Latest Electroweak and radiative penguin results from Belle II

Tristan Fillinger

on behalf of the Belle II collaboration

25/02/22

Lake Louise Winter Institute 2022

SuperKEKB collider and Belle II

- Electron (7 GeV) Positron (4 GeV) collider
- KEKB upgrade:
 - x 1.5 currents
 - x 1/20 vertical beam size (Nanobeam scheme)
 - \rightarrow Target up to 30 x higher \mathcal{L}_{inst}
 - Higher beam backgrounds
- Build to run on high Υ masses (from $\Upsilon(3S)$ to $\Upsilon(6S)$)
- On-resonance data:
 - Around $\sqrt{s} = 10.58 \text{ GeV}$
 - \rightarrow Y(4S) resonance $\rightarrow B\overline{B}$
 - \rightarrow Clean B sample
- Off-resonance data:
 - 60 MeV below Y(4S) resonance
 - e⁺e⁻ → qq̄, τ⁺τ⁻, e⁺e⁻ where q = (u, d, s, c)
 → Control sample for continuum background

Belle II detector

Luminosity

Status

- Collected ~ 268 fb⁻¹ since April 2019
- Record-breaking instantaneous luminosity:
 3.8 x 10³⁴ cm⁻²s⁻¹ (last: LHC 2.14 x 10³⁴ cm⁻²s⁻¹)
- Ramping up toward the target luminosity
- Highest daily integrated luminosity: 2.2 fb⁻¹
- All shown results
 - 63 fb⁻¹ on-resonance
 - 9 fb⁻¹ off-resonance

Goal: 50 ab⁻¹

Electroweak and radiative penguin decays

- Flavor changing neutral current (FCNC) transitions occurring at loop level only → Highly suppressed
- Focus on $b \rightarrow s$ transitions:

• Interesting as NP can appear either in a loop or mediate FCNC at the tree level

- Tensions with respect to SM
- Measurements presented here:
- Radiative penguin decays:
 - Measurement of $\mathcal{B}(B \rightarrow K^* \gamma)$ (exclusive)
 - Observation of $B \rightarrow X_{(s,d)}\gamma$ (inclusive)
- Electroweak penguin decays:
 - Study of $B^+ \rightarrow K^+ l^+ l^-$ (exclusive)
 - Search for $B^+ \to K^+ \nu \overline{\nu}$ (exclusive)

Measurement of $\mathcal{B}(B \rightarrow K^* \gamma)$

Status

- Short term: measure $\mathcal{B}(B \rightarrow K^* \gamma) = \mathcal{O}(10^{-5})$
- Long term: measure more NP sensitive variables:
 - CP violation asymmetry A_{CP}:

$$A_{CP} = \frac{\Gamma\left(\overline{B} \to \overline{K}^* \gamma\right) - \Gamma(B \to K^* \gamma)}{\Gamma\left(\overline{B} \to \overline{K}^* \gamma\right) + \Gamma(B \to K^* \gamma)}$$

• Isospin asymmetry Δ_{0+} :

$$\Delta_{0^+} = \frac{\Gamma(B^0 \to K^{*0} \gamma) - \Gamma(B^+ \to K^{*+} \gamma)}{\Gamma(B^0 \to K^{*0} \gamma) + \Gamma(B^+ \to K^{*+} \gamma)}$$

• Latest measurement from Belle with 772 x $10^6 B\overline{B}$ pairs

 \rightarrow 3.1 σ evidence for the isospin symmetry violation [PRL 119, 191802 (2017)]

[arxiv:2110.08219]

Analysis strategy

- Full decay chain reconstruction: K^{*0} ($K^+\pi^-$, $K_S^0\pi^0$), K^{*+} ($K^+\pi^0$, $K_S^0\pi^+$); $K_S^0 \rightarrow \pi^+\pi^-$, $\pi^0 \rightarrow \gamma\gamma$
- Signal E_{γ} cut around energy expected from 2 body decays
- Main backgrounds from misreconstructed BB events and combinatorial background
- Continuum events with γ coming from π^0 or η
 - π⁰ / η veto: Remove events consistent with (π⁰, η) kinematics + BDT suppression with event-based variables

Signal extraction

 Unbinned ML fit to ΔE = difference between observed and expected B-meson energy

Results

Mode	$\mathcal{B}_{\text{meas}}$ [10 ⁻⁵]	$\mathcal{B}_{\mathrm{PDG}}$ [10 ⁻⁵]
$B^0 \to K^{*0} \gamma$	$4.5\pm0.3\pm0.2$	4.18 ± 0.25
$B^+ \to K^{*+} \gamma$	$5.2\pm0.4\pm0.3$	3.92 ± 0.22

Consistent with world average

 ${f B}^0 o {f K}^{st 0} (o {f K}^+ \pi^-) \gamma$

[arxiv:2110.08219]

Status

- Short term: first observation of $B \rightarrow X_{(s,d)}\gamma$
- Long term: measurement of $\mathcal{B}(B \to X_{(s,d)}\gamma)$
 - NP scenario: charged Higgs [EPJC 78 8, 675 (2018)]

Result

• Excess compatible with $B \rightarrow X_{(s,d)} \gamma$ signal

Analysis strategy

- Reconstruct high energy γ on signal side
 - Standard selection with π^0 - η veto
- Reduction of the continuum backgrounds using BDT trained with event shape variables
- Expected backgrounds obtained from offresonance (continuum) and Monte-Carlo simulation ($B\overline{B}$)

Signal extraction

 Excess wrt total expected background on photon energy spectrum

Study of $B^+ \rightarrow K^+ l^+ l^-$

[BELLE2-NOTE-PL-2021-005]

Status

- Short term: Reconstruction of $B^+ \rightarrow K^+ l^+ l^-$
- Long term: Measurement of R(K):

$$R(K) = \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ e^+ e^-)}$$

- 3.1σ evidence for LFU violation by LHCb
- Belle II with > 5-10 ab⁻¹ will provide significant independent information on R(K)

Analysis strategy

- Muon and electron modes reconstructed
- Background suppression with BDT using event shape and vertex information

Signal extraction

Simultaneous ML fit to the beam energy constrained mass M_{hc} and ΔE

Result

- $N_{sig} = 8.6 \stackrel{+4.3}{_{-3.9}} \text{ (stat) } \pm 0.4 \text{ (syst)}$ Hint for $B^+ \rightarrow K^+ l^+ l^-$ signal

Search for $B^+ \to K^+ \nu \overline{\nu}$

Status

- $B^+ \rightarrow K^+ \nu \overline{\nu}$ never been observed yet
 - SM: $\mathcal{B}(B^+ \rightarrow K^+ \nu \overline{\nu}) = (4.6 \pm 0.5) \times 10^{-6}$
 - Best upper limit: 1.6 x 10⁻⁵ at 90% CL set by BaBar

[PRD 87, 112005 (2013)]

- NP scenarios:
 - Loop level: Leptoquarks, Axions...
 - Final state: Dark Matter

Analysis strategy

- Select highest-p_T track with at least 1 hit in the vertex detector, then reconstruct the remaining tracks and clusters in the event
- Minimise the background contamination with two nested BDTs trained on event topology, missing energy, vertex separation and very distinct signal kinematics
- 20x higher signal efficiency wrt to BaBar (exclusive reconstruction) $\varepsilon_{sig} = 4.3\%$; ($\varepsilon_{sig}^{BaBar} = 0.2\%$)
- Validation with control channel: $B^+ \rightarrow J/\psi (\rightarrow \mu^+ \mu^-) K^+$

0.0

0.2

0.4

 BDT_1

0.6

0.8

1.0

Search for $B^+ \to K^+ \nu \overline{\nu}$

[PRL 127, 181802 (2021)]

Signal extraction

• Binned simultaneous ML fit to p_T (K⁺) x BDT₂ to extract signal strength μ

Result

- No significant signal is observed, limit of 4.1 x 10⁻⁵ at 90% CL is set
- Competitive with "only" 63 fb⁻¹

Prospects

- Bigger data set
- Includes more channels to be studied

Summary

- The first electroweak and radiative penguin signals have been seen at Belle II
 - More channels to be investigated soon
- First published Belle II B-physics paper
 - Search for $B^+ \rightarrow K^+ \nu \overline{\nu}$: highly **competitive limit** with "only" 1/10 of previous B-factory dataset
- More to come soon (4x bigger dataset on tape, improved analysis techniques)

Thank you for your attention

Tristan Fillinger

25/02/22

Lake Louise Winter Institute 2022

U	ni	V	/ersité				
			de Stra	35	sbo	າບ	Irq

Belle II detector

 Designed to give similar or better performance than Belle even under higher backgrounds

DAQ and trigger systems upgraded

- Latest measurement from Belle with 772 x $10^6 B\overline{B}$ pairs ٠
 - \rightarrow 3.1 σ evidence for the isospin symmetry violation:

Observable	Belle [PRL 119, 191802 (2017)]	SM [JHEP 04,027 (2017)] [PRD D88, 094004 (2013)]
$\mathcal{B}(\mathrm{B}^0\to\mathrm{K}^{*0}\gamma)$	$(3.96 \pm 0.07 \pm 0.14) \times 10^{-5}$	$(3.48 \pm 0.81) \times 10^{-5}$
$\mathcal{B}(B^+ \to K^{*+}\gamma)$	$(3.76 \pm 0.10 \pm 0.12) \times 10^{-5}$	$(3.43 \pm 0.84) \times 10^{-5}$
$A_{CP}(B^0 o K^{*0}\gamma)$	$(-1.3 \pm 1.7 \pm 0.4)\%$	$(0.3 \pm 0.1)\%$
Δ_{0^+}	$(+6.2 \pm 1.5 \pm 0.6 \pm 1.2)\%$	$(4.9 \pm 2.6)\%$

Challenge: in future Δ_{0+} will be dominated by f_{+-}/f_{00} , A_{CP} will be statistically limited ٠

Measurement of $\mathcal{B}(B \rightarrow K^* \gamma)$

Source	$K^{*0}[K^+\pi^-]\gamma$	$K^{*0}[K^0_{\rm S}\pi^0]\gamma$	$K^{*+}[K^+\pi^0]\gamma$	$K^{*+}[K^0_{\rm S}\pi^+]\gamma$
No. of $B\overline{B}$ events	1.6	1.6	1.6	1.6
Photon selection	$^{+0.2}_{-0.4}$	$^{+0.2}_{-0.4}$	$^{+0.2}_{-0.4}$	$^{+0.2}_{-0.4}$
π^0/η veto	3.8	3.8	3.8	3.8
Pion identification	0.6			0.6
Kaon identification	0.8		0.8	
$K_{\rm S}^0$ reconstruction		2.4		2.4
π^0 selection		3.4	3.4	
Tracking efficiency	1.4	1.4	0.7	1.4
MVA selection	2.0	6.0	2.0	4.0
MC statistics	0.2	0.5	0.3	0.3
PDF shape parameters	1.0	$^{+7.4}_{-5.4}$	$^{+2.4}_{-3.1}$	$^{+0.6}_{-1.4}$
Misreconstructed signal	1.5	$^{+6.8}_{-7.2}$	$^{+4.7}_{-5.9}$	$^{+2.5}_{-3.1}$
Total	5.3	$^{+13.2}_{-12.4}$	$^{+7.9}_{-8.9}$	$^{+7.0}_{-7.3}$

Table III. Relative systematic uncertainties (in %) for the branching fraction measurement.

Table XXVIII. The BF systematic for $B \to K J/\psi(\ell \ell)$ modes (in %)

Source	$K^+J/\psi(\mu^+\mu^-)$	$K^+J/\psi(e^+e^-)$	$K^0_S J/\psi(\mu^+\mu^-)$	$K_S^0 J/\psi(e^+e^-)$
No. of $B\bar{B}$ pairs	2.70	2.70	2.70	2.70
PDF shape parameters				
MVA criteria				
Electron identification	_	1.32	_	1.50
Muon identification	1.50	_	1.50	_
Kaon identification	0.93	0.93	0.93	0.93
K_S^0 reconstruction	_	_	7.87	7.87
Tracking	2.73	2.73	3.64	3.64
Signal efficiency	0.05	0.05	0.09	0.09
Total				

(R(K^{*})) : Belle II vs LHCb

Belle II

K+, Ks

1 ab-1

30 %

30 %

Better

thanks to

 M_{bc}

Accessible

B->Kee

Resolution

High q² bin

LHCb

K+

1 fb⁻¹

~5 %

<5% Lower

due to

tracking and trigger

Worse

because of

Brems

Hard

- In comparison to LHCb, 3 differing aspects to consider: efficiency, statistics and resolution
- Electrons (and muons) in Belle II have better resolution thanks to M_{bc}

(R(K^{*})) : Prospects

Largest deviation in the low q^2 bin

[Belle arXiv: 1904.02440]

Belle P' [Belle Phys. Rev. Lett. 118, 111801]

- The largest deviation with 2.6σ observed in muon channel
- Electron channel is deviating with 1.1σ
- With 2.8 ab⁻¹ the uncertainty on P'_{5} (both e $\& \mu$) will be comparable to LHCb 3 fb⁻¹ (μ only)

19

LHCb	Belle II
single-arm detector	hermetic detector
longitudinal momentum of B not known	known initial state kinematics
	pro @ neutral object reconstruction (photon, K_L)

• $B^+ \rightarrow K^+ \nu \overline{\nu}$ is a golden channel at Belle II: clean environment and well defined initial state but still challenging as two neutrinos in the final state leave no signature

Search for $B^+ \to K^+ \nu \overline{\nu}$

Signal extraction

• Binned simultaneous ML fit to p_T (K⁺) x BDT₂ to extract signal strength μ

On-resonance data

- Competitive limit
- Comparison with other experiments via σ_{BR} assuming same luminosity \rightarrow the performance of inclusive tag:
 - 3.5% better than hadronic tag
 - 20% better than semileptonic tag
 - 10% better than combined hadronic and semileptonic tag

- Bigger dataset (+ possible combination with Belle dataset)
- Attacking biggest systematic (background normalizations, e.g continuum modelling)
- More channels $(K^*, K_S^0, K^{*+}...)$
- Possible improvement in background suppression (use of NN architecture, discriminating vars)
- Combined analysis of inclusive and exclusive tagged events

	63 fb ⁻¹ (arXiv:2104.12624)	197 fb ⁻¹ (Summer 2021 - current lumi)	450 fb ⁻¹ (Summer 2022 - expected)	(450 + 700) fb ⁻¹ (+ Belle I sample)
$\sigma_{BR}(K^+)$	1.55	0.78	0.52	0.32
$\sigma_{BR}(K^+ + K_S^0)$	-	0.68	0.45 P1	elimina

 $10^5 imes \sigma_{
m BR}$ uncertainty for next analyses, assuming 25% improvement + 40% K_S^0

