector performance and advance analysis techniques capabilities.

2. Analysis overview and Challenges

We form final-state particle candidate by applying loose baseline selection criteria and then combine them in kinematic fits consistent with the topologies of the desired decays to reconstruct intermediate states and B candidates. The key challenge in reconstructing significant charmless signal is the large contamination from $e^+e^- \rightarrow q\bar{q}$ ($q = u,d,s,c$) continuum background coupled with low signal branching fraction. We use a binary-decision-tree classifier that combines a number of mostly topological variables having some discrimination between B-meson signal and continuum background. We pick up those variables whose correlation with ΔE and M_{bc} is below $\pm 5\%$ to reduce possible bias in the signal yield determination. The latter two are the energy difference $\Delta E = E_{B} - \sqrt{s}/2$ between the energy of the reconstructed B candidate and half of the collision energy, both in the $\Upsilon(4S)$ frame, and the beam-energy-constrained mass $M_{bc} = \sqrt{s}/(4c^2) - (p_B/c)^2$, which is the invariant mass of the B candidate with its energy being replaced by the half of the center-of-mass collision energy. Another challenge is to separate B background events that peak in the signal region. To deal with this peaking background, we either kinematically veto it from the sample or include a separate component in the fit model. For example, in the analysis of $B \rightarrow K\pi\pi$ decays the background from $B^* \rightarrow \bar{D}^{0}(\rightarrow K^{*}\pi\pi)\pi$ decays is suppressed by vetoing candidates with a kaon-pion mass in the range $[1.84, 1.89]$ GeV/c2. We then apply optimized continuum suppression and particle identification criteria. For the signal reconstruction efficiencies calculation and fit model development, we use simulation and correct/validate with control data. To determine the systematic uncertainties, pseudo-experiment and control channel studies are performed. We then inspect the most interesting region (or, signal region) on data to measure the physics observables.
3. Isospin sum-rule

The isospin sum-rule relation for the $B \rightarrow K\pi$ system given in Eq. (1) provides a stringent test of the SM.

$$I_{K\pi} = A_{K^+\pi^-} + A_{K^0\pi^0} \frac{B(K^0\pi^0)}{B(K^+\pi^-)} \tau_{B^0} - 2A_{K^+\pi^0} \frac{B(K^0\pi^0)}{B(K^+\pi^-)} \tau_{B^+} - 2A_{K^0\pi^0} \frac{B(K^0\pi^0)}{B(K^+\pi^-)} = 0. \quad (1)$$

In all the four $K\pi$ channels, signal yields are determined with unbinned extended maximum-likelihood fits of the ΔE and M_{bc} distributions. The key challenge in $B^0 \rightarrow K^0\pi^0$ analysis arises due to the absence of primary charged final-state particles at the B decay vertex. The position of the B vertex reconstructed from the intersection of the K^0_d trajectory with the interaction region. We measure the time-integrated asymmetry of the CP-eigenstate $B^0 \rightarrow K^0\pi^0$ with the signal-side quark flavor q obtained using the flavor content of the other B-meson, provided by the category-based flavor tagger [4]. The asymmetry $A_{K^0\pi^0}$ is determined from a simultaneous maximum-likelihood fit to the unbinned M_{bc}-$\Delta E-q \cdot r$ distributions, where r is the dilution factor of flavor tagger output. The signal probability density function (PDF) is given by

$$P_{\text{sig}} = \frac{1}{2} [1 + q(1 - 2w_r) \cdot (1 - 2\chi_d)A_{K^0\pi^0}], \quad (2)$$

where χ_d is the $B^0\overline{B}^0$ mixing frequency, w_r is the wrong tag fraction in each dilution (r) interval. Figures 1 and 2 show the ΔE distribution of all the four $K\pi$ system. We obtain the following branching fractions,

- $B(B^0 \rightarrow K^+\pi^-) = [18.0 \pm 0.9(\text{stat}) \pm 0.9(\text{syst})] \times 10^{-6}$,
- $B(B^+ \rightarrow K^+\pi^0) = [11.9^{+1.1}_{-1.0}(\text{stat}) \pm 1.6(\text{syst})] \times 10^{-6}$,
- $B(B^+ \rightarrow K^0\pi^+)$ = $[21.4^{+2.3}_{-2.2}(\text{stat}) \pm 1.6(\text{syst})] \times 10^{-6}$,
- $B(B^0 \rightarrow K^0\pi^0) = [8.5^{+1.7}_{-1.6}(\text{stat}) \pm 1.2(\text{syst})] \times 10^{-6}$

and CP-violating rate asymmetries

- $A_{CP}(B^0 \rightarrow K^+\pi^-) = -0.16 \pm 0.05(\text{stat}) \pm 0.01(\text{syst})$,
- $A_{CP}(B^+ \rightarrow K^+\pi^0) = -0.09 \pm 0.09(\text{stat}) \pm 0.03(\text{syst})$,
- $A_{CP}(B^+ \rightarrow K^0\pi^+)$ = $-0.01 \pm 0.08(\text{stat}) \pm 0.05(\text{syst})$,
- $A_{CP}(B^0 \rightarrow K^0\pi^0) = -0.40^{+0.46}_{-0.44}(\text{stat}) \pm 0.04(\text{syst})$.

The dominant contribution in the systematic uncertainties comes from π^0 and K^0_s reconstruction efficiency, it will be reduced with more data.

4. CP violation in multibody decays

The study of multibody [5] charmless B decays has recently attracted significant attention in the flavor program. The contribution between weak- and strong-interaction dynamics in $B^+ \rightarrow K^+K^-K^+$, $B^+ \rightarrow K^+\pi^-\pi^+$ and $B^0 \rightarrow K^+\pi^-\pi^0$ decays are enriched by the amplitude structure
Charmless B Decay Measurements at Belle II

Figure 1: Signal-enhanced ΔE distributions of $B^0 \to K^*\pi^-$ (left) and $B^+ \to K^*\pi^0$ (right).

Figure 2: Signal-enhanced ΔE distributions of $B^+ \to K^0\pi^+$ (left) and $B^0 \to K^0\pi^0$ (right).

accessible via their Dalitz plot. In Fig. 3 we show the ΔE distributions for two of these multibody systems. We obtain the following branching fractions,

$$\mathcal{B}(B^+ \to K^+K^-K^+) = [35.8 \pm 1.6(\text{stat}) \pm 1.4(\text{syst})] \times 10^{-6},$$

$$\mathcal{B}(B^+ \to K^+\pi^-\pi^+) = [67.0 \pm 3.3(\text{stat}) \pm 2.3(\text{syst})] \times 10^{-6},$$

$$\mathcal{B}(B^0 \to K^+\pi^-\pi^0) = [38.1 \pm 3.5(\text{stat}) \pm 3.9(\text{syst})] \times 10^{-6}$$

and CP-violating rate asymmetries

$$\mathcal{A}_{CP}(B^+ \to K^+K^-K^+) = -0.103 \pm 0.042(\text{stat}) \pm 0.020(\text{syst}),$$

$$\mathcal{A}_{CP}(B^+ \to K^+\pi^-\pi^+) = -0.010 \pm 0.050(\text{stat}) \pm 0.021(\text{syst}),$$

$$\mathcal{A}_{CP}(B^0 \to K^+\pi^-\pi^0) = +0.207 \pm 0.088(\text{stat}) \pm 0.011(\text{syst}).$$

The dominant contribution in the systematic uncertainties comes from π^0 reconstruction and tracking efficiency, it will be reduced with more data.

5. Towards the determination of α/ϕ_2

The study of charmless decays at Belle II can provide improved measurements of the CKM unitarity angle $\alpha/\phi_2 = \arg\left(-\frac{V_{td}V_{cb}^*}{V_{ud}V_{ub}^*}\right)$, where V_{ij} are elements of the quark-mixing matrix. In particular, the combined analysis of branching fractions and CP violating asymmetries of the complete set of $B \to \pi\pi, \rho\rho$ isospin partners enables a determination of α [6]. We are now focusing
Charmless B Decay Measurements at Belle II

Figure 3: Signal-enhanced ΔE distributions of $B^+ \to K^+K^-K^+$ (left) and $B^0 \to K^+\pi^-\pi^0$ (right).

On $B^0 \to \pi^0\pi^0$, $B^+ \to \pi^+\pi^0$, $B^0 \to \pi^+\pi^-$ and $B^+ \to \rho^+\pi^0$ decays. The $B^0 \to \pi^0\pi^0$ channel is particularly challenging as it requires two π^0 reconstruction. A dedicated boosted decision-trees classifier used to suppress background photons by combining 20 calorimetric variables. Signal yields are determined with an extended maximum-likelihood fit of the ΔE, M_{bc} and transformed continuum suppression variable. Figure 4 shows the ΔE distribution of two $\pi\pi$ channels. We obtain the following branching fractions,

$$B(B^0 \to \pi^+\pi^-) = \left[5.8 \pm 0.7\text{ (stat)} \pm 0.7\text{ (syst)}\right] \times 10^{-6},$$

$$B(B^+ \to \pi^+\pi^0) = \left[5.5^{+1.0}_{-0.5}\text{ (stat)} \pm 0.7\text{ (syst)}\right] \times 10^{-6},$$

$$B(B^0 \to \pi^0\pi^0) = \left[0.98^{+0.48}_{-0.39}\text{ (stat)} \pm 0.27\text{ (syst)}\right] \times 10^{-6}$$

and CP asymmetry of $\mathcal{A}_{CP}(B^+ \to \pi^+\pi^0) = -0.04 \pm 0.17\text{ (stat)} \pm 0.06\text{ (syst)}$. The $B^+ \to \rho^+\rho^0$ decay involves pion-only final state, where the large width of the ρ mesons offers reduced distinctive features against dominant continuum background. Isolating a low-background signal is therefore the main challenge of the analysis. Signal yields are determined with an unbinned maximum-likelihood fits of ΔE, continuum-suppression decision-tree output, the dipion masses and cosines of helicity angles of the ρ candidates. Figure 5 shows the ΔE and log transform continuum-suppression output of $B^+ \to \rho^+\rho^0$ candidates. We obtain the branching fraction $B = [20.6 \pm 3.2\text{ (stat)} \pm 4.0\text{ (syst)}] \times 10^{-6}$ and longitudinal polarization fraction $f_L = 0.936^{+0.049}_{-0.047}\text{ (stat)} \pm 0.021\text{ (syst)}$. The dominant contribution in the systematic uncertainties comes from π^0 reconstruction and tracking efficiency, it will be reduced with more data.

Figure 4: Signal-enhanced ΔE distributions of $B^+ \to \pi^+\pi^0$ (left) and $B^0 \to \pi^0\pi^0$ (right).
Charmless B Decay Measurements at Belle II

Figure 5: Distributions of ΔE (left) and log transform continuum-suppression output (right) for $B^+ \rightarrow \rho^+ \rho^0$ candidates.

6. Summary

Charmless B decays play an important role in sharpening flavor picture. Belle II is getting ready to play a lead role in testing isospin sum rule, the study of local CP violation, and the determination of α. We discuss herein the preliminary measurements of charmless decays performed using 63 fb$^{-1}$ of early data. First Belle II measurement of $B^0 \rightarrow K^0 \pi^0$ completes the ingredients for the isospin sum rule; $B \rightarrow \rho \rho$ and $\pi \pi$ analysis show performance better than early Belle result. All results agree with known values within uncertainties and are mostly dominated by small sample size.

References