Radiative *B* Meson Decays at Belle and Belle II

Markus Röhrken DESY

On behalf of the Belle and Belle II Collaborations

11th International Workshop on the CKM Unitarity Triangle University of Melbourne, Australia November 22-26, 2021

Overview

- $\circ~$ Belle II BF measurement of $B \to K^* \gamma$ decays.
- $\circ~$ Comparison to Belle's $B \to K^* \gamma$ measurement.
- $\circ~$ Prospects on time-dependent measurements of $B \to K^* \gamma$ at Belle II.
- Measurement of the direct CP asymmetry of inclusive $B \to X_s \gamma$ decays with a lepton tag at Belle.
- Untagged analysis and photon energy spectrum of inclusive $B \to X_s \gamma$ decays at Belle II.
- \circ Prospect of inclusive $B \rightarrow X_s \gamma$ measurements at Belle II.

Introduction to Radiative **B** Meson Decays

• Rare heavy flavor decays mediated by radiative penguin transitions provide sensitive probes for physics BSM:

Radiative SM penguin

Examples of new physics entering the loops

- Sensitive to Wilson coefficients C_7 and C'_7 .
- Observables:
 - $\,\circ\,\,$ Branching fractions: $|C_7|^2+|C_7'|^2$
 - $\circ~$ Direct CP asymmetries: ${\rm Im}(C_7)$
 - Mixing-induced *CP* asymmetries
 + angular observables: C'₇
 (Right-handed currents, photon polarization)
 - Isospin asymmetries: Long distance effects.
 - \circ Inclusive photon energy spectra: $m_{
 m b}$

0 ...

- Various analysis approaches:
 - $\circ~$ Exclusive decays (e.g. $B
 ightarrow K^* \gamma$)
 - Sum-of-exclusive (adding many modes)
 - \circ Inclusive $B \to X_s \gamma$

The Belle Experiment

- The KEKB collider and the Belle experiment have been operated as an asymmetric-energy *B* factory until 2010.
- To date, Belle provides the largest data sample of *B* mesons produced in e⁺e⁻ annihilations.
- The KEKB collider and the Belle detector have been upgraded to SuperKEKB and Belle II, that are designed to operate at 40x higher instantaneous luminosity.

The Belle II Experiment

Exclusive Radiative B Decays

Belle II Measurement of $B \rightarrow K^* \gamma$

- Belle II performed a BF measurement of exclusive $B \to K^* \gamma$ decays using 62.8 fb⁻¹. [Belle2-CONF-PH-2021-014]
- Neutral and charged *B* mesons are reconstructed in 4 decay modes, by combination of K^* mesons with hard γ s. ٠

$$B^{0} \to K^{*0} \begin{bmatrix} K^{+} \pi^{-} \end{bmatrix} \gamma \qquad B^{+} \to K^{*+} \begin{bmatrix} K^{+} \pi^{0} \end{bmatrix} \gamma$$
$$B^{0} \to K^{*0} \begin{bmatrix} K_{S}^{0} \pi^{0} \end{bmatrix} \gamma \qquad B^{+} \to K^{*+} \begin{bmatrix} K_{S}^{0} \pi^{+} \end{bmatrix} \gamma$$

- The dominant sources of background are $e^+e^- \rightarrow q\bar{q} (q = u, d, s, c)$ continuum events and photons from the decays of light neutral hadrons like π^0 and η mesons.
 - The continuum background is suppressed Ο using a BDT trained on event shape variables.

 $/\eta$

hard

The photons from π^0 and η decays are veto-ed 0 by a MVA classifier trained on kinematic variables.

Belle Measurement of $B \rightarrow K^* \gamma$

• $B \to K^* \gamma$ measurement by Belle using $772 \times 10^6 \, B \bar{B}$.

	Mode	$N_S^{\bar{B}}$	N_S^B			
	$B^0 \to K^0_S \pi^0 \gamma$	349 ± 2	23 ± 15			
	$B^0 \to K^+ \pi^- \gamma$	$2295\pm56\pm27$	$2339\pm56\pm30$			
	$B^+ \to K^+ \pi^0 \gamma$	$572 \pm 32 \pm 12$	$562 \pm 31 \pm 11$			
	$B^+ \to K^0_S \pi^+ \gamma$	$745 \pm 32 \pm 8$	$721 \pm 32 \pm 9$			
Belle with $772 \times 10^6 B \bar{B}$			PRL 119 , 19	1802 (2017)		
$\mathcal{B}(B^0 \to K^{*0}\gamma) = (3.96 \pm 0.07 \pm 0.14) \times 10^{-5},$						

$$\mathcal{B}(B^{0} \to K^{*0}\gamma) = (3.96 \pm 0.07 \pm 0.14) \times 10^{-5},$$

$$\mathcal{B}(B^{+} \to K^{*+}\gamma) = (3.76 \pm 0.10 \pm 0.12) \times 10^{-5},$$

$$A_{CP}(B^{0} \to K^{*0}\gamma) = (-1.3 \pm 1.7 \pm 0.4)\%,$$

$$A_{CP}(B^{+} \to K^{*+}\gamma) = (+1.1 \pm 2.3 \pm 0.3)\%,$$

$$A_{CP}(B \to K^{*}\gamma) = (-0.4 \pm 1.4 \pm 0.3)\%,$$

$$\Delta_{0+} = (+6.2 \pm 1.5 \pm 0.6 \pm 1.2)\%,$$

$$\Delta A_{CP} = (+2.4 \pm 2.8 \pm 0.5)\%,$$

$$\bar{A}_{CP} = (-0.1 \pm 1.4 \pm 0.3)\%,$$

- Evidence for isospin violation at the 3.1σ level.
- Belle results still more precise than Belle II to date.

DESY. Radiative B Decays at Belle and Belle II | CKM 2021 | Markus Röhrken

Belle II Measurement of $B \rightarrow K^{*} \gamma$ B^0 $\rightarrow K^{*0} \left[K^+ \pi^- \right]$

90

- The signal is extracted by unbinned ML fits to the ΔE distributions (with $\Delta E = E_B^* - E_{\text{beam}}^*$):
 - Signal: Cruijff + Gaussian functions. Ο
 - Self-cross-feed (SCF): Cruijff.
 - Continuum bkg.: Chebyshev polynomial. Ο
 - Partially reconstructed *B* decays: Gaussian

The results agree with the world averages ٠ at the 1-2 σ level:

 50 ± 10

 169 ± 18

 160 ± 17

 $B^0 \to K^{*0} [K^0_{\rm S} \pi^0] \gamma$

 $B^+ \to K^{*+} [K^+ \pi^0] \gamma$

 $B^+ \to K^{*+} [K^0_{\rm S} \pi^+] \gamma$

 $4.4 \pm 0.9 \pm 0.6$

 $5.0 \pm 0.5 \pm 0.4$

 $5.4 \pm 0.6 \pm 0.4$

 1.73 ± 0.01

 4.84 ± 0.02

 4.23 ± 0.02

 $B^0 \to K^{*0} \left[K^0_S \pi^0 \right] \gamma$

Belle II

0.1

Belle II

0.1

0

(Preliminary)

 $Ldt = 62.8 \text{ fb}^{-1}$

0.2

0.3

(Preliminary)

 $Ldt = 62.8 \text{ fb}^{-1}$

0.2

0.3

Prospects of $B \rightarrow K^* \gamma$ **Time-Dependent Measurements**

 W^{-}

- Radiative penguins $b \rightarrow s\gamma$ provide unique probes to the photon polarization:
- W^- bosons couple only to left-handed quarks, chirality flip suppressed: $b \rightarrow \gamma_L + \frac{m_s}{m_b} \gamma_R$

 \rightarrow Photon is dominantly left-handed (right-handed) in $b(\overline{b})$ decays.

• New physics effects can give rise to a right-handed photon polarization:

Models restoring the Left \leftrightarrow Right symmetry and right-handed interactions (W_R^{\pm}, V_{CKM}^R).

Prospects of $B \rightarrow K^* \gamma$ **Time-Dependent Measurements**

• Principle of time-dependent measurements:

• Current status on time-dep. *CP* violation:

Prospects at Belle II:

Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
$\Delta_{0+}(B\to K^*\gamma)$	2.0%	0.70%	0.53%
$A_{CP}(B^0 \to K^{*0}\gamma)$	1.7%	0.58%	0.21%
$A_{CP}(B^+ \to K^{*+}\gamma)$	2.4%	0.81%	0.29%
$\Delta A_{CP}(B \to K^* \gamma)$	2.9%	0.98%	0.36%
$S_{K^{*0}\gamma}$	0.29	0.090	0.030

[The Belle II Physics Book, BELLE2-PAPER-2018-001]

DESY. Radiative B Decays at Belle and Belle II | CKM 2021 | Markus Röhrken

Inclusive Radiative B Decays

Inclusive Measurements

Several tagging techniques are possible at the *B* factory experiments for inclusive analyses.

• Important effects:

Tagging efficiencies, achievable signal yields Purities of the tagged samples

Amount of accessible physics information

Measurement of the Direct CP Asymmetry w/ a Lepton Tag by Belle

• Belle performed a measurement of the direct *CP* asymmetry in $\bar{B} \to X_{s+d}\gamma$ decays with a lepton tag.

- Reconstruct only one high-energetic photon on the signal side.
- From the tagging side, reconstruct only the high-momentum lepton from the second B meson from the $\Upsilon(4S)$ decay.
- The *B* flavor can be inferred from the charge of the lepton.
- Definition of the direct *CP* asymmetry:

$$\mathcal{A}_{CP}(\bar{B} \to X_{s+d}\gamma) \equiv \frac{\Gamma(\bar{B} \to X_{s+d}\gamma) - \Gamma(B \to X_{\bar{s}+\bar{d}}\gamma)}{\Gamma(\bar{B} \to X_{s+d}\gamma) + \Gamma(B \to X_{\bar{s}+\bar{d}}\gamma)}$$

- In the SM, the direct *CP* asymmetry is predicted to vanish. [A.L. Kagan and M. Neubert, PRD **58**, 094012 (1998)]
- In BSM models, the direct *CP* asymmetry could be as large as 10%. [T. Hurth, E. Lunghi and W. Porod, Nucl. Phys. **B704**, 56 (2005)]

Measurement of the Direct CP Asymmetry w/ a Lepton Tag by Belle

• The dominant background originates from $e^+e^- \rightarrow q\bar{q} (q = u, d, s, c)$ continuum events and is suppressed by a BDT classifier trained on event shape variables:

• The $\overline{B} \to X_{s+d}\gamma$ signal is obtained by subtracting the continuum and $B\overline{B}$ contributions:

• The result using $772 \times 10^6 B\bar{B}$ is: $\mathcal{A}_{CP}(\bar{B} \to X_{s+d}\gamma) = (2.2 \pm 3.9 \pm 0.9)\%$ PRL 114, 151601 (2015)

Observation of Inclusive $B \rightarrow X_s \gamma$ **Decays by Belle II**

• Belle II performed a measurement of the inclusive $B \to X_s \gamma$ photon energy spectrum without any tagging.

- Reconstruct only the hard photon from the $B \to X_s \gamma$ decay. In the reconstruction, ignore any other particles in the event.
- Veto photons from light neutral hadrons ($\pi^0 \rightarrow \gamma \gamma$ and $\eta \rightarrow \gamma \gamma$).
- Suppress continuum background using global event shape variables.
- The remaining continuum background is subtracted using off-resonance data.
- Estimate/subtract the $B\bar{B}$ background from MC simulations.
- Determine the photon energy spectrum.

Observation of Inclusive $B \rightarrow X_s \gamma$ Decays by Belle II

• Belle II with 62.8 fb⁻¹:

- An excess of events is seen in the region expected for photons from $B \to X_s \gamma$ decays.

Prospects for Inclusive $B \rightarrow X_s y$ at Belle II

• Prospects:

Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
$\operatorname{Br}(B \to X_s \gamma)_{\operatorname{inc}}^{\operatorname{lep-tag}}$	5.3%	3.9%	3.2%
$\operatorname{Br}(B \to X_s \gamma)_{\operatorname{inc}}^{\operatorname{had-tag}}$	13%	7.0%	4.2%
$\operatorname{Br}(B \to X_s \gamma)_{\text{sum-of-ex}}$	10.5%	7.3%	5.7%
$\Delta_{0+}(B \to X_s \gamma)_{\text{sum-of-ex}}$	2.1%	0.81%	0.63%
$\Delta_{0+}(B \to X_{s+d}\gamma)_{\rm inc}^{\rm had-tag}$	9.0%	2.6%	0.85%
$A_{CP}(B \to X_s \gamma)_{\text{sum-of-ex}}$	1.3%	0.52%	0.19%
$A_{CP}(B^0 \to X_s^0 \gamma)_{\text{sum-of-ex}}$	1.8%	0.72%	0.26%
$A_{CP}(B^+ \to X_s^+ \gamma)_{\text{sum-of-ex}}$	1.8%	0.69%	0.25%
$A_{CP}(B \to X_{s+d}\gamma)_{\rm inc}^{\rm lep-tag}$	4.0%	1.5%	0.48%
$A_{CP}(B \to X_{s+d}\gamma)_{\rm inc}^{\rm had-tag}$	8.0%	2.2%	0.70%
$\Delta A_{CP}(B \to X_s \gamma)_{\text{sum-of-ex}}$	2.5%	0.98%	0.30%
$\Delta A_{CP}(B \to X_{s+d}\gamma)_{\rm inc}^{\rm had-tag}$	16%	4.3%	1.3%

[Belle II Physics Book, arXiv:1808.10567]

Summary

- Radiative B meson decays are very sensitive to physics BSM (2HDM, SUSY, Left↔Right symmetric models, ...)
- All results are in agreement with the SM.
- Belle II started producing physics results. First results on exclusive and inclusive b → sγ mediated decays have been presented.

Supplementary Slides

SIMBA

• Sensitive observables are the inclusive $B \to X_s \gamma$ decay rate and the corresponding photon energy spectra.

• Inclusive $B \to X_s \gamma$ measurements are as well important for the estimation of SM parameters like m_b or $|V_{ub}|$.