Dark sector searches at *Belle II*: recent results and future prospects

Light Dark World International Forum 2021 - December 13th – 15th
Online Conference

Luigi Corona - INFN and University of Pisa
luigi.corona@pi.infn.it
on behalf of the *Belle II* collaboration
Outline

- Introduction to SuperKEKB and the *Belle II* experiment
- Overview on dark sector analysis @ *Belle II*
- Conclusions
B-factories

- Asymmetric e^+e^- colliders optimized for the production of B meson pairs, but also D mesons, τ leptons, ...
- Collisions occur at $Y(nS)$ resonances
 - Mainly at $Y(4S)$: $\sqrt{s} = 10.58$ GeV just above the production threshold of $B\bar{B}$
 - $BR(Y(4S) \rightarrow B\bar{B}) > 96%$
- Beam asymmetric energies: boosted $B\bar{B}$ pairs, for CP-violation time-dependent measurements
- High peak luminosity $L > 10^{34}$ cm$^{-2}$s$^{-1}$

First generation of B-factories

Belle@KEKB, KEK, Tsukuba (JP)
1999–2010, $\int L \, dt = 1$ ab$^{-1}$

BaBar@PEP-II, SLAC (USA)
1999–2008, $\int L \, dt = 0.5$ ab$^{-1}$

Tot: 1.5 ab$^{-1}$
The SuperKEKB collider

- SuperKEKB: new generation of B-factory that provides luminosity to the Belle II experiment

 ➔ Asymmetric beam energies: e^- (7 GeV)/e^+ (4 GeV)
 Operating mainly at $\Upsilon(4S)$, but foreseen runs from $\Upsilon(2S)$ to $\Upsilon(6S)$

 ➔ Highest world peak luminosity with the nano-beam scheme

KEKB
- $I(A) \sim 1.6/1.2$
- $\beta_y^*(\text{mm}) \sim 5.9/5.9$

SuperKEKB
- $I(A) \sim 2.8/2.0$
- $\beta_y^*(\text{mm}) \sim 0.27/0.3$

30x peak luminosity: $6.5 \cdot 10^{35} \text{ cm}^{-2}\text{s}^{-1}$
SuperKEKB: a new intensity frontier machine

- Set a new luminosity world record on June 22nd, 2021:
 \[3.12 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}\]

- SuperKEKB peak performance:
 \[I(e^-/e^+) = 830/690 \text{ mA (target: } \sim 2.9/2.0 \text{ A)}\]
 \[\beta_y^* = 1 \text{ mm (target: } \sim 0.3 \text{ mm)}\]

- Target peak luminosity: \[6.5 \cdot 10^{35} \text{ cm}^{-2}\text{s}^{-1}\]
Belle II detector @ SuperKEKB

- Major upgrade of Belle@KEKB
- Covers more than 90% of the total solid angle

Electromagnetic calorimeter (ECL):
Csl(Tl) crystals
waveform sampling (energy, time, pulse-shape)

Vertex detectors (VXD):
2 layer DEPFET pixel detectors (PXD)
4 layer double-sided silicon strip detectors (SVD)

Central drift chamber (CDC):
He(50%):C_{2}H_{6} (50%), small cells, fast electronics

Magnet:
1.5 T superconducting

K_{L} and muon detector (KLM):
Resistive Plate Counters (RPC) (outer barrel)
Scintillator + WLSF + MPPC (endcaps, inner barrel)

Trigger:
Hardware: < 30 kHz
Software: < 10 kHz

Particle Identification (PID):
Time-Of-Propagation counter (TOP) (barrel)
Aerogel Ring-Imaging Cherenkov Counter (ARICH) (FWD)

LDW2021. Dark sector searches at Belle II: recent results and future prospects. Luigi Corona
Belle II operations

- First collisions during commissioning run on April 26th 2018

 \(\Rightarrow\) 0.5 fb\(^{-1}\) collected in 2018

- First collisions with full detector on March 2019

 \(\Rightarrow\) > 240/fb collected in almost 3 years of data taking

- Target integrated luminosity of the Belle II experiment: 50/ab (x30 Belle + BaBar)

LDW2021. Dark sector searches at Belle II: recent results and future prospects. Luigi Corona
Thanks to the high luminosity and the detector performance, Belle II will be competitive in many physics researches:

- Flavor physics
- Standard Model tests
- Search for rare or suppressed processes in Standard Model
- Dark Sector physics
Thanks to the high luminosity and the detector performance, Belle II will be competitive in many physics researches:

- **Flavor physics**
- **Standard Model tests**
- **Search for rare or suppressed processes in Standard Model**
- **Dark Sector physics**

Belle II physics program

First Belle II physics publications

Invisibly Decaying Z' Boson at Belle II in $e^+e^- \rightarrow \mu^+\mu^- (e^\pm\mu^\pm)$ Plus Missing Energy Final States

Axionlike Particles Produced in e^+e^- Collisions at Belle II
General introduction to dark sector @ Belle II
Main motivation: the absence of dark matter discoveries at the electroweak scale by the LHC or direct detection experiments motivates the interest for models with low-mass dark matter candidates.

Theoretical scenarios introducing light dark matter with $M \sim 0$ (MeV-GeV) need light mediators too.

- Dark matter not charged directly under the Standard Model.
- Dark matter may interact to Standard Model through several "portal" interactions $[1,2]$:
 - vector portal (dark photon, Z',...)
 - scalar portal (dark Higgs,...)
 - pseudo-scalar portal (axions, axion-like particles),
 - neutrino portal (heavy neutrinos)

- Not just solving the dark matter puzzle. Could explain:
 - some astrophysics anomalies: positron excess, ..., (PAMELA, Fermi, ...)
 - some anomalies in B meson decays: R_K, R_{K^*},... (Belle, LHCb, ...)
 - the $(g - 2)_\mu$ anomaly, recently confirmed at Fermilab $[3]$

References:

Dark sector searches @ B-factories

- Negligible interaction probability of dark matter with the detector
 - Search for mediators (visibles or invisibles)
 - Search for final states with missing mass
 - Search for both

- Advantages of B-factories
 - High luminosity
 - Well known initial state
 - Clean environment with low background
 - Hermetic detector with good PID performance

- Excellent capabilities for low multiplicities and missing energy signatures at B-factories

The relationship between mass of the mediators and DM candidates leads to different topologies.
Dark sector searches @ Belle II

- High luminosity provided by SuperKEKB
- All advantages of the B-factories
- High performance detector with dedicated triggers

Belle II will provide an important contribution in the search for dark sector physics with $M \sim 0$ (MeV – GeV)

- Dark matter candidates
- Observed anomalies

Belle II

Dark Sector

Berillium-8

$\mu^30M\mu$

QCD-axions

WIMPS

Black Holes

μeV

meV

eV

keV

MeV

GeV

TeV

$30M_0$

LDW2021. Dark sector searches at Belle II: recent results and future prospects. Luigi Corona

Belle II dark sector trigger

- **2-level trigger:**
 - Hardware-based Level1 Trigger (L1): < 30 kHz
 - Software-based High Level Trigger (HLT): < 10 kHz
- New “dark sector” triggers make the dataset collected up to now world-unique
 - Single photon trigger operational for entire dataset
 - not present in Belle
 - 53/fb in BaBar recorded with single photon trigger
 - Single muon trigger using KLM recently introduced, efficiency ~ 90%
 - 3D track reconstruction at L1 level using neural networks

Actually, newly designed trigger allows sensitivity down to 0.5 GeV of single photon
Overview on dark sector searches @ Belle II
Search for a Z' boson

- Vector boson Z' with a coupling g' only to the 2nd and 3rd generations of leptons, introduced by the $L_\mu - L_\tau$ model [1,2,3]:

$$\mathcal{L} = \sum_\ell \theta g' \bar{\ell} \gamma^\mu Z'_\mu \ell \quad \theta =+1 \text{ se } l = \mu \
\theta =-1 \text{ se } l = \tau$$

- Possible final states:

 - Invisible decays:
 - $Z' \rightarrow \nu \nu$ (μ or τ neutrinos)
 - primarily $Z' \rightarrow \chi \bar{\chi}$ (light dark matter) if kinematically accessible

 - Visible decays:
 - $Z' \rightarrow \mu \mu$
 - $Z' \rightarrow \tau \tau$

Z' → Invisible

- Searching for an invisible Z' for the first time, with 0.276/fb collected by Belle II in 2018
 - If dark matter particles kinematically accessible exist, then $BR(Z' \rightarrow \text{invisible}) = 1$
 - $BR(Z' \rightarrow \text{invisible}) = 1$ for $M_{Z'} < 2m_\mu$ whatever the dark matter is

- Hermetic Belle II detector and clean e^+e^- collisions allow precision determination of missing energy

- Two cases:
 - $e^+e^- \rightarrow \mu^+\mu^- + \text{Missing Energy}$
 - $e^+e^- \rightarrow \mu^\pm e^\mp + \text{Missing Energy}$ (Lepton-Flavor Violation)

- Search for a narrow peak in the recoil mass distribution against $\mu^+\mu^-$ (LFV: $\mu^\pm e^\mp$)

$$M_{\text{recoil}}^2 = s + M_{\mu\mu}^2 - 2\sqrt{s}(E_{\mu^+}^{CMS} + E_{\mu^-}^{CMS})$$

LDW2021. Dark sector searches at Belle II: recent results and future prospects. Luigi Corona
Z' → Invisible ($\mu^+\mu^-$)

- $e^+e^- \to \mu^+\mu^- + \text{Missing Energy}$

- Main background components:
 - $e^+e^- \to \tau^+\tau^- (\gamma)$: missing energy due to neutrinos
 - $e^+e^- \to \mu^+\mu^- (\gamma)$: missing energy due to undetected photons
 - $e^+e^- \to e^+e^-\mu^+\mu^-$: missing energy due to undetected electrons
Z’ → Invisible (μ⁺μ⁻)

- **e⁺e⁻ → μ⁺μ⁻ + Missing Energy**

- Main background components:
 - $e⁺e⁻ → \tau^+\tau^−(γ)$: missing energy due to neutrinos
 - $e⁺e⁻ → μ⁺μ^−(γ)$: missing energy due to undetected photons
 - $e⁺e⁻ → e⁺e^+μ^−μ^−$: missing energy due to undetected electrons

- Dedicated background suppression based on the different origin of missing momentum in background (neutrinos for $\tau\tau$ and ISR for $μμ(γ)$) and signal (FSR)

 ➔ Exploits lepton kinematics
Z’ → Invisible (μ⁺μ⁻)

- **e⁺e⁻ → μ⁺μ⁻ + Missing Energy**

- Main background components:
 - e⁺e⁻ → τ⁺τ⁻(γ): missing energy due to neutrinos
 - e⁺e⁻ → μ⁺μ⁻(γ): missing energy due to undetected photons
 - e⁺e⁻ → e⁺e⁺μ⁺μ⁻: missing energy due to undetected electrons

- Dedicated background suppression based on the different origin of missing momentum in background (neutrinos for ττ and ISR for μμ(γ)) and signal (FSR)

 - Exploits lepton kinematics

- **No significant excess observed in data**
- 90% CL upper limits on the coupling constant g' as a function of the Z' mass $- g' < 5 \cdot 10^{-2}$

Z’ → Invisible (LFV)

- No excess observed in data
- First model independent limits on $\epsilon \cdot \sigma(e^+e^- \rightarrow e^\pm\mu^\mp + \text{invisible})$ down to 10 fb
- First Belle II physics publication:

Belle II 2018

\[\int Ldt = 276 \text{ pb}^{-1} \]

LFV: $\mu^\pm e^{\mp}$

Belle II 2018

\[\int Ldt = 276 \text{ pb}^{-1} \]

$\epsilon \cdot \sigma(e^+e^- \rightarrow e^\pm\mu^\mp + \text{invisible})$
Z’ → Invisibile, future prospects

- **Short-term program**
 - Much more integrated luminosity (already available)
 - Analysis improvements (MVA based background suppression)
 - New trigger lines

- **Preliminary sensitivity**
 - Starting to investigate the model parameters that can explain the \((g - 2)_\mu\)

- Analysis will be finalized by Moriond 2022 (Spring 2022)
Highlights on $Z' \rightarrow \mu\mu$ @ Belle II

- $e^+e^- \rightarrow \mu^+\mu^-'Z', Z' \rightarrow \mu^+\mu^-'$

- Existing results by BaBar with 514/fb and Belle with 643/fb

- Competitive with early dataset (100/fb) due to aggressive background suppression

- MLP (Multi-Layer Perceptron (NN)) based background suppression

- Main background: QED $\mu\mu\mu\mu$ processes
 - ISR
 - Double-photon conversion

- Analysis will be finalized by Summer 2022

LDW2021. Dark sector searches at Belle II: recent results and future prospects. Luigi Corona
Highlights on $Z' \to \mu\mu$ @ Belle II

- $e^+e^- \to \mu^+\mu^-Z'$, $Z' \to \mu^+\mu^-$

- Existing results by BaBar with 514/fb and Belle with 643/fb

- Competitive with early dataset (100/fb) due to aggressive background suppression

 ➔ MLP (Multi-Layer Perceptron (NN)) based background suppression

- Main background: QED $\mu\mu\mu\mu$ processes
 - ISR
 - Double-photon conversion

- Analysis will be finalized by Summer 2022

- Preliminary sensitivity at 90% CL w/o systematics included, using fit scan strategy on dimuon invariant mass

LDW2021. Dark sector searches at Belle II: recent results and future prospects. Luigi Corona
Highlights on $Z' \to \tau\tau$ @ Belle II

- $e^+e^- \to \mu^+\mu^-Z', Z' \to \tau^+\tau^-$: First time search!
- Benchmark model: possibility to reinterpret the results found for the Z' boson of the $L_\mu - L_\tau$ in other models, and in particular those with $\tau\tau$ resonance in a $\mu\mu\tau\tau$ final state
- The analysis is challenging:
 - The presence of neutrinos in the final state makes it impossible to exploit the $\Upsilon(4S)$ kinematic constraint
- Main background components expected: $q\bar{q}, \tau\tau, \mu\mu, e\bar{e}\mu\mu$
- Background suppression:
 - MLP (Multi-Layer Perceptron (NN)) based
- Profit of B-factory clean environment
- Analysis will be finalized by Summer 2022
Highlights on $Z' \rightarrow \tau \tau$ @ Belle II

- $e^+e^- \rightarrow \mu^+\mu^-Z'$, $Z' \rightarrow \tau^+\tau^-$: First time search!
- Benchmark model: possibility to reinterpret the results found for the Z' boson of the $L_\mu - L_\tau$ in other models, and in particular those with $\tau\tau$ resonance in a $\mu\mu\tau\tau$ final state
- The analysis is challenging:
 - The presence of neutrinos in the final state makes it impossible to exploit the $\Upsilon(4S)$ kinematic constraint
- Main background components expected: $q\bar{q}$, $\tau\tau$, $\mu\mu$, $ee\mu\mu$
- Background suppression:
 - MLP (Multi-Layer Perceptron (NN)) based
- Profit of B-factory clean environment
- Analysis will be finalized by Summer 2022
- Preliminary 90% CL sensitivity w/o systematics on MC, using cut and count strategy (final strategy: fit scan on recoil mass against $\mu\mu$)
Axion-like particle (ALP)

- GeV-scale ALPs: pseudo-scalar portal mediator between dark sector and Standard Model
- If ALP-photon coupling \(g_{\alpha\gamma\gamma} \) dominates, than \(BR(\alpha \rightarrow \gamma\gamma) \sim 100\% \)
- Different topologies depending on model parameters \((m_{\alpha}, g_{\alpha\gamma\gamma}) \): focus on mass region where ALP decay is prompt and photons can be well resolved by Belle II

LDW2021. Dark sector searches at Belle II: recent results and future prospects. Luigi Corona
Search for an ALP

- Select events with three photon invariant mass compatible with collision \sqrt{s}
- Search for a narrow peak in $M_{\gamma\gamma}^2$ or M_{recoil}^2 depending on best resolution of signal peak
- Largest background from $e^+e^- \rightarrow \gamma\gamma(\gamma)$

LDW2021. Dark sector searches at Belle II: recent results and future prospects. Luigi Corona
Search for an ALP: results

- Search ranges from $0.2 < m_a < 9.7 \text{ GeV/c}^2$, with the 0.445/fb collected in 2018 with Belle II
 - 500 fits with steps of half mass resolution
- No excess in data observed
 - Highest local significance 2.8σ, observed at $m_a = 0.477 \text{ GeV/c}^2$

LDW2021. Dark sector searches at Belle II: recent results and future prospects. Luigi Corona
Exclusion on $g_{\alpha\gamma\gamma}$

- 95% CL upper limits on the coupling constant $g_{\alpha\gamma\gamma}$
 - $g_{\alpha\gamma\gamma}$ below 10^{-3}

- Limits improve over recast from $e^+e^- \rightarrow \gamma\gamma$ analysis by LEP-II

- First result for ALP at B-factories and second physics publication of Belle II
Search for a dark photon A'

- New massive vector gauge boson, A', with a coupling to the Standard Model photon through the kinetic mixing mechanism, with strength ϵ [1,2]

$$\mathcal{L}_{int} = e \epsilon A'_\mu J_{em}^\mu$$

- This gauge boson can be produced at e^+e^- colliders through different processes:
 - direct production: $e^+e^- \rightarrow \gamma_{ISR} A'$
 - meson decays: $\pi^0 \rightarrow A'\gamma$
 - dark higgsstrahlung: $e^+e^- \rightarrow A'^* A'^h$

- **Direct production with ISR particularly interesting:** $e^+e^- \rightarrow \gamma_{ISR} A'$

- Two basic scenarios depending on dark photon mass:
 - $M_{A'} > 2m_\chi$: invisible decay $A' \rightarrow \chi\bar{\chi}$
 - $M_{A'} < 2m_\chi$: visible decay in Standard Model particles

A' → invisible

- Single photon in the final state needs a single photon trigger, present in the full Belle II dataset

- For signal events: peak in the energy of the photon depending on the $M_{A'}$

 $E_\gamma = \frac{s - M_{A'}^2}{2\sqrt{s}}$

- Main background components:
 - $e^+e^- \rightarrow e^+e^- (\gamma)$: electrons out of acceptance
 - $e^+e^- \rightarrow \gamma\gamma (\gamma)$: photons lost in e.m. calorimeter (ECL) inefficient regions (gaps)
 - cosmic rays

LDW2021. Dark sector searches at Belle II: recent results and future prospects. Luigi Corona
A’ → invisible, background

- Event selection criteria based on $E_γ$ vs $θ_γ$ distribution

\[γγγ, \text{ with two undetected photons} \]

\[e^+e^-γ, \text{ with both } e^+e^- \text{ out of detector acceptance} \]

Background simulation, assuming 20/fb

$γγ$, with an undetected photon

LDW2021. Dark sector searches at Belle II: recent results and future prospects. Luigi Corona
90% CL Exclusion on ε

- $\mathrm{e}^+\mathrm{e}^- \to \gamma_{\mathrm{ISR}} \bar{A}' (A' \to \text{inv.})$: very promising @ Belle II, even with low statistics [1]

- Expected to perform better than BaBar [2]:
 - smaller boost and bigger calorimeter: larger acceptance
 - KLM veto: reject events with a photon undetected in the calorimeter
 - no ECL cracks in pointing to the interaction region: better calorimeter hermeticity

- Analysis timescale ~ end of 2022

Search for a dark Higgs

- Dark photon mass produced by the Higgs mechanism involving a dark Higgs boson [1]

- Both A' and h' can be produced at e^+e^- colliders through the dark higgsstrahlung process

- Different signatures depending on h' mass

 - $M_{h'} > M_{A'}$: prompt decay $h' \rightarrow A'A'$, up to 6 tracks in the final state. Investigated by BaBar(2012) and Belle(2015)

 - $M_{h'} < M_{A'}$: h' is long-lived, thus invisible. Investigated by KLOE(2015)

- **Belle II focuses on the invisible h'**

Dark higgstrahlung @ Belle II

- $e^+e^- \rightarrow A'h', A' \rightarrow \mu\mu, h' \rightarrow \text{invisible}$

 → Signature: 2D peak in recoil vs dimuon mass

- Analysis strategy:

 → scan+count in elliptical mass windows (9k overlapping ellipses)

- Background from QED:
 - $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$
 - $e^+e^- \rightarrow \tau^+\tau^-(\gamma)$
 - $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$

LDW2021. Dark sector searches at Belle II: recent results and future prospects. Luigi Corona
Dark higgstrahlung @ Belle II

- $e^+e^- \to A'h', A' \to \mu\mu, h' \to \text{invisible}$
 - Signature: 2D peak in recoil vs dimuon mass
- Analysis strategy:
 - scan+count in elliptical mass windows
 (9k overlapping ellipses)
- Background from QED:
 - $e^+e^- \to \mu^+\mu^-(\gamma)$
 - $e^+e^- \to \tau^+\tau^-(\gamma)$
 - $e^+e^- \to e^+e^-\mu^+\mu^-$
- Background suppression based on helicity angle
 (muon energy asymmetry)

LDW2021. Dark sector searches at Belle II: recent results and future prospects. Luigi Corona
Very promising expectations even with the 2019-only dataset (less than 9/fb)

- Complementary to BaBar and Belle
- Probing the region left unexplored by KLOE
- Probing non-trivial $\varepsilon^2\alpha_D$ couplings (below $5 \cdot 10^{-7}$)

- Analysis is going to be published soon!
Highlights on $B \rightarrow Kh'$

- Long-lived h' produced in $b \rightarrow s$ transition
- h' mixes with the Standard Model Higgs boson with angle θ
- Search for a bump in the invariant mass of tracks coming from a displaced vertex
- LHCb and Belle II complementary

- Exclusion regions expected with 50/ab at Belle II in green
- Analysis timescale ~ end of 2022
Inelastic Dark Matter (iDM) @ Belle II

- Expanded dark sector with two dark matter states with a small mass splitting and a dark photon
 - χ_1 is stable (relic candidate)
 - χ_2 is long-lived
- Focus on $M_{A'} > m_{\chi_1} + m_{\chi_2}$: the decay $A' \rightarrow \chi_1\chi_2$ is favored

[1] Duerr et al., JHEP04 (2021) 39
[2] Duerr et al., JHEP04 (2021) 146
Expanded dark sector with two dark matter states with a small mass splitting and a dark photon

- χ_1 is stable (relic candidate)
- χ_2 is long-lived

Focus on $M_{A'} > m_{\chi_1} + m_{\chi_2}$: the decay $A' \to \chi_1\chi_2$ is favored

[1] Duerr et al., JHEP04 (2021) 39
[2] Duerr et al., JHEP04 (2021) 146

LDW2021. Dark sector searches at Belle II: recent results and future prospects. Luigi Corona
Search for iDM

- Search for a peak in the center-of-mass frame energy of the ISR photon plus a displaced vertex V^0
- Background:
 - photon conversion, $e^+e^- \rightarrow \gamma\gamma(y), \gamma \rightarrow e^+e^-$
 - meson decays, $e^+e^- \rightarrow K_S^0K_L^0(y), K_S^0$ decays
- Background suppression:
 - V^0 momentum
 - Pointing angle α_{PA}

LDW2021. Dark sector searches at Belle II: recent results and future prospects. Luigi Corona
iDM prospects

- Estimate signal yield by counting events in ISR photon energy window (final analysis will use a template fit)
- With early Belle II dataset expect to probe dark sector-Standard Model couplings down to $10^{-3} - 10^{-4}$
- New displaced vertex trigger under consideration
- Analysis timescale ~ end of 2022

LDW2021. Dark sector searches at Belle II: recent results and future prospects. Luigi Corona
Conclusions

- The Belle II experiment is exploring Dark Sectors at the luminosity frontier
 - Will lead in the MeV-GeV mass range in the coming years
- > 240/fb collected up to now
- World-leading results with early data:
 - $Z' \rightarrow$ invisible: *Phys. Rev. Lett.* **124** (2020) 141801
 - $a \rightarrow \gamma \gamma$: *Phys. Rev. Lett.* **125**, 161806 (2020)
- Many new searches ongoing: dark Higgs, dark photon, visible Z', Long-lived dark particles ...
Thank you for the attention!

Luigi Corona - INFN and University of Pisa
✉ luigi.corona@pi.infn.it
on behalf of the Belle II collaboration
Backup Slides
Taking data during the pandemic

- Non-stop operations with COVID-19 pandemic
 - Social distancing requirements
 - Strong developments for close to or fully remote sub-system operations
 - Huge commitments from Japanese colleagues and residents in Japan

Data-taking efficiency: 89.5%
Luminosity

\[L = \frac{\gamma^\pm}{2e r_e} \left(1 + \frac{\sigma^*_y}{\sigma^*_x} \right) \frac{I_\pm \xi_y^\pm}{\beta^*_y} \frac{R_L}{R_{\xi_y}} \]

Beam currents

Beam-beam parameter

Geometrical reduction parameter (~0.8 – 1)

Ratio between the y and x dimension of the beam (0.01 – 0.02)

Vertical beta function at IP
UL on visible A' searches

BaBar limit on $\epsilon \sim 7 \cdot 10^{-4}$
Weak direct detection bounds

- Large detectors search for DM scattering against nuclei/electrons

Access to mass below few GeV

LDW2021. Dark sector searches at Belle II: recent results and future prospects. Luigi Corona