

Upgrade to the Belle II Vertex Detector with CMOS pixel sensors

Maximilian Babeluk

on behalf of the Belle II VXD upgrade collaboration

2022-03-02

17th "Trento" Workshop on Advanced Silicon Radiation Detectors

Belle II experiment at the SuperKEKB collider

- Asymmetric $e^+ e^-$ collisions at $\sqrt{s} = 10.58 \ GeV$
- Luminosity-frontier experiment, exploring new physics

electron (7 GeV)

- Record peak luminosity $3.81 * 10^{34} cm^{-2} s^{-1}$
- Path to reach $2 * 10^{35} cm^{-2}s^{-1}$ identified
- Target of $6 * 10^{35} cm^{-2} s^{-1}$

- Long Shutdown 1 (2022/23)
 - Exchange of pixel detector (PXD)
 - TOP-PMT replacement
- Long Shutdown 2 (2026/27)
 - SuperKEKB upgrade foreseen
 - Vertex detector upgrade
- Only few years till then
 - Need to utilize currently available technologies
- Several different options/technologies for a major upgrade of the vertex detector under ¹⁰ discussion

20/4/1 21/4/1 22/4/1 23/4/1 24/4/1 25/4/1 26/4/1

- 2 inner layers of Pixel Detector (PXD):
 - DEPFET sensor, 50 μm x 55-85 μm pixels
 - ~15 µm spatial resolution
 - 20 µs integration time
 - 0.2%X₀ per layer
 - Layer 2 currently only partially installed
 - Completion of PXD planned for LS1 (2022/23)

- 4 outer layers of Silicon Vertex Detector (SVD):
 - Double-side silicon strip (DSSD) detector
 - ~12/25 µm spatial resolution
 - ~3 ns timing resolution
 - $-0.7\%X_0$ per layer

Limitations of current VXD

- Tolerance for beam-induced background (BG)
 - Predicted occupancy in L3 will be about 3%, which is basically the limit for efficient tracking
 - Limit can be relaxed to 6% occupancy by hit-time reconstruction and BG rejection
 - Difficult to perform accurate BG prediction
 - Margin is small
- Level 1 trigger latency
 - Belle II trigger latency is limited to 5 µs by SVD
 - Limited depth of APV25 trigger buffer
- Tracking and vertexing performance
 - Tracking performance in low-pt limited by material budget
 - Room to improve vertex resolution with better hit position resolution
 - PXD is not used for track-finding

Requirements for an Upgrade

Radius range: R	14 – 135 mm ^(**)					
Tracking & Vertexing performance at least as good as current VXD						
Single point resolution ^(*)	< 15 um					
Total material budget	< (2*0.2% + 4*0.7%) X ₀					
Robustness against radiation environment						
Robustness again	st radiation environment					
Robustness again Hit rate ^(*)	st radiation environment ~ 120 MHz/cm ²					
Robustness again Hit rate ^(*) Total Ionizing Dose ^(*)	st radiation environment ~ 120 MHz/cm ² ~ 10 Mrad/year					
Robustness again Hit rate ^(*) Total Ionizing Dose ^(*) NIEL fluence ^(*)	st radiation environment ~ 120 MHz/cm ² ~ 10 Mrad/year ~ 5.0 × 10 ¹³ n _{eq} /cm ² /year					

(**) Optionally, we may include also the CDC inner region (135<R<240mm)

^(*) requirement for the innermost layer (R=14mm)

- Several sensor technologies and concepts under discussion, R&D ongoing
 - Thin DSSD sensor
 - DSSDs with 140µm thickness and fine pitch (~85µm) on both sides
 - Dedicated front-end ASIC (SNAP128A) with lower noise, binary readout and long buffer for larger trigger latency
 - Target: outer layers (L3-L5)
 - DEPFET pixel sensor
 - Improvement of currently used pixel detectors, higher gain, faster ASICs
 - Target: inner layers (L1,L2)
 - Silicon-on-isolator pixel (SOIPIX) sensor
 - CMOS circuit produced on silicon wafer isolated by a buried oxide (BOX) layer
 - Fully depleted sensor, fast signal, good SNR
 - Dual Timer Pixel (DuTiP) concept: alternate operation of two timers allows detect next particle hit before the previous one is red out.
 - Depleted monolithic active pixels sensors (DMAPS)
 - Pixel sensor in CMOS technology
 - Based on TJ-Monopix2 R&D
 - Target: fully pixelated CMOS Vertex Detector (Belle II VTX)

- 5 straight layers with DMAPS
 - Radii: ~14, 22, 39, 90, 140 mm
- Ladder / stave design
 - Chips are identical in all layers, but the ladder / stave concept is different depending on the layer (L1 is 14 cm long, L5 is 70 cm long)
 - L1+L2 (iVTX): All silicon ladders, air cooling, services out of the acceptance.

L1

L3

14

 L3+L4+L5 (oVTX): Support frame, cold plate, sensors, flex, power bus, water cooling

- Expected performance of TJ-Monopix2 used for simulation
- Decay channel used: $B^0 \to D^* \mu \nu \to (D^0 \pi) \mu \nu$ with $D^0 \to K \pi(\mu \mu)$
- Reconstruction efficiency increases x1.5 x1.8
- Lower reconstruction limit from 75 MeV to 50 MeV for p_T

Existing CMOS MAPS options

Non-exhaustive table built in late 2020			$\sim \sim$ Starting point			
Sensor available 2020	ALPIDE	MIMOSIS-1	TJMonopix-2	LFMonopix-2	ATLASPix-3	Belle II
Techno	TJ-180 nm	TJ-180 nm	TJ-180 nm	LF-150 nm	TSI 180 nm	
Pixel pitch [µm2]	29x27	30x27	33x33	150x50	150x50	30 to 40
#Columns x #Rows	1024x512	1024x504	512x512	56x340	132x372	
Sensitive area [cm ²]	27.5x15.0	31.0x13.6	16.9x16.9	8.4x17	19.8x18.6	~30x20
Time Stamp [ns]	5000	5000	25	25	25	<100
Readout scheme	Contin./Trig.	Continuous	Global shutter	Continuous	Trigger: 25 µs latency	5 → 10
Output charge (bits)	1	1	7	6	7	1-7
Bandwidth (Mbit/s)	1200	3200	320		1300	O(320)
Power (mW/cm ²)	18-35	~50	O(200)		~140	~100
Hit rate (MHz/cm²)	<10	15-70	>100	>100	>100	≤120
TID kGy	27	100	1000		1000	1000
Fluence (x 10 ¹³ n _{eq} .cm ⁻²)	1.7	7	100	100	100	10

TJ-Monopix2

- TJ-Monopix2
 - Chosen as basis for Belle II VTX
 - DMAPS in TowerJazz (TJ) 180 nm process
 - Small collection electrode
 - small capacitance
 - low power and noise
 - High-resistivity epi layer: ~1-2 k Ω cm
 - Chip size: 2 × 2 cm²
 - Pixel pitch: $33 \times 33 \ \mu m^2$
 - 512 × 512 pixels
 - Power: \sim 1 $\mu W/pixel$ (100 to 200 mW/cm²)
 - Column drain readout
 - Triggerless

- First lab tests checking ENC and threshold (still room for tuning)
- Chip detects radiation
- Further tests necessary
- → See previous talk by Lars Schall

OBELIX: Optimized BELIe II pIXel sensor

- Based on the TJ-Monopix2
- Benefits from the whole Monopix1/2 family
- Optional tuning of analog circuit when results are available
- Inherits high radiation tolerance and small integration time
- Slowed down
 - TJ-Monopix2 clock: 40 MHz (LHC bunch-crossing)
 - OBELIX: ~ 20 MHz (derived from accelerator RF)
 - Reduced power consumption
- Relaxed pixel size: ~ 40 µm pitch
 - Sufficient for VTX
- Narrow LDOs on both sides of the chip
 - Newly developed for this chip
 - Analog power distribution from Monopix2

- OBELIX implements Belle II specific adaptions
 - Hit memory
 - Large trigger latency is required (>5 µs)
 - Trigger synchronisation
 - On-chip clustering (optional)
- Powerful digital processing required
- High granularity
 - Can operate at high hit-rates from high luminosity
- Expected trigger rate: 30 kHz (poisson)

- L1+L2: full silicon design
- Single piece of silicon with multiple sensors per ladder
- Connected via redistribution layer (RDL)
 - All connections routed to one end of the ladder
 - Simpler cable routing
- Thicker frame for mechanical support with thinned sensing area
- Thinning-steps planned for evaluation:
 - $-400 \ \mu m$, 200 μm , 100 μm , 50 μm
- expected material budget: 0.1%X₀ per Layer

Test structures

- Based on ALICE ITS2 space frame design
- Three flat carbon-fiber structures glued together
- Up to 704 mm long (L5) but only 5.8 g
- Up to 60 g payload: very stiff design needed
- expected material budget: (2*0.3% + 1*0.8%) X₀

- Cu Flex: first prototype for power and data
 - Plans to switch to AI (material budget)
 - Tests of signal integrity and bit error rate
- Vibrational Tests: mandatory to stay above the typical earthquake frequencies (<20 Hz)
- Thermal characterization ongoing

- All pixel detector design improves tracking performance
- DMAPS promising technology for the Belle II upgrade at LS2
- Testing of TJ-Monopix2 ongoing, first results available
- Deveopment of next version OBELIX started recently
 - Powerful one-chip solution
 - Dedicated for Belle II VTX
 - Additional digital processing for Trigger
 - Improvements of analog circuitry when tests are completed
- VTX design currently prototyped
 - low material budget can be achieved

• 33 x 33 μ m² per pixel

HEPHY

- 4 pixels form pixel-cores → area saving
- Pixel cores form double-columns
- 7-bit Timestamp for LE/TE
- Per pixel threshold tuning
- Timestamp delay compensation

