
Master Thesis

Firmware Implementations for the Upgrade

of the Data Acquisition System of the

Belle II Pixel Detector

Firmwareimplementierungen für das Upgrade des

Datenerfassungssystems des Belle II Pixeldetektors

Author: Matthäus Krein

December 13, 2021

Supervisors: Dr. Thomas Geÿler and Simon Reiter

Referees: Apl. Prof. Dr. Sören Lange and Prof. Dr. Claudia Höhne

Faculty 07

II. Physics Institute of Justs-Liebig-Universität Gieÿen

Abstract

The Belle II experiment is a high-precision particle physics experiment

located at the research facility high energy accelerator research organi-

zation (jap. K	o Enerug	� Kasokuki Kenky	u Kik	o) (KEK) in Tsukuba,

Japan. The experiment contains an asymmetric ring accelerator, where

electrons and positrons will collide. Around the interaction point sub-

detectors are placed that together are referred to as the Belle II detec-

tor. Each subdetector exploits well known interactions of particles with

matter, which enables the identi�cation of those particles. The Belle

II experiments studies subatomic physics to extend the Standard Model

or �nd new interactions, which may create a completely new branch of

physics.

The Online Selection Node (ONSEN) system is part of the data acquisi-

tion for the innermost subdetector, the Pixel Detector (PXD). At peak

luminosity, the PXD will create a lot of data, which must be reduced.

Therefore the ONSEN system selects data of speci�c regions of the PXD

depending on track extrapolation that are created by other subdetectors.

The hardware of the ONSEN system is based on technology stemming

from communication industry to handle large amounts of data and the

�rmware was specially developed for the usage of PXD data acquisition.

The Compute Node Carrier Board v4.0 (CNCB v4.0) is a new revision

and is planed to be used as a spare Carrier Board. The upgrades of the

components of the board lead to necessary adjustments to the �rmware.

The �rmware is based on the previous structure of the Intellectual Prop-

erty (IP) cores, that handle speci�c data processing tasks and monitoring.

The introduction of a new architecture leads to rewriting of the IP cores.

The CNCB v4.0 is only one part of the hardware used in the ONSEN sys-

tem, therefore only relevant components are documented in this thesis.

Moreover, in the progress of development the monitoring of the ONSEN

system was modi�ed. The goal is to use the CNCB v4.0 as a spare Car-

rier Board in the Belle II experiment in Japan. The usage of the CNCB

v4.0 was tested and stable operation was veri�ed.

- iv -

Zusammenfassung

Das Belle II Experiment ist ein hochpräzision Teilchenexperiment und

wird durchgeführt an dem Hochenergie-Beschleuniger-Forschungsorganisation

(jap. K	o Enerug	� Kasokuki Kenky	u Kik	o) (KEK) in Tsukuba, Japan. Das

Experiment besteht aus einem asymmetrischen Ringbeschleuniger in dem

Elektronen und Positronen kollidieren. Um den Kollisionspunkt be�nden

sich Subdetektoren, die zusammen den Belle II Detektor ergeben. Die

Subdetektoren nutzen die Wechselwirkung von Teilchen mit Materie aus,

um Informationen über die Teilchen zu erhalten. Das Belle II Experiment

untersucht die subatomare Physik, um das Standard Model zu erweitern

oder neue Physik zu �nden.

Das Online Selection Node (ONSEN) System ist Teil der Datenauslese

des innersten Subdetektor, dem Pixeldetektor (PXD). Wenn die Ziellumi-

nosität erreicht ist, werden viele Daten produziert, die reduziert werden

müssen. Dazu wird das ONSEN System verwendet, um Daten aus be-

stimmten Regionen des PXD auszuwählen und weiterzuleiten abhängig

von der Trajektorieextrapolation, die aus den Daten anderer Subdetek-

toren erstellt wurden.

Die Hardware des ONSEN Systems basiert auf Technologie aus der Kom-

munikationsindustrie, um groÿe Mengen an Daten zu verarbeiten und die

Firmware wurde speziell für Anwendung zur PXD Datenauslese entwi-

ckelt. Das Compute Node Carrier Board v4.0 (CNCB v4.0) ist eine neue

Revesion und soll als Ersatz-PCB verwendet werden. Die Upgrades der

Komponenten von dem PCB führen zu notwendigen Anpassungen der

Firmware.

Die Firmware basiert auf der früheren Struktur der Intellectual Proper-

ty (IP) Cores, die anwendungsspezi�sche Aufgaben durchführen. Jedoch

müssen die IP Cores umgeschrieben werden, da eine neue Architektur

eingeführt wurde. Das CNCB v4.0 is nur ein Teil der Hardware, die im

ganzen ONSEN System genuzt wird, weshalb nur relevante Komponen-

ten in dieser Arbeit dokumentiert werden. Zusätzlich wurde im Laufe des

Fortschritts das Überwachungssystem modi�ziert. Das Ziel dieser Arbeit

ist den CNCB v4.0 als Ersatz-PCB fertig zu stellen, um ihn im Belle II

Experiment verwenden zu können. Dies wurde getestet und die Funktion

des CNCB v4.0 konnte bestätigt werden.

- vi -

Contents

1 Theoretical Background 1

1.1 The Standard Model and Fundamental Forces 1

1.2 CP-Violation . 4

2 Belle II Experiment 7

2.1 SuperKEKB . 8

2.2 Belle II Detector . 10

2.3 PXD and DEPFET . 13

2.4 Trigger and Data Acquisition 15

2.5 ONSEN System . 17

3 Compute Node Carrier Board v4.0 21

3.1 Motivation . 21

3.2 CNCB Upgrade . 21

3.2.1 Components of the Compute Node Carrier Board 23

3.3 Block Design of the Merger Carrier 25

3.4 Custom IP Cores . 27

3.4.1 Aurora Core . 28

3.4.2 Monitor Core . 36

3.4.3 Format Handler Core 38

3.4.4 RoI Distribution Core 41

4 Additions to the Firmware 45

4.1 Aurora Core Fabric Channel Extension 47

4.2 Aurora Core Reset Sequence Logic 48

4.3 Core Resets . 53

4.4 Interrupts of Aurora Core and Belle II Format Handler Core 53

4.5 Results of Tests . 54

5 Summary and Outlook 57

- vii -

Contents

Appendix 61

A.1 Firmware for the Microblaze 61

A.1.1 Linux . 61

A.1.2 Slow Control . 61

A.2 Hardware Information 63

A.2.1 Backplane Connections of the ATCA Shelf 63

A.2.2 FPGA Hardware Speci�cations 65

A.3 Firmware Details . 65

A.3.1 Full Block Design 65

A.3.2 RoI Data Format 70

A.3.3 Errors of the Belle II Format Hander Core 70

Bibliography 73

- viii -

1 Theoretical Background

In this chapter, the basics of particle physics are outlined. This includes

the Standard Model that describes the fundamental particles and their

interactions. Furthermore, insights in CP violation are presented that

are studied with the decay of B mesons, which are produced in a large

number at the Belle II experiment.

1.1 The Standard Model and Fundamental

Forces

The Standard Model (SM) describes the properties of fundamental par-

ticles. It is part of a unifying theory, which contain three fundamental

forces. The electromagnetic force that de�nes the interaction of light

and the binding of electrons to the nucleus, the weak force, which is

observed in radioactive decays and the strong force that is dominant at

short ranges and explains the binding of quarks. The gravitational force

is not part of the SM, but e�orts to extend the SM with a new boson

exists [1].

The SM is divided into fermions, particles with half integer spin, and

bosons that have a integer spin. Quarks are fermions that come in three

families. They are distinguished by mass and electromagnetic charge.

The �rst generation contains the up and down quark, the second gener-

ation the charm and strange quark and in the third generation are the

top and bottom quark.

The other fermions in the SM are the leptons. Similar to the quarks,

they also come in three families. There are the electrons, muons and taus

with the electrons being the lightest particle and the tau the heaviest.

- 1 -

1 Theoretical Background

Correspondingly, three types of neutrinos exist that are named electron

neutrino, muon neutrino and tau neutrino depending if it interacts via

charged currents with electrons, muons or taus.

Moreover, fermions can interact via a force with other particles, if it con-

tains a charge of the corresponding force. The properties of the fermions

are summarized in the table 1.1. Each fermion comes with an anti-

particle that carry the opposite charges. The electromagnetic force in-

teracts with the electromagnetic charge, the strong charge is called color

with three possible charges (red, green and blue) and anti-charges (anti-

red, anti-green and anti-blue). The weak force uses the weak isospin as

charge. Right handed neutrinos do not have a weak isospin and can not

interact via the weak force.

Table 1.1 � Properties of fermions [2].

Fermion Mass EM charge [e] Strong charge Weak isospin

Quarks

Up 2.16 MeV 2/3 r/g/b -1/2

Charm 1.27 GeV 2/3 r/g/b -1/2

Top 173 GeV 2/3 r/g/b -1/2

Down 4.67 MeV -1/3 r/g/b 1/2

Strange 93 MeV -1/3 r/g/b 1/2

Bottom 4.18 GeV -1/3 r/g/b 1/2

Leptons

Electron 0.51 MeV -1 0 -1/2

Muon 105.66 MeV -1 0 -1/2

Tau 1.78 GeV -1 0 -1/2

νe 0 0 0 1/2

νµ 0 0 0 1/2

ντ 0 0 0 1/2

- 2 -

1.1 The Standard Model and Fundamental Forces

The mass of the neutrino is zero according to the SM. It is known that

the neutrino must have a mass, because of phenomena called neutrino

oscillation.

The basic fundamental interaction is transferred by gauge bosons. The

gauge boson of the electromagnetic force is the photon. The photon is a

massless particle and has therefore a in�nite interaction range. Particle

interactions are described with the Quantum Field Theory. In case of

electromagnetic interactions, the theory is named Quantum Electro Dy-

namics (QED). Particles are asserted as quantum �elds that are extracted

by quantising the Dirac �eld. Furthermore the interaction are fully de-

scribed in the Lagrangian density composed of the free Dirac �eld, the

free photon �eld and the electromagnetic-photon interaction.

The gauge boson of the strong force is the gluon. It is also massless,

but carries strong charge. Because of this, a phenomenon called con-

�nement takes place, where color charge on macroscopic scales is not

observed. Therefore, strong interacting particles are always in a bound

state. Most known structures are mesons, quark and anti-quark bind-

ings, and baryons, three quarks or thee anti-quarks bindings. For other

combination like tetraquarks, pentaquarks or glueballs candidates exist

and those are currently debated. The Lagrangian density of the Quan-

tum Chromo Dynamics (QCD) consists of terms for a quark propagator,

quark-gluon vertices and gluon propagator that also describes 3-gluon-

gluon vertices and 4-gluon-gluon vertices.

The weak force has a neutral boson Z with a mass of 91.2 GeV and

electromagnetic charged boson W± with a mass of 80.4 GeV. The mass

of the boson shortens the interaction range and weakens the interaction

rate. The weak interaction breaks symmetries in contrast to the other

fundamental forces that result in the loss of conservation rules. This en-

ables the change of quark �avour, which is not possible with other forces.

The last particle of the SM is the Higgs boson. It has a mass of 125 GeV,

no electromagnetic charge and a spin of 0. It is responsible for the mass

of particles, since it mediates between the Higgs �eld, a quantization of

- 3 -

1 Theoretical Background

the Klein-Gordan �eld, and massive particles [3] [4] [5].

1.2 CP-Violation

The CP violation is a violation of the charge conjugation operator C

and the parity operator P. The parity operator handles an inversion of

a spatial coordinate. In a general sense, it performs a transformation

into its mirror image. The parity was thought to be conserved until the

Wu experiment [6] discovered that the weak interaction breaks the parity

symmetry.

The charge conjugation transforms a particle into its antiparticle. Only

pairs of particle-antiparticles states like π0 or J/ψ are eigenstates of the

operator. The charge conjugation is also violated and the proof was the

observation of π0 → γγγ decays.

Since the combination of CP is conserved in the Wu experiment, it was

thought this symmetry was conserved. The Cronin-Fitch experiment [7]

showed that even the CP symmetry is broken, by observing a mixing of

the decay of short living K0
S
and long living K0

L
mesons [8] [9].

The CP violation is explained by introducing mixing of quark �avours.

The mixing of the type of quarks is convention and can be chosen be-

tween the u c t quarks or the d s b quarks. The theory originated from

Nicola Cabibbo, who proposed the mixing of the down and strange quark.

The theory was extended by Makoto Kobayashi and Toshihide Maskawa

that proposed the mixing of three generations at a time where only three

quarks were observed. It introduces a unitary mixing matrix VCKM that

mixes the pure down, strange and bottom quark states. An observed

down quark d′ consists also of contributions of the strange and bottom

quark. The contribution depends of the CKM matrix elements. The

mixing process is shown in the following equation:
d′

s′

b′

 =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

d

s

b

 (1.1)

- 4 -

1.2 CP-Violation

Figure 1.1 � Unitary triangle of the CKM matrix [11].

In general, all matrix elements can be complex numbers, leaving us with

18 free parameters. The unitary condition reduces the number to three

parameters and six complex phases that can be chosen to one irreducible

complex phase eiδ. This complex phase is the origin of the CP viola-

tion [10].

There are di�erent representations of the CKM matrix. The Wolfenstein

parametrization is as followed.

VCKM =

1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) (1.2)

The relations are λ = |Vus|, A = |Vcb|/|Vus|2, η = sin δ|Vub|/|Vus||Vcb| and
ρ = cos δ|Vub|/|Vus||Vcb|. All parameters are small numbers that indicate

that CKM matrix is mostly diagonal. The CP violation happens in order

of λ3 in the elements Vub and Vdt. More CP violations in other elements

appear in at least an order of λ4 or higher.

The unitary condition can be expressed as VudV ∗ub + VcdV
∗
cb + VtdV

∗
tb = 0,

which is also the condition for a triangle, shown in �gure 1.1. By dividing

by VcdV
∗
cb, we can �x one side of the triangle between 0 and 1. The

angles of the triangle are also used to characterize the CKM matrix. The

parameter ρ and η are variants of the Wolfenstein parameters [11] [12].

- 5 -

2 Belle II Experiment

The Belle II experiment is a high-precision particle experiment located in

Tsukuba, Japan. It uses the SuperKEKB accelerator, an asymmetrical

electron-positron collider and consists of the Belle II particle detector.

The center-of-mass energy is 10.58 GeV, which is the resonance of Υ(4S)

that mainly decays into B mesons. Therefore, the SuperKEKB is often

called B-factory. The goals of the Belle II experiment are the precise mea-

surement of particle decays and parameters of the CKM matrix. There is

also the search for beyond Standard Model (BSM) including dark sector

physics and magnetic monopoles. For this, it is designed with a high

luminosity and precise measurement of interactions. In the following the

activities of BSM and dark sector physics at the Belle II experiment are

outlined.

The study of B meson decays may yield insights of BSM physics. Here,

so-called penguin decays, radiative or electroweak decays of b → s con-

taining loops, are studied. The measurement of anomalies in the decay

may indicate BSM physics. Another BSM investigation is the branching

ratios of B → τν and B → D∗τν that would be di�erent, if charged a

Higgs exists or lepton �avour violation of τ meson decays.

The invisible Z ′ boson extends the SM and is part of dark sector physics.

It could explain the gµ discrepancy and adds an U(1)′ gauge group to

the SM. The Z ′ would only couple to µ and τ leptons with the cou-

pling constant g′. A possible production of this particle is the process

e+e− → µ+µ−Z ′. The search for Z ′ was carried out by the BaBar experi-

ment, but because of the low statistics no evidence over 3σ was achieved.

Axion-like particles (ALPs) are pseudo scalar particles with independent

coupling and mass that couple to bosons. Possible processes with pho-

tons are photon fusion e+e− → e+e−a and ALP-strahlung e+e− → γa,

- 7 -

2 Belle II Experiment

where a is the ALP. Small datasets of ALP analysis were take during

early Belle II runs, while reconstructing three photons with total energy

equal to the beam energy, assuming the ALPs lifetime is short enough

to decay inside the detector.

Similar to the invisible Z ′ boson there is the search for the dark pho-

ton A′ that extends the SM and could serve as the interaction particle

of the hypothetical dark force. Kinetic mixing with the photons of the

SM enables process between SM and dark sector particles. The particles

produced by the decay of the dark photon depend on its mass. When

the mass of the dark photon is the lightest of the dark sector particles,

it decays into SM particles. Otherwise dark photons decay into dark

matter that can be searched for with the process e+e− → γISRA
′, where

γISR [13] is a initial state photon [14].

The progress of the Belle II experiment is divided into three phases.

In the �rst phase, form February to June 2016, the particle beams were

circulated, but not collided. The accelerator performance was tuned and

beam background studies were taken. The second phase was from April

to July 2018. First physics data was taken from beam collision with

a peak luminosity of 5.55× 1033 cm−2 s−1. These measurements were

preparations for the third phase, which started in March 2019. The goal

is to achieve a record luminosity and detect rare events with optimal

con�guration obtained by the previous phases [15].

2.1 SuperKEKB

The SuperKEKB is an asymmetrical electron positron collider with a

center of mass energy of 10.58 GeV. The energy of electron is 7 GeV and

of the positron 4 GeV. Therefore, the produced particles are boosted to

improve the measurement of fast decaying particles. A schematic of the

accelerator is shown in �gure 2.1. The SuperKEKB is an upgrade of the

KEKB, the previous collider of the Belle experiment. It therefore reuses

components like the tunnels and magnets. The electrons are obtained by

a photocathode RF electron gun and accelerated with a linear accelera-

tor. The positrons are produced by pair production of bremsstrahlung

- 8 -

2.1 SuperKEKB

Figure 2.1 � Schematic of the SuperKEKB accelerator. Shown are the elec-
tron and positron ring with a circumference of 3016m, the Belle II detector,
linear accelerator and positron dumping ring [11].

- 9 -

2 Belle II Experiment

photons and further on stored inside a positron damping ring. These

photons are produced by �ring the RF electron gun at a tungsten target.

The SuperKEKB is designed to achieve a luminosity of 8× 1035 cm−2 s−1,

promoting it to the frontier of high luminosity accelerators. The lumi-

nosity for beams with equal beam size is given by:

L =
γ±

2ere

(
I±ξy±
β∗y±

)(
RL

Rξy

)
(2.1)

Here, γ± is the Lorentz factor, where the index − or + stands for elec-

tron or positron, e is the elementary charge, re is the classical electron

radius, I± is the beam current, ξy± is the beam-beam parameter, β∗y± is

the vertical beta function and RL and Rξy are reduction factors. While

the Lorentz factor is limited by the ring circumference and the reduction

factors are close to one, the only option is to increase the fraction
(
I±ξy±
β∗
y±

)
by manipulating the beam interaction and increasing the beam current.

Instead of a head-on collision of the beam bunch, there is an angle be-

tween both bunches that allows high luminosity to be reached [11] [16].

2.2 Belle II Detector

The Belle II detector is an asymmetric barrel shaped particle detector

used to observe particles in an area created by an angle ranging from

17° to 150° surrounding the electron beam (boost direction). A cross

section of the detector is shown in �gure 2.2. The detector contains sev-

eral subdetectors that are explained in the following, beginning with the

innermost subdetector. All the subdetectors except the KLM are placed

inside a 1.5 T magnetic �eld.

The Pixel Vertex Detector (PXD) is the subdetector closest to the in-

teraction point. It is arranged of 40 DEPFET modules to determine

the decay vertex of short lived particles. Because of its position, data

is dominated by background. Further details of the subdetector and the

DEPFET principle are given in the next subsection 2.3, since this thesis

is mainly related to the PXD.

- 10 -

2.2 Belle II Detector

Figure 2.2 � Outline of the Belle II detector. Shown are all subdetectors
(PXD in red; SVD in yellow; CDC as grey wires; TOP located at barrel region
around the CDC; ARICH as transparent blue disc; ECL as white crystals;
KLM as dark sea green sheets) [11]

- 11 -

2 Belle II Experiment

The Silicon Vertex Detector (SVD) surrounds the PXD. The SVD and

PXD together are referred to as the Vertex Detector (VXD). It contains

four layers of Double-sided Silicon Strip Detectors (DSSDs). Charged

particles pass through the bulk region of the DSSD and produce electron

hole pairs that drift to either nearest p- or n-doped strip. This informa-

tion is used to reconstruct tracks of charged particles.

The Central Drift Chamber (CDC) consists of a large volume �lled with

a mesh of wires and a gas mixture of helium and ethane. The magnetic

�led of the solenoid bends the track of charged particles that ionizes the

gas mixture. The electrons drift to the wires, where they are detected.

From the time information and electron drifting speed the particle tra-

jectory is reconstructed. Furthermore the particle type can be extracted

from the momentum, calculated form the bending of the particle path,

and mean energy loss.

The Time of Propagation Counter (TOP) is a type ring-imaging Cherenkov

detector (RICH) localized in a layer around the CDC. A cone of Cherenkov

radiation is produced by charged particles that moves faster than light

through a medium. The opening angle θ is de�ned by the velocity β

and the medium re�ection index n with the relation cos(θ) = 1/βn. The

TOP is composed of 16 rectangular sheets of quartz, where on one end

a mirror is placed and on the other a detector. Ideally, the Cherenkov

cone undergoes total re�ection inside the quartz until it is measured with

the detector. The purpose is to distinguish between π± mesons and K±

mesons that emit di�erent cone angles, because of the mass di�erence of

those particles.

The Aerogel ring-imaging Cherenkov detector (ARICH) is another type

of RICH detector placed in boost direction next to the end-cap region

next to the CDC. The charged particles produce Cherenkov radiation,

when passing the 4 cm thick aerogel layer, if they exceed the speed limit

in the medium. The radiation is detected by a photon detector plane.

The ARICH is used to distinguish π± mesons from K± mesons in the

region between 14.78° and 33.71° surrounding the electron beam that

otherwise would not be detected by the TOP.

- 12 -

2.3 PXD and DEPFET

SWITCHERDCDDHP

Figure 2.3 � Single half-ladder module. The SWITCHERs, DCDs and DHPs
are shown at the rim [5].

The Electromagnetic Calorimeter (ECL) consists of 8736 thallium-doped

caesium iodine crystals that are placed around the barrel, front and back

end-cap region of the Belle II detector. Scintillation light is produced by

electromagnetic interacting particles. The main purpose of the ECL is

to measure the electron and photon energy.

The KL and muon detector (KLM) measures neutral KL mesons and

muons. It is composed of iron plates, where kaons produce hadronic

showers and mouns are slowed down. Between the iron plates resistive

plate chambers (RPCs) are placed. Here, the muons produce a measur-

able signal. The signals of the muons are paired up with the CDC tracks,

while neutral kaons do not produce a signal [5] [17].

2.3 PXD and DEPFET

The PXD is the most important subdetector concerning the subject of

this thesis. Therefore, the detection principle and read out system is

described in the following.

As mentioned, the PXD is the innermost subdetector and reconstructs

precisely vertices of short lived particles. It is made of n-typed silicon

wafer and contains 7.68 million pixels. In total 40 single half-ladder mod-

ules, shown in �gure 2.3, are used. Every module is composed of 768 ×
250 pixels and Application-Speci�c Integrated Circuits (ASICs) mounted

on the rim that allow control and read-out.

- 13 -

2 Belle II Experiment

Figure 2.4 � Working principle of a DEPFET sensor [5].

The pixels are Depleted Field-E�ect Transistors (DEPFETs) that are

depicted in �gure 2.4. The DEPFET principle is based on a p-MOSFET

by adding p-doped back contact, where a negative voltage is applied.

Bias voltage applied to the back contact will deplete the n-doped silicon

bulk from charge carriers, making the MOSFET susceptible to charged

particles. Those create electron hole pairs, where the holes drift to the

p-doped back contact, because of the negative voltage applied, and elec-

trons drift to the deep n-doped internal gate. The charge of the internal

gate will increase the source drain current. Before saturation of the source

drain current is reached, a positive voltage is applied at the n-doped clear

to dispose electrons at the internal gate.

The read-out is carried out by three types of on-board mounted ASICs.

The SWITCHER controls voltages and therefore the timing of read-out.

The Drain Current Digitizer (DCD) uses an ADC to amplify and digi-

talize the extracted current. The DCD passes the data to Data Handling

Processor (DHP), which bu�ers the data until all hits of the triggered

event are measured. Per module six SWITCHERs, four DCDs and four

DHPs are used.

Furthermore, the data from one module will be bundled using the Data

Handling Engine (DHE), that then passes the data to the Data Handling

- 14 -

2.4 Trigger and Data Acquisition

Figure 2.5 � External read-out data bundling of the PXD [11].

Concentrator (DHC). The DHC groups the data of �ve modules. In order

to spread the occupancy, two of the inner layer and three of the opposite

side outer layer modules are packed together as depicted in �gure 2.5.

Depending on the event number of the trigger system, the DHC outputs

the data to one of four data lanes. In order to use all 40 modules, eight

DHC are necessary [11] [17].

2.4 Trigger and Data Acquisition

The trigger system is used to detect speci�c data patterns that are pro-

duced by physics phenomena. On the �rst level, a individual hardware

base trigger system is used for fast analysis. Most important trigger

sources are the CDC that provides the tracks of particles, ECL for the

number of clusters and energy deposit, ARICH and TOP, which obtain

timing information and the KLM that detects muon tracks. A uni�ed

trigger signal, the Level-1 trigger, is build out of the Global Decision

Logic (GDL) that uses the individual trigger sources as an input.

Other triggers are utilized to measure the luminosity from wellknown in-

teractions or random triggers to detect the background.

After the data is detected, a data acquisition system is used to combine

the data for further analysis. A schematic of the data acquisition system

is shown in �gure 2.6. All subdetectors except the PXD have similar data

- 15 -

2 Belle II Experiment

Figure 2.6 � Simpli�ed schematic of DAQ system of Belle II [11].

rates and therefore contain similar data acquisition systems. The hard-

ware based trigger system is accomplished by the Frontend-Electronis

(FFE) boards. Afterwards, the data is sent to the Common Pipeline

Platform for Electronis Read-out (Copper). Together with the CPUs of

read-out PCs, they read timing and trigger signals and use this informa-

tion for two staged event building (event building 0 and event building

1). The data is passed to the High Level Trigger (HLT), a PC farm that

performs further event building (event building 2). This include the full

reconstruction of the event. Afterwards, the data is permanently stored.

The e�ciency involving B meson decays is more than 99%.

The PXD has a data rate about a magnitude higher than the other sub-

detectors and needs support of a data reduction system. This involves

a Online Selection Node (ONSEN) system that selects data of Region

of Interest (RoI) of the PXD. The RoI sources are the Data Acquisition

Tracking and Concentrator Online Node (DATCON) and the HLT. The

DATCON system uses SVD data to reconstruct the particle track to the

pixels of the PXD. The HLT creates RoIs making use of every subdetec-

tor except the PXD. Since the production using RoIs of the HLT is time

consuming, the ONSEN system is capable of storing raw PXD data up to

5 seconds. After the selection, the ONSEN system forwards data for fur-

ther event building. The data reduction with this processes is 1/10. More

details to the ONSEN system is given in the next chapter [11] [17].

- 16 -

2.5 ONSEN System

2.5 ONSEN System

The ONSEN system is part of Belle II data acquisition and is responsible

to bu�er and reduce unprocessed PXD data. This system was developed

by a work group at the Justus-Liebig-University Gieÿen, Germany.

The design is based of xTCA architectures used in telecommunication

industry to keep up with luminosity of the SuperKEKB. This consists of

an Advanced Telecommunication Computing Architecture (ATCA) and

the Advanced Mezzanine Card (AMC) shown in �gure 2.7 and 2.8.

The current setup of the ONSEN system at the Belle II experiment

utilizes an ATCA shelf with 14 slots for PCBs with characteristic size

constraints, cooling fans, power supplies and a full-mesh backplane. The

PCBs of the ATCA shelf are self developed and are called Compute Node

Carrier Board (CNCB), illustrated in �gure 2.9. The CNCB can host up

to four AMCs. Since this thesis is focused on the �rmware update, more

details to CNCB will follow in the next chapter.

The full-mesh backplane connects the CNCBs with each other. The link

between the CNCB is called fabric channel. The numbering of connec-

tions trough the ATCA shelf is shown in table A.1. The AMCs are

smaller PCBs, which can be plugged into the CNCB and connect via

LVDS links. They contain Virtex-5 FX70T FPGA for data processing,

4 GiB DDR2 as RAM, 64 MiB Flash as storage and optical or Ethernet

ports.

A rear transition module (RTM) is connected to the back of the ATCA

shelf that provides additional ports. A programmer is connected to RTM,

which is used to program bitstreams to FPGAs of the CNCB, the AMC

or the CPLD.

In the ONSEN system, nine CNCBs and a total of 33 AMCs are used.

The �rmware bitstreams di�er, further dividing the CNCBs and AMCs

into one Merger AMC, which merges RoIs of the two di�erent sources, one

Merger Carrier that distributes the merged RoIs to the Selector Nodes,

eight Selector Carriers, which further distribute the RoIs between their

four Selector AMCs and 32 Selector AMCs that �lter PXD data depend-

- 17 -

2 Belle II Experiment

Figure 2.7 � Picture of the ATCA shelf. There are four dummy boards
plugged in slot one to four. In slot �ve and six are two CNCBs that host four
AMCs. A switch is shown in Slot 7, which is not used in the ATCA any more.
On the right side of the shelf the backplane can be seen. Above the backplane
is space for to connect to the RTM that is plugged from behind into the ATCA
shelf [11].

- 18 -

2.5 ONSEN System

Figure 2.8 � Schematic of a AMC v4.0 [11].

Figure 2.9 � Schematic of a CNCB v3.3 [11].

- 19 -

2 Belle II Experiment

Figure 2.10 � RoI and data �ow through the Belle II experiment setup of the
ONSEN system.

ing on the RoI. A layout of the data �ow through the ONSEN system is

in �gure 2.10 [11] [18].

- 20 -

3 Compute Node Carrier Board

v4.0

This section consists of general information of the Compute Node Carrier

Board (CNCB) v4.0, which is the hardware upgrade of the CNCB v3.3.

The hardware development of the Compute Node Carrier Board is fore-

seen for the Panda experiment, but the �rmware is constructed such

that it is compatible with the ONSEN system at the Belle II experiment.

The board was designed by an IHEP group (Institute of High Particle

Physics) in Beijing, China. The CNCB v4.0 was produced two times and

is planed to be used as an emergency spare at the Belle II experiment.

3.1 Motivation

The CNCB v3.3 consists of outdated hardware components and can no

longer be produced. A new version, the CNCB v4,0, was designed as an

update to the Merger Carrier. For this, a new �rmware for the FPGA of

the Merger Carrier has to be developed.

The CNCB v4.0 introduces di�erent and updated components, which

leads to adjustments to the existing �rmware that is used as a template.

This allows the use of newer protocol standards in the �rmware and one

to one replacements are needed for alternative components.

3.2 CNCB Upgrade

The CNCB v4.0 is shown in �gure 3.1. The most important changes

of the upgrade are discussed in this section. We upgraded the FPGA

- 21 -

3 Compute Node Carrier Board v4.0

Figure 3.1 � Photograph of the CNCB v4.0.

to Kintex UltraScale with about ten times the resources. The di�er-

ences between the FPGA are shown in table A.2. Also the memory was

upgraded from 2 GiB DDR2 to 16 GiB DDR4 and the number of Multi-

Gigabit Transceiver (MGT) port increased from 16 to 32. The �rmware

of the AMC was adjusted to make usage of MGT links, but is otherwise

unchanged. The functionality of the PowerPC CPU was removed and

replaced by a soft core Microblaze. A Microblaze is an CPU created

with the resources of the FPGA. The Microblaze is called soft core, be-

cause the routing and placement of components inside the FPGA di�ers,

depending on other occupied resources.

- 22 -

3.2 CNCB Upgrade

3.2.1 Components of the Compute Node Carrier

Board

A schematic of the CNCB v4.0 is shown in �gure 3.2. In this section,

the most important parts and their function are mentioned. Beginning

at the top left, there is the connector to the RTM as well as a power

supply. To the right, there is a connector to the backplane with another

power supply. Underneath both connectors, there are DC/DC converters

mainly containing capacitors and resistors to provide the speci�c voltages

for every component.

Starting from the left, the �rst logic chip is a 1 GB Ethernet-Switch that

is used for connections to the Ethernet network. The Ethernet network

connects the the CNCB and the AMCs with the RTM.

The Complex Programmable Logic Device (CPLD) is used for the JTAG

connection to the FPGA that allows programming. There are four dif-

ferent modes, which can be selected with a switch on the far right of

the board. Every mode uses a di�erent input port. The �rst mode is to

program the FPGA with a programmer that is connected to the RTM.

The inputs are three 6-pins located to the right of the RTM connector.

The leftmost pins are for direct FPGA programming, the ones in the

middle are used to forward the bitstream to the FPGA, if the CPLD is

initialized and the ones on the right are used to program the CPLD itself.

There are also Analog to Digital Convertes (ADCs) to measure and mon-

itor voltages. On the backside of the CNCB, more ADCs are located to

monitor the temperature.

The CNCB contains eight 2GB DDR4 chips, which are used as Random

Access Memory (RAM) for the Microblaze and global byte storage.

The data processor of the board is the FPGA Kintex UltraSacle. All of

the �rmware changes are connected to the �rmware of the FPGA.

Next to the FPGA, there are two �ash chips. Since the FPGA is a

volatile hardware, the �ash chips are used as storage for the automatic

programming of the FPGA, when the CNCB is turned on.

There are two Intelligent Platform Management Controller (IPMC) con-

nectors to attach to one additional IPMC board. The IPMC operates

the shelf manager, cooling fans and power input.

A button is placed on the far right side of the board to reset the CNCB

- 23 -

3 Compute Node Carrier Board v4.0

Po
w

e
r

D
C

/D
C

 C
o
n
v
e
rt

e
r

Po
w

e
r

D
C

/D
C

 C
o
n
v
e
rt

e
r

R
T
M

 C
o
n
n
e
ct

o
r

R
T
M

Po

w
e
r

S
u
p
p
ly

B
a
ck

 P
la

n
e
 C

o
n

n
e
ct

o
r

B
a
ck

 P
la

n
e

C
o
n
n
e
ct

o
r

Po
w

e
r

S
u
p

p
ly

B
u
tt

o
n

C
LP

D
 m

o
d

e

sw
it

ch

X
ili

n
x

K
in

te
x

U
lr

ta
S

ca
le

FP

G
A

DDR4 16 GB

C
LP

D
 m

o
d

e
 p

in

C
LP

D
E
th

e
rn

e
t

S
w

it
ch

V
o
lt

a
g

e
 s

e
n
so

rs

(A
D

C
)

IP
M

C

C
o
n
n
e
ct

o
r

IP
M

C

C
o
n
n
e
ct

o
r

Fl
a
sh

C

h
ip

Fl
a
sh

C

h
ip

A
M

C
 S

lo
t

1
A

M
C

 S
lo

t
2

A
M

C
 S

lo
t

3
A

M
C

 S
lo

t
4

Figure 3.2 � Schematic of the CNCB v4.0.

- 24 -

3.3 Block Design of the Merger Carrier

manually. In addition, the CNCB utilizes four AMC connectors through

which power is supplied to the AMCs and data can be exchanged [18].

3.3 Block Design of the Merger Carrier

The block design contains the whole �rmware, which will be implemented

in the FPGA. It comprises several Intellectual Property cores (IP cores)

that are shown as a black box. The IP cores can be further divided into

peripheral cores and custom cores, where peripheral cores do not pro-

cess or work with the RoI data and custom cores, which are speci�cally

designed to work with the data. The block design, peripheral cores and

templates for the custom cores are created with the Embedded Develop-

ment Kit (EDK).

In the block design, the inputs and outputs of an IP core can be plugged

into other IP cores or be external. External ports are assigned to ports

of the FPGA. The full block design is shown in �gures A.3 to A.6 in

the appendix. The peripheral cores handle the connections of other com-

ponents of the board e.g. the Ethernet-Switch, addressing the DDR4

or the soft core Microblaze. Since the custom cores play a much more

important role and almost have no connection to the peripheral core, a

simpli�ed block designed was created, which only shows the custom cores

(�gure 3.3). The inputs are on the left of the core and the outputs are

on the right. The connections for slave register and interrupts between

the custom IP cores and the Mircoblaze (MB) are indicated. For simpli-

�cations, not every port is shown. Unused ports, ports not relevant for

this thesis e.g. clocks, reset ports and similar ports are left out or are

grouped together.

This schematic focuses on the RoI data �ow through the Merger Carrier.

The data passes �rst through the Aurora core that is called cncb4_mgt_-

aurora_axis_1. It is in the Aurora protocol format, which consists of

a bandwidth of 1 bit and clock speed of 3.125 GHz. The data will be

converted to the AXIS protocol, a protocol with a bandwidth of 32 bits

and a clock speed of 78.125 MHz. The AXIS protocol is used as data

- 25 -

3 Compute Node Carrier Board v4.0

S00_AXI

S_AXI_INTR

fab11_in

fab9_in

fab7_in

fab5_in

fab6_in

fab8_in

fab10_in

fab12_in

amc_p10_rxn

amc_p10_rxp

amc1_p10_out

fab_txn

fab_txp

cncb4_mgt_aurora_axis_1

external

external external

external

MB

MB

MBMB

MB

MB MB

MB

S00_AXI

S00_AXIS

axis_monitor_0

M00_AXIS

S00_AXI

S_AXI_INTR

S00_AXIS M00_AXIS

belle2_format_handler_0

S00_AXI

S00_AXIS

M00_AXIS

M01_AXIS

M02_AXIS

M03_AXIS

M04_AXIS

M05_AXIS

M06_AXIS

M07_AXIS

roi_distribution_axis_0

S00_AXI

S00_AXIS

S01_AXIS

S02_AXIS

S03_AXIS

M00_AXIS

M01_AXIS

M02_AXIS

M03_AXIS

axis_monitor_1

S00_AXI

S00_AXIS

S01_AXIS

S02_AXIS

S03_AXIS

M00_AXIS

M01_AXIS

M02_AXIS

M03_AXIS

axis_monitor_2

Figure 3.3 � Simpli�ed schematic of the block design.

bus between and inside cores and is explained in further detail in the

next section. After the data is converted, it will be sent via the port

amc1_p10_out. The input and output ports correspond to AMC slot one.

The ports of other slots are available and functional, but not shown. Then

the RoI Data passes through the �rst Monitor core (axis_monitor_0).

This core counts the number of incoming data. The Format Handler core

(belle2_format_handler_0) checks the data format. The data with a

wrong format or checksum will be discarded. Afterwards, the RoI Distri-

bution core (roi_distribution_axis_0) determines, which data will be

passed to which Selector Carrier. The number of Selector Carriers, used

in the ONSEN system, is selectable. The outgoing data will be counted

again with Monitor cores (axis_monitor_1 and axis_monitor_2). Be-

cause the maximum number of inputs is four, two Monitor cores are

utilized. Then the data will be converted to the Aurora protocol and

sent through the backplane to the Selector Carrier. The ports fab_txp

and fab_txn are external and examples for the outgoing data port. For

every possible fabric channel, those ports exists. There are also external

ports to convert incoming data from the fabric channels to the AXIS

protocol and also external ports to send converted data to the AMC, but

those are not in use.

- 26 -

3.4 Custom IP Cores

3.4 Custom IP Cores

Before explaining the structure of each custom IP core, general informa-

tion of the VHDL code structure used in the cores are presented.

The AXI Stream (AXIS) protocol, which is the interface used between

and in the inside of the cores, consists of several ports that are classi�ed

as a slave or as a master. Slave interfaces are indicated with the letter (s)

and is a data input, but not every meta data port of the slave interface is

an input. The opposite is valid for the master interface that is indicated

with the letter (m).

An overview of every port is given in the following table:

Table 3.1 � The AXI Stream ports.

Slave Master Bandwidth Mode

TDATA Input Output 32 -

TKEEP Input Output 4 Active high

TVALID Input Output 1 Active high

TREADY Output Input 1 Active high

TLAST Input Output 1 Active high

The data is forwarded by the TDATA port. This port has a minimum data

granularity of 8-bit. Only bandwidths of 32-bits are used for the whole

project. The port TKEEP indicates which 8-bit packet of TDATA is as-

serted. Since the data is logically converted with a 10-to-8-bit converter,

there could be 8-bit packages, which are left over if data is packaged only

in 32-bits. The port TVALID indicates if the TDATA is valid. If the data is

not valid, it will not be processed further. In addition, the port TREADY

has the opposite �ow of slave or master interface and implies, if the des-

tination is ready to process more data. This port will eventually, after

all bu�ers and storage are depleted and hold long enough, extend to the

beginning of data input of the Merger Carrier. This native �ow control

will create back pressure and stop incoming data. The port TLAST shows

the end of the incoming data packet.

The CNCB v3.3 uses a di�erent but very similar protocol, the LocalLink

(ll) protocol. It contains the same ports as mentioned above with dif-

- 27 -

3 Compute Node Carrier Board v4.0

ferent names and one additional port. The start-of-frame port does not

exist anymore. Similar to TLAST, it indicated the start of a data packet.

In all custom cores slave registers exist. Slave registers are special bits

that can be addressed with the Microblaze. These bits allow the usage of

monitoring and controlling the operation of the Merger Carrier. A slave

register has 32 bits, but several slave registers can be present in one core.

These register can be only readable or readable and writeable.

The Microblaze runs a Linux operating system for the slow control. There

are two slow control programs to control an monitor the operation of the

ONSEN system. Node is a program that allows for direct use of the slave

registers. The program EPICs uses process variables (PVs) to monitor

and write to special bits. EPICs works with node and adds a graphical

interface. Both programs initialize con�gurations. Details to the slow

control are in section A.1.2.

For the Aurora core and the Format Handler core interrupts are used.

These interrupts are created by already existing logic. The Microblaze

takes care of registering the interrupt. The interrupt logic can have up to

32 individual interrupts per core. While Node registers the total number

of interrupts of each core, slow control logic exists to detect individual

interrupts.

The general VHDL structure consists of a top �le, which determines

the ports of the core in the block design. The top �le instantiates the

interrupt and slave register logic as well as more core speci�c logic, which

itself can instantiate more VHDL �les.

3.4.1 Aurora Core

The Auroa core is used to convert the protocol from the Aurora protocol

to the AXIS protocol and back. For data sending or receiving MGTs are

utilized. The tree diagram in �gure 3.4 shows the instantiation struc-

ture of this core. The top �le instantiates the Aurora wrappers, slave

register and interrupts. There are in total 16 wrappers, which all con-

tain a MGT. The MGT is implemented with aurora_sender1, a Xilinx

aurora_8b10b core [19] that takes care of receiving and sending data.

- 28 -

3.4 Custom IP Cores

cncb4_mgt_auarora_axis

cncb4_mgt_auroa_axis_S00_AXI_inst

aurora_wrapper_amc1

aurora_wrapper_amc4

aurora_wrapper_fab3

aurora_wrapper_fab14

cncb4_mgt_aurara_axis_S_AXI_INTR_inst

aurora_sender1

reset_sequence_logic_inst

axis_gate_in

axis_gate_out

input_fifo

fifo_aurora_sender_0

nfc

Figure 3.4 � Hierarchy of the instantiation of the Aurora core.

Every aurora_8b10b has two separate converters. One is used to con-

vert incoming data from the Aurora protocol to the AXIS protocol and

the other one is used to convert data back from the AXIS protocol to the

Aurora protocol. Because we only receive data from the AMCs, we only

use the conversion to the AXIS protocol. Although the initialization of

the unused conversion is necessary for the �ow control. For the outgoing

data of the aurora_sender1 of the fabric channels, we only utilize the

converters to the Aurora protocol.

The Aurora protocol has a 1-bit bandwidth, a packet of 10 bins, a fast

clock of 3.125 GHz and uses serial data transfer. The data has two di�er-

ent representations. One representation contains more '1' and the other

one more '0'. This is used to reduce the charge of the ports, which

would cause data loss if ignored. The MGT bundles 10-bits to a 8-bit

and bundles four 8-bits to one 32-bit data word of the AXIS protocol.

The 10 to 8-bit conversion allows for error detection and key-characters

that are part of the Aurora protocol and contain meta data. Since all

the 32-bits are send parallel, the clock speed is greatly reduced by forty

times to 78.125 MHz. For this procedure the MGT needs reference clocks.

The resources of the FPGA are divided into two columns that are phys-

ically unconnected as shown in the �gure 3.5. In the column, multiple

banks exists. The right column bank 225 to 228 contain the MGTs for

- 29 -

3 Compute Node Carrier Board v4.0

Figure 3.5 � Resource placement of the MGTs in the Kintex UltraScale.

- 30 -

3.4 Custom IP Cores

the AMC. While multiple ports exists, only one port is needed. In this

project port 10 is used to connect to the AMC. The ports in usage are

marked orange. As for the reference clock, one clock was chosen per

column. The chosen clocks are indicated with a green color. Since the

MGT uses its build-in clock, the VHDL code di�ers slightly to the other

MGT of the column. This aurora_8b10 automatically uses its build-in

clock and outputs it. Then the clock is distributed to the other MGTs

of the column that contain no shared logic with the reference clock of

the bank. The MGTs of the fabric channels 3 and 4 also use this clock,

because they are in the right column. The number of the fabric channel

is written in the squared brackets. The remaining fabric channels are in

the left column. Here, the same VHDL code is utilized as for the AMC.

Fabric channel 11 uses its build in reference clock, which is shared with

the other fabric channels of the left column. The red number behind each

MGT indicates the numbering of the signals that is used for the speci�c

Aurora wrapper. For the upper 16 bits of the slave registers, the same

order is kept. A summary can be found in the table 3.2.

Moreover, the MGT has two resets that have to be sequenced in the right

order. For this, special logic is implemented that activates the resets, if

the global reset or soft reset signal is set externally or by the slave reg-

isters.

The Aurora wrapper contains two asynchronous First In First Outs (FI-

FOs). FIFOs bu�er data and are often used if data is converted, because

small deviations of the clock speed can cause data loss. Asynchronous

FIFOs are able to read and write independently with di�erent clocks.

The output FIFO is placed after data conversion to AXIS and the in-

put FIFO is placed before data conversion to the Aurora protocol. The

output FIFO creates a signal, if it is almost �lled. This signal will be

passed to the state machine of the native �ow control (NFC). This state

machine will then communicate with the aurora_8b10b with a bundled

signal S_AXIS_NFC, which contains a TREADY, TVALID and a TDATA sig-

nal. The TDATA signal is a 4-bit vector and di�ers signi�cantly since it

does not contain RoI data. The aurora_8b10b then sends a signal to the

AMC to stop data output. Directly before the output FIFO and after

the input FIFO a AXIS gate is placed. The AXIS gate can stop the data

- 31 -

3 Compute Node Carrier Board v4.0

Table 3.2 � General information to MGT usage of the Aurora Core.
In
st
an
ce

C
od
e

G
T
H
E
_
C
ha
nn

el
C
lo
ck

do
m
ai
n

SR
as
si
gn
m
en
t

A
M
C
1
p
or
t
10

a
u
r
o
r
a
_
w
r
a
p
p
e
r
_
w
i
t
h
o
u
t
_
s
h
a
r
e
d

X
1
Y
1
9

M
G
T
-P
L
L
of

B
an
k
22
6

0
or

16

A
M
C
2
p
or
t
10

a
u
r
o
r
a
_
w
r
a
p
p
e
r
_
w
i
t
h
o
u
t
_
s
h
a
r
e
d

X
1
Y
1
5

M
G
T
-P
L
L
of

B
an
k
22
6

1
or

17

A
M
C
3
p
or
t
10

a
u
r
o
r
a
_
w
r
a
p
p
e
r

X
1
Y
1
1

M
G
T
-P
L
L
of

B
an
k
22
6

2
or

18

A
M
C
4
p
or
t
10

a
u
r
o
r
a
_
w
r
a
p
p
e
r
_
w
i
t
h
o
u
t
_
s
h
a
r
e
d

X
1
Y
7

M
G
T
-P
L
L
of

B
an
k
22
6

3
or

19

Fa
br
ic
C
ha
nn

el
3

a
u
r
o
r
a
_
w
r
a
p
p
e
r
_
w
i
t
h
o
u
t
_
s
h
a
r
e
d

X
1
Y
1

M
G
T
-P
L
L
of

B
an
k
22
6

4
or

20

Fa
br
ic
C
ha
nn

el
4

a
u
r
o
r
a
_
w
r
a
p
p
e
r
_
w
i
t
h
o
u
t
_
s
h
a
r
e
d

X
1
Y
0

M
G
T
-P
L
L
of

B
an
k
22
6

5
or

21

Fa
br
ic
C
ha
nn

el
5

a
u
r
o
r
a
_
w
r
a
p
p
e
r
_
w
i
t
h
o
u
t
_
s
h
a
r
e
d

X
0
Y
8

M
G
T
-P
L
L
of

B
an
k
12
7

6
or

22

Fa
br
ic
C
ha
nn

el
6

a
u
r
o
r
a
_
w
r
a
p
p
e
r
_
w
i
t
h
o
u
t
_
s
h
a
r
e
d

X
0
Y
9

M
G
T
-P
L
L
of

B
an
k
12
7

7
or

23

Fa
br
ic
C
ha
nn

el
7

a
u
r
o
r
a
_
w
r
a
p
p
e
r
_
w
i
t
h
o
u
t
_
s
h
a
r
e
d

X
0
Y
1
0

M
G
T
-P
L
L
of

B
an
k
12
7

8
or

24

Fa
br
ic
C
ha
nn

el
8

a
u
r
o
r
a
_
w
r
a
p
p
e
r
_
w
i
t
h
o
u
t
_
s
h
a
r
e
d

X
0
Y
1
1

M
G
T
-P
L
L
of

B
an
k
12
7

9
or

25

Fa
br
ic
C
ha
nn

el
9

a
u
r
o
r
a
_
w
r
a
p
p
e
r
_
w
i
t
h
o
u
t
_
s
h
a
r
e
d

X
0
Y
1
2

M
G
T
-P
L
L
of

B
an
k
12
7

10
or

26

Fa
br
ic
C
ha
nn

el
10

a
u
r
o
r
a
_
w
r
a
p
p
e
r
_
w
i
t
h
o
u
t
_
s
h
a
r
e
d

X
0
Y
1
3

M
G
T
-P
L
L
of

B
an
k
12
7

11
or

27

Fa
br
ic
C
ha
nn

el
11

a
u
r
o
r
a
_
w
r
a
p
p
e
r

X
0
Y
1
4

M
G
T
-P
L
L
of

B
an
k
12
7

12
or

28

Fa
br
ic
C
ha
nn

el
12

a
u
r
o
r
a
_
w
r
a
p
p
e
r
_
w
i
t
h
o
u
t
_
s
h
a
r
e
d

X
0
Y
1
5

M
G
T
-P
L
L
of

B
an
k
12
7

13
or

29

Fa
br
ic
C
ha
nn

el
13

a
u
r
o
r
a
_
w
r
a
p
p
e
r
_
w
i
t
h
o
u
t
_
s
h
a
r
e
d

X
0
Y
1
6

M
G
T
-P
L
L
of

B
an
k
12
7

14
or

30

Fa
br
ic
C
ha
nn

el
14

a
u
r
o
r
a
_
w
r
a
p
p
e
r
_
w
i
t
h
o
u
t
_
s
h
a
r
e
d

X
0
Y
1
7

M
G
T
-P
L
L
of

B
an
k
12
7

15
or

31

- 32 -

3.4 Custom IP Cores

by setting its TVALID and TREADY port to low. The general structure of

the Aurora wrapper is shown in �gure 3.6. As before, the AXIS signals

are bundled and shown as one data lane. Irrelevant ports are missing

as well as a pulse synchronizer to convert the reset signal to another

clock domain. The gates only use the TVALID and TREADY signals of

the AXIS interface and are therefore drawn out of and into the grouped

line. The init_clock_in is created by a clock wizard with a frequency

of 50 MHz and is used to initialize the gigabit transceiver. The clock

wizard is a peripheral core to create frequencies with a de�ned phase.

The instance aurora_wrapper_without_shared, which is used for every

wrapper except AMC 3 and fabric channel 11, has the gt_refclk1_out

(156.25 MHz) and user_clk_out as an input from the Aurora wrapper

in the same column. The destination of inputs and outputs of the Aurora

wrapper is indicated. Note that both conversion lanes are labelled, but

only one lane is used per wrapper. The aurora_8b10b also creates hard,

soft and frame errors that are connected to the interrupt logic. This is

only indicated by the port err.

The Aurora core has seven slave registers that contain status signals

of the aurora_8b10b, the enable of the input and output gate of the

Aurora wrapper and reset signals. The table 3.3 shows the assignments

of the slave registers and if the slave register can be written to or not.

A block design of the whole are Aurora core is shown in �gure 3.7. The

dots inside of the Aurora core indicate that there are more signals of other

Aurora wrappers, which are not shown. In this case, the signals get bun-

dled together to 16-bit vectors. For the resets, the dotted lines mean that

the signals come from the aurora_wrapper of its corresponding column.

- 33 -

3 Compute Node Carrier Board v4.0

rx
p

/r
x
n

S
_A

X
IS

_T
X

S
_A

X
IS

_N
FC

re
se

t

g
t_

re
se

t

M
_A

X
IS

_R
X

tx
p

/t
x
n

ch
a
n

n
e
l_

u
p

tx
_l

o
ck

u
se

r_
cl

k_
o
u
t

g
t_

re
fc

lk
1

_o
u
t

e
rr

a
u
ro

ra
_8

b
1

0
b

in
it

_c
lk

_i
n

M
_A

X
IS

a
x
is

_p
ro

g
_f

u
ll

o
u
tp

u
t_
fi
fo

S
_A

X
IS

E
N

A
B

LE

s_
a
x
is

_t
v
a
lid

m
_a

x
is

_t
re

a
d

y

m
_a

x
is

_t
v
a
lid

a
x
is

_g
a
te

_o
u
t

s_
a
x
is

_t
re

a
d

y

E
N

A
B

LE

s_
a
x
is

_t
v
a
lid

m
_a

x
is

_t
re

a
d

y

m
_a

x
is

_t
v
a
lid

a
x
is

_g
a
te

_o
u
t

s_
a
x
is

_t
re

a
d

y

S
_A

X
IS

M
_A

X
IS

in
p
u
t_
fi
fo

O
V

E
R

_T
H

R
E

S
H

O
LD

S
_A

X
IS

_N
FC

N
FC

re
se

t
re

se
t

g
t_

re
st

re
se

t_
se

q
u

e
n
ce

_l
o
g
ic

A
M

C

S
R

R
o
I
D

is
tr

ib
u
ti

o
n
 C

o
re M
B

C
lo

ck
 W

iz
a
rdS
R

M
o
n
it

o
r

C
o
re

B
a
ck

p
la

n
e

S
R

S
R

a
u
ro

ra
_w

ra
p

p
e
r_

w
it

h
o
u

t_
sh

a
re

d

a
u
ro

ra
_w

ra
p

p
e
r_

w
it

h
o
u

t_
sh

a
re

d

A
X

I
in

te
rr

u
p

t
lo

g
ic

a
u
ro

a
_w

ra
p
p
e
r

Figure 3.6 � Block design of the Aurora wrapper.

- 34 -

3.4 Custom IP Cores

rx
p

/r
x
n

e
n
a
b

le
_i

n

e
n
a
b

le
_o

u
t

re
se

t

g
t_

re
fc

lk
1

_o
u
t

u
se

r_
cl

k_
o
u
t

M
_A

X
IS

ch
a
n

n
e
l_

u
p

tx
_l

o
ck e
rr

a
u
ro

ra
_w

ra
p
p
e
r_

a
m

c1

S
_A

X
IS

e
n
a
b

le
_i

n

e
n
a
b

le
_o

u
t

re
se

t

g
t_

re
fc

lk
1

_o
u
t

u
se

r_
cl

k_
o
u
t

tx
p

/t
x
n

ch
a
n

n
e
l_

u
p

tx
_l

o
ck e
rr

a
u
ro

ra
_w

ra
p
p
e
r_

fa
b
3

ch
a
n

n
e
l_

u
p

tx
_l

o
ck

e
n
a
b

le
_i

n

e
n
a
b

le
_o

u
t

so
ft

_r
e
se

t

S
la

v
e
 R

e
g
is

te
r

(S
0

0
_A

X
I)

In
te

rr
u
p

ts
 (

S
_A

X
I_

IN
T
R

)

in
tr

cn
cb

4
_m

g
t_

a
u

ro
ra

_a
x
is

A
M

C
 1

R
o
I
D

is
tr

ib
u
ti

o
n
 C

o
re

M
o
n
it

o
r

C
o
re

B
a
ck

p
la

n
e

Figure 3.7 � Block design of the Aurora core.

- 35 -

3 Compute Node Carrier Board v4.0

Table 3.3 � Slave register assignments of the Aurora core.

Name SR Bits Write status Description

tx_lock 0 15 downto 0 Non writeable Indicates the

connection with

the transceiver

port

channel_up 1 31 downto 16 Non writeable Indicates the

connection with

Aurora

enable_out 4 15 downto 0 Writeable Opens the gate

before second

FIFO

enable_in 4 31 downto 16 Writeable Opens the gate

after �rst FIFO

reset_out 6 0 Writeable Resets core

3.4.2 Monitor Core

The Monitor core counts the number of passed-through data. It is placed

after and before the conversion of the Aurora core. Its instantiation

hierarchy is shown in �gure 3.8. The top �le instantiates up to four

axis_counter. Since there are eight data lines after the RoI Distriubtion

core, two Monitor cores are used to count the data. The logic of counting

data is written in the axis_counter. The data is divided into frames,

which are further divided into words. Basically, a frame consists of meta

data words, RoI data words and a checksum word. While the number

bits, which make up the word is �xed to 32, the number of words, which

a frame contains is arbitrary. More details are in section A.3.2. To count

the number of frames, we use the TLAST port, which should only be high

at the end of a frame. The number of frames and words are displayed with

the slaver registers. The counters for frames and words are 32 bits long,

therefore the Monitor core contains eight slave registers to display the

- 36 -

3.4 Custom IP Cores

axis_counter_1

axis_counter_2

axis_counter_3

axis_counter_4

axis_monitor_v1_0_S00_AXI_inst

axis_monitor_v1_0

Figure 3.8 � Hierarchy of the instantiation of the Monitor core.

number of frames and words of every possible data lane. The assignment

of slave register are listed in table 3.4.

Table 3.4 � Slave register assignments of the Monitor core.

Name SR Bits Write status Description

axis_1_word_count 0 31 downto 0 Non Writeable

Number of

counted

frames and

words.

axis_1_frame_count 1 31 downto 0 Non Writeable

axis_2_word_count 2 31 downto 0 Non Writeable

axis_2_frame_count 3 31 downto 0 Non Writeable

axis_3_word_count 4 31 downto 0 Non Writeable

axis_3_frame_count 5 31 downto 0 Non Writeable

axis_4_word_count 6 31 downto 0 Non Writeable

axis_4_frame_count 7 31 downto 0 Non Writeable

- 37 -

3 Compute Node Carrier Board v4.0

belle2_format_handler_axis_S00_AXI_inst

roi_parser_i

axis_out_gate

axis_in_buffer

belle2_format_handler_axis_S00_AXI_INTR_inst

belle2_format_handler_axis axis_in_gate

axis_out_buffer

crc32_chekcer_axis_i crc32_generator_axis_i crc32_v4

roi_fifo

decision_fifo

Figure 3.9 � Hierarchy of the instantiation of the Format Handler core.

3.4.3 Format Handler Core

The Belle II Format Handler core is used to verify the checksum and

data format. A detailed description of the data format is given in section

A.3.2. The VHDL code structure is shown in �gure 3.9.

The top �le instantiates two gates to stop data processing, two bu�ers

that enable further resource placement, a RoI parser, which checks data,

slave register and interrupts. The main logic is contained in the RoI

parser. It is surrounded by bu�ers, that infer FIFOs with a depth of

two. This improves the timing for critical paths of the AXI stream in-

terface. There are two gates that are placed before the �rst bu�er and

after the second bu�er. The gates contain an enable signal to allow data

forwarding. For the gates the same structure is used as in the Aurora

core. The RoI parser contains a state machine that progresses depending

on the state of the data format. The list of errors, which can be detected

are in table A.3.

The crc (cyclic redundancy check) is outsourced to the crc checker, which

instantiates the crc generator and crc_v4. The crc checker contains a

state machine to verify, when the crc check is done and if it is correct or

not. It also calculates the start of the frame. The crc generator prepares

the data to be used by the crc_v4. This includes optional bit and byte

re�ection and crc reset assignment. The crc_v4 calculates the check-

sum of a whole 32 bit word. The polynomial to encode the checksum

in hexadecimal representation is 04C11DB7, which is used in Ethernet

connections. As initial value it uses a string of zeroes and after this the

calculated value is used as a base until the frame is �nished. When the

- 38 -

3.4 Custom IP Cores

frame is �nished and correct, the crc should be again a string of zeroes.

The Format Handler core contains 17 slave registers, which mainly infer

signals for the PXD parser. The PXD parser is not yet implemented and

necessary, if the AMCs of the ONSEN system will be upgraded. With

the slave register we can control gate status, reset and the RoI parser

options: downscaler factor, roisender factor and error mask. The slave

register assignment is listed in table 3.5. Only slave registers 1 to 3 are

writeable.

Table 3.5 � Slave register assignments of the Belle II Format Handler core.

Name SR Bits

m00_axis_tready 0 0 Input TREADY signal.

m00_axis_tvalid_buffer 0 1 Output TVALID sig-

nal

s00_axis_tready_buffer 0 2 Output TREADY sig-

nal

s00_axis_tvalid 0 3 Input TVALID signal.

enable_ptr_slv_plb 1 0 PXD parser signal.

enable_axis_out 1 4 Enables output gate.

enable_axis_in 1 5 Enable input gate.

enable_output 1 8 Sets the signals

m_axis_tvalid_i,

decision_fifo_-

wr_en,

EVT_ID_FIFO_WR_EN,

PLB_FIFO_WR_EN and

PLB_INTR to low.

ASYNC_RST 1 9 Rest for the

entity reset_-

synchronizer.

- 39 -

3 Compute Node Carrier Board v4.0

trigger_number_shift 1 15 downto 12 PXD parser signal.

roisender 2 15 downto 0 Activates

ROISENDER_FACTOR.

downscaler 2 31 downto 16 Activates

DOWNSCALER_FACTOR.

error_mask 3 31 downto 0 Enables error detec-

tion of the corre-

sponding bit in table

A.3.

current_trigger 4 31 downto 0 PXD parser signal.

dhe_id_4 5 7 downto 2

PXD parser signal.

dhe_id_3 5 13 downto 8

dhe_id_2 5 19 downto 14

dhe_id_1 5 25 downto 20

dhe_id_0 5 31 downto 26

dhe_occ_0 6 31 downto 0

PXD parser signal.

dhe_occ_1 7 31 downto 0

dhe_occ_2 8 31 downto 0

dhe_occ_3 9 31 downto 0

dhe_occ_4 10 31 downto 0

dhe_occ_max_0 11 31 downto 0

PXD parser signal.

dhe_occ_max_1 12 31 downto 0

dhe_occ_max_2 13 31 downto 0

dhe_occ_max_3 14 31 downto 0

dhe_occ_max_4 15 31 downto 0

cm63_0 16 31 downto 26

PXD parser signal.

cm63_1 16 25 downto 20

cm63_2 16 19 downto 14

cm63_3 16 13 downto 8

- 40 -

3.4 Custom IP Cores

cm63_4 16 7 downto 2

There is only one interrupt signal, which is high if at least one of the

errors is detected. The kind of error will be written to a FIFO, which

can be later on read by the slow control. This step is not implemented yet.

The �gure 3.10 shows a simpli�ed block design, that indicates the data

�ow through the Format Handler core as well as important signals.

3.4.4 RoI Distribution Core

The RoI Distribution core is used to multiplex the AXIS interface to a set

number and select the ports to distribute to. For the internal structure

the older LocalLink protocol is still in use. To implement the function,

the top �le converts AXIS protocol to LocalLink and back. The instan-

tiation chain is shown is �gure 3.11.

The top �le instantiates slave registers and the previous top �le of the

RoI Distribution core. Its main purpose is to convert the protocols and

pass signals to the salve registers. The entity fork_trigger_packets

multiplexes the data ports. In the case that one or more Selector Car-

rier can not progress data, we need to stop data intake. For this, the

seven ll_ready_fork are instantiated to synchronize the �ow control

ports of the LocalLink protocol. The selection is carried out by eight

trigger_packet_filter. With the eight signals TRG_NUM_LUT that can

be set via the slave registers, the selection can be programmed. This en-

tity looks for the trigger number of a frame and decides depending of the

contents of its TRG_NUM_LUT to pass through the frame. Since the trigger

number is in the second word of a frame, the frame is bu�ered in a FIFO.

A second decision FIFO is used to bu�er the contents of TRG_NUM_LUT

until the frame is �nished.

A simpli�ed block design of the RoI Distribution is shown �gure 3.12. It

focuses on the data pass through. Since the protocol conversion is not

relevant, it is left out.

- 41 -

3 Compute Node Carrier Board v4.0

E
N

A
B

LE

s_
a
x
is

_t
v
a
lid

m
_a

x
is

_t
re

a
d
y

m
_a

x
is

_t
v
a
lid

a
x
is

_g
a
te

_i
n

s_
a
x
is

_t
re

a
d
y

E
N

A
B

LE

s_
a
x
is

_t
v
a
lid

m
_a

x
is

_t
re

a
d
y

m
_a

x
is

_t
v
a
lid

a
x
is

_g
a
te

_o
u
t

s_
a
x
is

_t
re

a
d
y

a
x
is

_b
u
ff

e
r_

o
u
t

S
_A

X
IS

M
_A

X
IS

a
x
is

_b
u
ff

e
r_

in

S
_A

X
IS

M
_A

X
IS

ro
i_
fi
fo

S
_A

X
IS

M
_A

X
IS

d
e
ci

si
o
n
_fi

fo

d
in

d
o
u
t

st
a
te

 m
a
ch

in
e

fo
rm

a
t

ch
e
ck

e
r

lo
g
ic

 o
f

ro
i_

p
a
rs

e
r

S
_A

X
IS

cr
c_

o
k

cr
c3

2
_c

h
e
ck

e
r_

a
x
is

S
_A

X
IS

D
O

W
N

S
C

A
LE

R
_F

A
C

T
O

R

R
O

IS
E
N

D
E
R

_F
A

C
T
O

R

E
N

A
B

LE
_O

U
T
P
U

T

M
_A

X
IS

P
LB

_I
N

T
R

E
R

R
O

R
_M

A
S
K

ro
i_

p
a
rs

e
r

S
R

S
R

S
R

S
R

S
R

S
R

M
o
n
it

o
r

C
o
re

R
o
I
D

is
tr

ib
u
ti

o
n
 C

o
re

A
X

I
in

te
rr

u
p
t

lo
g
ic

Figure 3.10 � Block Design of the Format Handler core.

- 42 -

3.4 Custom IP Cores

roi_distribution_ll_top

fork_trigger_packets

trigger_packet_filter_0

trigger_packet_filter_7

ll_rdy_fork_0

ll_rdy_fork_6

roi_fifo

decision_fifo

roi_distribution_axis_S00_AXI_inst

roi_distribuiton_axis

Figure 3.11 � Hierarchy of the instantiation of the RoI Distribution core.

LL_IN LL_OUT_1

LL_OUT_2

LL_OUT_3

LL_OUT_4

LL_OUT_5

LL_OUT_6

LL_OUT_7

LL_OUT_8

LL_IN

TRG_NUM_LUT

fork_trigger_packets

LL_OUT

trigger_packet_filter_0

roi_distribution_ll_top

SR

Belle II Format Handler Core Monitor Core

Figure 3.12 � Block Design of the RoI Distribution core.

The RoI Distribution core contains 20 slave registers. The ENABLE_PORT

signal is especially importantly, to activate the distribution of RoIs and

the contents of TRG_NUM_LUT_1 to TRG_NUM_LUT_8. Only slave register 0

is not writeable. A list of the slave register assignment is in table 3.6.

- 43 -

3 Compute Node Carrier Board v4.0

Table 3.6 � Slave register assignments of the RoI Distribution core.

Name SR Bits Description

reset 1 8 Resets core

ENABLE_PORT 1 31 downto 24 Enables port

TRG_NUM_LUT_1 2 31 downto 24

TRG_NUM_LUT_2 2 23 downto 16

Speci�c �lter

option by

trigger

number

TRG_NUM_LUT_3 2 15 downto 8

TRG_NUM_LUT_4 2 7 downto 0

TRG_NUM_LUT_5 3 31 downto 24

TRG_NUM_LUT_6 3 23 downto 16

TRG_NUM_LUT_7 3 16 downto 8

TRG_NUM_LUT_8 3 7 downto 0

DHEID_LUT_1(63 downto 32) 4 31 downto 0 Speci�c �lter

option by

DHE ID

(process and

occurring

area)

DHEID_LUT_1(31 downto 0) 5 31 downto 0

.

DHEID_LUT_8(63 downto 32) 18 31 downto 0

DHEID_LUT_8(31 downto 0) 19 31 downto 0

- 44 -

4 Additions to the Firmware

In this chapter the progress of additions to the existing �rmware is doc-

umented. First the laboratory testing setup is outlined, since it di�ers in

terms of components.

The laboratory testing setup is used in Gieÿen to verify the operation

the implementations. It contains one CNCB v4.0 as Merger Carrier, a

xFP v4.0 as Merger AMC and one CNCB v3.3 as Selector Carrier. The

�rmware of the Merger Carrier is in progress. For the Selector Carrier

and Merger AMC the �rmware, which is used in the setup of Belle II

experiment, is implemented. There are small changes to the �rmware of

the Merger AMC to use the MGT ports instead of LVDS ports of the pre-

vious setup. The Selector Carrier is in logical slot 2, the Merger Carrier

is in logical slot 13 of the ATCA shelf and the Merger AMC is plugged in

the �rst slot of the Merger Carrier. A programmer is utilized to program

the FPGA of Selector Carrier, Merger Carrier or Merger AMC as well

as the CPLD of each CNCB via a JTAG connector with JTAG protocol.

For sending merged test RoIs (TCP protocol) and for the slow control

Ethernet connection is used (TCP and UDP protocol).

A summary of additions is shown in table 4.1. Further exploitation is

given in the next sections.

- 45 -

4 Additions to the Firmware

PC
Logical Ports 1 2 3 4 5 6 7 8 9 10 11 12 13 14

AMC Slot 1

AMC Slot 2

AMC Slot 3

AMC Slot 4

Selector Carrier Merger CarrierFr
o
n
t

si
d

e
 o

f
th

e
 A

TC
A

 s
h
e
lf

B
a
ck

 s
id

e
 o

f
th

e
 A

TC
A

 s
h

e
lf

Programmer

Programmer

RTM

Figure 4.1 � Laboratory setup for testing1.

Table 4.1 � Summary of additions to the �rmware.

Addition Description

Update interface protocol The Local Link protocol is replaced by the

AXIS protocol.

Fabric channel extension Fabric channels are added for the Aurora

core, so that the CNCB v4.0 can be used

in all slots of the ATCA shelf.

Reset sequence logic A sequenced reset is initialized to prevent

MGT errors of the Aurora core.

Core resets The cores are individually resettable with

the slow control.

Interrupts Interrupts of the Aurora core and the

Belle II Format Handler core are processed

and are displayed with the slow control.

- 46 -

4.1 Aurora Core Fabric Channel Extension

4.1 Aurora Core Fabric Channel Extension

The extension of more fabric channels uses the code of the existing fabric

channel as template. More Aurora Wrapper without shared logic are

instantiated. The corresponding status and interrupt signals are also

already implemented. The connection of these specialized bits are in table

3.2. Fabric channel 3 to 10 and 12 to 14 were added. Remark that only

fabric channel 11 uses the built-in clock and that the reference signals

are distributed to the other fabric channels depending of the column,

where they are placed. The instantiation for fabric channel 5 is shown

in listing 4.1. The AXIS interface ports are inputs or outputs of the

conversion and fab5_txp, fab5_txp, fab5_rxp and fab5_rxn are the

serial data inputs and outputs. Most of the remaining ports are slave

register signals, interrupt signals or bu�er signals.

0 aurora_wrapper_fab5 : entity work.aurora_wrapper_without_shared

generic map(

prereset_time => prereset_time ,

gt_reset_time => gt_reset_time ,

postreset_time => postreset_time

5)

port map(

channel_up => channel_up (6),

txp => fab5_txp ,

txn => fab5_txn ,

10 rxp => fab5_rxp ,

rxn => fab5_rxn ,

tx_lock => tx_lock (6),

reset => reset ,

reset_sequenced_out => reset_sequenced (6),

15 init_clk_in => init_clk_in ,

m_axis_clk => fab5_out_axis_clk ,

s_axis_clk => fab5_in_axis_clk ,

user_clk => fab_user_clk_zw ,

20 sync_clk => fab_sync_clk_zw ,

gt_refclk1 => fab_gt_refclk1_zw ,

pll_not_locked => fab_pll_not_locked_zw ,

s_axi_tx_tdata => fab5_in_tdata ,

25 s_axi_tx_tkeep => fab5_in_tkeep ,

s_axi_tx_tlast => fab5_in_tlast ,

s_axi_tx_tvalid => fab5_in_tvalid ,

s_axi_tx_tready => fab5_in_tready ,

30 --ports fifo

m_axis_tvalid => fab5_out_tvalid ,

1Graphics of USB, RJ45 and JTAG port imported from [20] [21] [22].

- 47 -

4 Additions to the Firmware

m_axis_tready => fab5_out_tready ,

m_axis_tdata => fab5_out_tdata ,

m_axis_tkeep => fab5_out_tkeep ,

35 m_axis_tlast => fab5_out_tlast ,

--ports axis_gate

enable_out => enable_out (6),

enable_in => enable_in (6),

40

hard_or_soft_err => hard_or_soft_err (6),

frame_err => frame_err (6)

);

Listing 4.1 � Instantiation of fabric channel 5.

4.2 Aurora Core Reset Sequence Logic

The reset of the transceiver of the Aurora wrapper needs to be sequenced.

There are two reset signals a gt_reset and a reset. The gt_reset resets

only the gigabit-transceiver that runs on the user_clk domain, while the

reset is general a signal for the surrounding logic. During the gt_reset

the user_clk will be suppressed, which causes that the reset does not

reach all portions of the programmable logic. The init_clk is always

active and initializes the user_clk after the reset is set back to low and

is also the domain of the signal reset.

The correct reset sequence is shown in �gure 4.2. After a reset signal is

produced by a soft reset from slave registers or general reset for all cores,

the signal reset will be set to high. After at least 128 user_clk cycles

the gt_reset can be switched to high. Both resets should be active for

about one second. Then the gt_reset will be set to low and after that

the reset will be set also to low synchronous to the user_clk. The se-

quence reset is shown in listing 4.2. Since using the user_clk will lead to

complex logic with two state machines that need to exchange signals and

have to be synchronized to the other clock domain, an easier solution was

chosen. In the code, there is only one state machine synchronous to the

init_clk. The working principle is depicted in �gure 4.3. To compen-

sate that the init_clk is slower than the user_clk, the number of cycles

are multiplied by 16. Therefore, the ratio between the clocks should not

exceed 16. The state machine contains three sates. It begins with an idle

- 48 -

4.2 Aurora Core Reset Sequence Logic

Figure 4.2 � Reset sequence for the aurora_8b10b [19].

- 49 -

4 Additions to the Firmware

Idle State

reset low

gt_reset low

Wait for
initialize reset

sequence
signal high.

Pre-Reset Stage Reset Stage Post-Reset Stage Reinitialize Stage

reset high

gt_reset low

Wait 128
times 16
init_clk

cycles.

reset high

gt_reset high

Wait one
second and

until initialize
reset

sequence is
low.

reset high

gt_reset low

Wait 128
init_clk

cycles.

reset high

gt_reset low

Reset
counter.

Reset State

Hold Reset State

reset high

gt_reset low

Wait until
rx_reset_-
done is high.

Figure 4.3 � Working principle of the reset sequence.

state, where we progress to the reset state, if the soft reset or global rest

is initialized. Inside the reset state we have four di�erent stages, divided

by a counter. The breakpoints are generics that can be adjusted in the

options of the core. In the pre-reset stage, we only set the signal reset

signal to high. Here, two signals reset_i and reset_unsync are used

for timing. The reset_unsync will be synchronized to the user_clk

domain and therefore always be delayed to the reset_i signal. To begin

the reset sequence as fast as possible, the reset will be set to high syn-

chronized with the init_clk, but it is important to set the reset to low

synchronized with the user_clk. For this, reset_unsync is synchronized

to the user_clk and called reset_sync. By combining the reset_i and

reset_sync with an OR-gate the reset signal is extended to be set to

low with the user_clk. In the next stage, reset and gt_reset are set

to high for around one second. If the soft reset or global reset is still

high at this moment, we want to stay in this stage. Therefore, we stop

incrementing the counter. Then the gt_reset will be set back to low

and we wait for a third timer. At the end, we set the counter to zero

and switch to another state to hold the reset. Here, we hold the signal

reset until the signal rx_resetdone of the aurora_8b10 is high. Then

we go back to the beginning idle state. The logic was tested and veri�ed

to run stable with a test bench.

0 library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

library xpm;

use xpm.vcomponents.all;

5

entity reset_sequence_logic is

generic(

- 50 -

4.2 Aurora Core Reset Sequence Logic

prereset_time : integer;

10 gt_reset_time : integer;

postreset_time : integer

);

port(

reset_sync_init_clk : in std_logic;

15 user_clk : in std_logic;

init_clk : in std_logic;

rx_resetdone : in std_logic;

reset : out std_logic;

20 gt_reset : out std_logic

);

end reset_sequence_logic;

architecture arch_imp of reset_sequence_logic is

25

signal reset_i :std_logic := '0';

signal reset_unsync :std_logic := '0';

signal reset_out_sync :std_logic := '0';

30 signal counter : unsigned (31 downto 0) := x"00000000";

constant prereset_time_i : integer := prereset_time;

constant gt_reset_time_i : integer := gt_reset_time + 16*

prereset_time_i;

constant postreset_time_i : integer := postreset_time +

gt_reset_time_i;

35 type state_type_reset is (idle_r , reset_r , hold_reset);

signal state_reset : state_type_reset := idle_r;

begin

40 process (init_clk) is

begin

if rising_edge(init_clk) then

-- reset_unsync will be synchroniced with the user_clk.

-- Since reset will be set to reset_i or reset_sync_out

45 -- reset_sync_out should be assigent to '0' after

-- reset_i is assigent.

reset_i <= '0';

reset_unsync <= '0';

gt_reset <= '0';

50 case state_reset is

when idle_r =>

reset_i <= '0';

if reset_i = '0' then

reset_unsync <= '0';

55 end if;

if reset_sync_init_clk = '1' then

state_reset <= reset_r;

end if;

when reset_r =>

60 counter <= counter + 1;

-- Worst case: ratio between init_clk and user_clk is 16

- 51 -

4 Additions to the Firmware

if counter <= 16* prereset_time_i then

reset_i <= '1';

reset_unsync <= '1';

65 elsif counter > 16* prereset_time_i and counter <

gt_reset_time_i then

reset_i <= '1';

reset_unsync <= '1';

gt_reset <= '1';

elsif counter = gt_reset_time_i then

70 reset_i <= '1';

reset_unsync <= '1';

gt_reset <= '1';

-- Hold reset and gt_reset if reset_sync_init_clk is

still active

if reset_sync_init_clk = '1' then

75 counter <= counter;

end if;

elsif counter > gt_reset_time_i and counter <

postreset_time_i then

reset_i <= '1';

reset_unsync <= '1';

80 else

reset_i <= '1';

reset_unsync <= '1';

counter <= x"00000000";

state_reset <= hold_reset;

85 end if;

when hold_reset =>

reset_i <= '1';

reset_unsync <= '1';

if rx_resetdone = '1' then

90 state_reset <= idle_r;

end if;

end case;

end if;

end process;

95 -- reset_i is synced to init_clk and reset_out_sync is

-- synced to user_clk. reset_out_sync will be later

-- assigent to '0' than reset_i

reset <= reset_i or reset_out_sync;

100 xpm_cdc_sync_rst_init_clk : xpm_cdc_sync_rst

generic map (

DEST_SYNC_FF => 4, -- DECIMAL; range: 2-10

INIT => 1, -- DECIMAL; 0= initialize synchronization

registers to 0, 1= initialize

-- synchronization registers to 1

105 INIT_SYNC_FF => 0, -- DECIMAL; 0= disable simulation init values ,

1= enable simulation init values

SIM_ASSERT_CHK => 0 -- DECIMAL; 0= disable simulation messages , 1=

enable simulation messages

)

port map (

dest_rst => reset_out_sync ,

110 dest_clk => user_clk ,

- 52 -

4.3 Core Resets

src_rst => reset_unsync

);

end arch_imp;

Listing 4.2 � Reset sequence logic.

4.3 Core Resets

The system can be reseted with a global reset signal for all cores. For

an individual soft reset, we create a new signal that can be accessed via

the slow control. This signal is not set to a slave register, but is set

by writing a speci�c string to one of the slave registers. For every core,

we choose slave register 0, because it is not writeable and only used for

status signals. Therefore, modi�cations to read the logic for every core

were created likewise as in listing 4.3.

0 when b"000" =>

-- additional soft reset logic

if (S_AXI_WSTRB = "1111" and S_AXI_WDATA = x"0000000A")

then

slv_reset_n <= '0';

end if;

Listing 4.3 � Additional read logic for soft resets.

The 000 is the local address, which stands for slave register 0. When the

speci�c string in hexadecimal 0000000A is read, the inverted reset signal

is set to low. Otherwise, it is high. Furthermore, this will reset the slave

registers and all other logic of the core.

4.4 Interrupts of Aurora Core and Belle II

Format Handler Core

The interrupt logic was already created with a template for the Aurora

core and Format Handler core. Here, it is necessary to connect the speci�c

signal to the interrupt of the AXIS interrupt logic. In the case of the Au-

rora core, the aurora_8b10b produces soft, hard and frame errors. The

maximum number of interrupts is 32. Since we have four aurora_8b10b

- 53 -

4 Additions to the Firmware

for the AMCs and twelve aurora_8b10b for the fabric channels, we have

too many error signals. Therefore, the soft and hard errors are combined

to one error with an OR-gate. The signals are further synchronized from

the local user clock to the s_axi_intr_aclk. Inside the AXIS interrupt

logic an example design is deleted and the soft-or-hard errors and frame

errors are connected.

For the Format Handler core only one interrupt exists. It is set to high

every time an error is detected by the RoI parser. It is connected to the

AXIS interrupt logic as described for the Aurora core.

The total number of interrupts is displayed with Node. The interrupt

logic di�ers from the previous implementation, therefore the Node scripts

need to be adjusted. Node is built with scripts that can be categorized

in de�nitions, address location and logic. The address is written in the

state machine of the AXIS interrupt logic. By addressing the registers of

the state machine, it is possible to enable and disable interrupts. The ac-

knowledgement of an interrupt is managed with a manage_interrupt()

function, that writes the content of the pending interrupt signal to the

acknowledge interrupt signal. Furthermore, the PVs that can be also ac-

cessed by EPICs, PV names were created and the address was de�ned.

4.5 Results of Tests

The �rmware was tested in the local laboratory of Gieÿen. The test-

ing setup is shown in �gure 4.1. For this RoI test data is sent to the

Merger AMC, then passed through the Merger Carrier and the Selector

Carrier, where the data will be discarded to avoid a bottleneck in the

system. The RoI test data is sent as HLT RoIs and is merged with with

dummy DATCON RoIs. The Merger AMC and Selector Carrier contain

Slow Control logic. They are able to monitor the number of frames and

words. A script is used to send data. The script is con�gurable, i.e. the

number of frames and event frequency are selectable.

Concerning the extension of fabric channels of the Aurora core 100 frames

were sent and were observed at all monitoring stages of the Merger AMC,

- 54 -

4.5 Results of Tests

Merger Carrier and Merger Selector. Moreover, the corresponding slave

register used for the speci�c fabric channel of the second or third Mon-

itor core displayed the correct number of frames and words. It can be

concluded the extension of fabric channels are successfully implemented.

The reset sequence of the Aurora core was tested with a simulation using

a test bench. Since simulating a timer of an magnitude of one second

takes long, the longest timer was reduced to a magnitude of one mi-

cro seconds. The waveform diagram for the gt_reset and reset signal

matches the behaviour depicted in �gure 4.2. In addition, the logic was

tested on the CNCB v4.0 and the Aurora Channel connection was estab-

lished.

The resets of the cores was tested by writing the hexadecimal string

0000000A to the slave register 0. The observation of the slow control

system showed that all slave register entries were set back to the original

status.

To test the interrupts of the Aurora core, the system is transitioned

between an unload and load status. This will reset the Aurora channel

connection and occasionally cause an interrupt, that was observed with

the slow control software Node. For the Belle II Format Handler core

interrupts the format of data must be changed. Since the Merger AMC

will always discard corrupted data, changing the RoI test data will not

cause an interrupt of the Merger Carrier. By adjusting the DATCON

dummy RoIs it is possible to change the format after the Merger AMC

discard function. The observation showed that the Merger Carrier will

not pass through the RoIs and interrupts are created. In theory every

frame should cause one interrupt. The number of interrupts depends on

the event frequency, because the operation speed of the Microblaze. A

event frequency 100 Hz about 10% of interrupts, at 30 Hz about 90% of

interrupts and with a frequency of 5 Hz all interrupts are detected.

- 55 -

5 Summary and Outlook

The Belle II experiment is located at the asymmetric electron-positron

collider SuperKEKB at the KEK research facility in Tsukuba, Japan.

The Belle II detector is placed at the interaction point to measure parti-

cle properties and precise locations of decay vertices. The Online Selec-

tion Node (ONSEN) system is part of the data acquisition system of the

PXD and is used to reduce the data load. The ONSEN system utilizes

Region of Interests (RoIs) created from two di�erent sources. The RoIs

are constructed from data taken by other subdetectors and allow for the

selection of speci�c event signatures. This system can be divided into

a Merger part, which mergers the di�erent RoI sources, and a Selector

part that forwards data depending on its location.

The Compute Node Carrier Board v4.0 (CNCB v4.0) is a new revision

and is planed to be used as a spare Merger Carrier. Adjustments must be

developed for the new Merger Carrier. Therefore additions to the custom

Implementation Program (IP) cores are implemented without changing

internal data processing. There are four custom IP cores used in the

project: The Aurora core handles data protocol conversion, the Monitor

core counts passed though data frames and words, the Belle II Format

Handler core veri�es data certitude and format and the RoI Distribution

core divides data into eight separate data lanes.

With the additions the systems is able to be used in di�erent slots of

the ATCA shelf. The custom IP core are now resettable by using the

slow control program Node. Moreover the interrupts are read with the

Microblaze and forwarded to Node. For better stability a reset sequence

logic was implemented to create an ordered reset signal for the high speed

links.

- 57 -

5 Summary and Outlook

Table 5.1 � Summary of additions to the �rmware.

Addition Description

Update interface protocol The Local Link protocol is replaced by the

AXIS protocol.

Fabric channel extension Fabric channels are added for the Aurora

core, so that the CNCB v4.0 can be used

in all slots of the ATCA shelf.

Reset sequence logic A sequenced reset is initialized to prevent

MGT errors of the Aurora core.

Core resets The cores are individually resettable with

the slow control.

Interrupts Interrupts of the Aurora core and the

Belle II Format Handler core are processed

and are displayed with the slow control.

Concluding, all data handling cores are implemented. A summary of

additions is shown in table 5.1. The functionality was tested by sending

RoIs test data and con�rmed to run stable. Therefore the CNCB v4.0 is

almost able to be used as a spare Merger Carrier in the Belle II experi-

ment.

The adjusted �rmware was implemented in the CNCB v4.0 of the lo-

cal laboratory. Although the �rmware is stable and applicable not all

functions are implemented yet. Continuing the implementation should

be realized to prevent errors. The most important functions are listed in

the following.

One of the missing features is to fully implement all changes of state,

that are requested by the run control. This includes after unloading of

the system the cut o� of connections and closing of gates. Loading of the

system should recreate all connections, opening of the gates, resetting of

- 58 -

all cores and loading of con�gurations. This will ensure complete dele-

tion of data of the previous data processing.

Another feature is the speci�c error detection of the Belle II Format Han-

dler core. The number of total interrupts will be displayed, but which

speci�c interrupt caused the error is not. This is not an essential feature.

The function can be realized using a Data Mover core, which acts as a

FIFO with a width to cover all interrupts. The individual interrupt will

be sent to the Data Mover core, where the corresponding register will be

read by the slow control.

Future upgrades of the ONSEN system may contain the usage of the

CNCB v4.0 as a Selector Carrier, where only minor changes are neces-

sary. If a new revision of AMC is planned, more adjustments are needed.

For example a pixel parser must be implemented into the Belle II Format

Handler core.

- 59 -

Appendix

A.1 Firmware for the Microblaze

A.1.1 Linux

The Microblaze allows the usage of an Operating System (OS). For the

OS, we use Linux as an interface between user and hardware. This allows

writing and reading from the memory and addresses that are utilized by

the FPGA. The generation of the OS requires a Microblaze core and cer-

tain peripheral cores like an interrupt manager.

In order to compile the Linux kernel, it needs to know locations and

addresses of the FPGA peripherals. For this, a device tree is generated,

which lists components including the IP cores. Furthermore, drivers are

created using tcl and mdd scripts. A cross compiler is used to create the

kernel image, which will be later on programmed on the Microblaze. In

the compilation process, scripts are involved that run the slow control

system Node. For the cross compiler system buildroot is used. Moreover,

at the start of the OS a bootloader is utilized [23].

A.1.2 Slow Control

The slow control is used to monitor status and manipulate settings for the

operation of ONSEN. There are two slow control systems utilized. Node

is an self made script based slow control system used as development tool

and for debugging purposes. The other slow control system is EPICs,

which employs Process Variables (PVs) and embedding of a graphical

interface. A PCB, the Input Output Controller (IOC), attached to the

CNCB allows the use of the slow control system.

- 61 -

5 Summary and Outlook

Figure A.1 � Interface of the slow control system Node.

Node

The slow control system Node is implemented during Linux kernel com-

pilation. Node detects User Space Input Output (UIO) registered cores

and is used to read and write to the content of the slave registers and

number of total interrupts. In �gure A.1 all slave registers of every UIO

core as well as interrupts, if available, are shown. The cores are referenced

with abbreviated names, followed by the content of the slave registers in

a hexadecimal representation and interrupts [24].

EPICs

EPICs enables the usage of graphical interface Control System Studio

(CSS). Similar to scripts of Node, the PVs are de�ned in scripts that

are implemented in the compilation of the Linux kernel. PVs can have

di�erent applications. Some of the PVs monitor bits of the slave register

and other PVs use scripts to be calculated by an arbitrary input.

EPICs consists of a server interface and a client interface. On the server

side, the IOC will provide access to the PV. One or more clients are able

to request the content of PVs. The request will send a data packet to

the network and searches for the PV at the server interface. After the

PV is found, a connection between server and client will be established.

- 62 -

A.2 Hardware Information

Depending on the type of request the connection will be closed or held

[24].

A.2 Hardware Information

A.2.1 Backplane Connections of the ATCA Shelf

There are two numbering systems for the slots of the ATCA shelf: The

physical slots numbering, which counts the slots from left to right and

the logical slot numbering that is often referred to in development. In

the table A.1, the fabric channel connection of the two slots are listed

underneath the slots. To connect a CNCB in physical slot 12 to a CNCB

in physical slot 2, we use the column of slot 2. Here, we search for the

number 12 written on the left side of the number pairs. The correspond-

ing channel of that row is the connection we need to use to connect the

CNCB in slot 12 to a CNCB in slot 2. In this case, we need to use fabric

channel 11 in the �rmware of the CNCB in slot 12.

Figure A.2 � Utilization of resources of the FPGA.

- 63 -

5 Summary and Outlook

Table A.1 � Connection between slots of the ATCA shelf [24].

P
hy
si
ca
l
Sl
ot

1
2

3
4

5
6

7
8

9
10

11
12

13
14

L
og
ic
Sl
ot

13
11

9
7

5
3

1
2

4
6

8
10

12
14

C
ha
nn

el

13
14
-1
3

14
-1
1

14
-9

14
-7

14
-5

14
-3

14
-1

14
-2

14
-4

14
-6

14
-8

14
-1
0

14
-1
2

14
-1
3

12
12
-1
2

13
-1
1

13
-9

13
-7

13
-5

13
-3

13
-1

13
-2

13
-4

13
-6

13
-8

13
-1
0

13
-1
2

12
-1
3

11
11
-1
2

12
-1
1

12
-9

12
-7

12
-5

12
-3

12
-1

12
-2

12
-4

12
-6

12
-8

12
-1
0

11
-1
1

11
-1
3

10
10
-1
2

10
-1
0

11
-9

11
-7

11
-5

11
-3

11
-1

11
-2

11
-4

11
-6

11
-8

11
-1
0

10
-1
1

10
-1
3

9
9-
12

9-
10

10
-9

10
-7

10
-5

10
-3

10
-1

10
-2

10
-4

10
-6

10
-8

9-
9

9-
11

9-
13

8
8-
12

8-
10

8-
8

9-
7

9-
5

9-
3

9-
1

9-
2

9-
4

9-
6

9-
8

8-
9

8-
11

8-
13

7
7-
12

7-
10

7-
8

8-
7

8-
5

8-
3

8-
1

8-
2

8-
4

8-
6

7-
7

7-
9

7-
11

7-
13

6
6-
12

6-
10

6-
8

6-
6

7-
5

7-
3

7-
1

7-
2

7-
4

7-
6

6-
7

6-
9

6-
11

6-
13

5
5-
12

5-
10

5-
8

5-
6

6-
5

6-
3

6-
1

6-
2

6-
4

5-
5

5-
7

5-
9

5-
11

5-
13

4
4-
12

4-
10

4-
8

4-
6

4-
4

5-
3

5-
1

5-
2

5-
4

4-
5

4-
7

4-
9

4-
11

4-
13

3
3-
12

3-
10

3-
8

3-
6

3-
4

4-
3

4-
1

4-
2

3-
3

3-
5

3-
7

3-
9

3-
11

3-
13

2
2-
12

2-
10

2-
8

2-
6

2-
4

2-
2

3-
1

3-
2

2-
3

2-
5

2-
7

2-
9

2-
11

2-
13

1
1-
12

1-
10

1-
8

1-
6

1-
4

1-
2

2-
1

1-
1

1-
3

1-
5

1-
7

1-
9

1-
11

1-
13

- 64 -

A.3 Firmware Details

Table A.2 � FPGA comparison [25].

Virtx-4 FX60 Virtex-5 FX70T Kintex UltraScale 060

(CNCB v3.3) (AMC) (CNCB v4.0)

Registers 50k 44k 663k

LUTs 50k × 4-input 44k × 6-input 332k × 6-input

DSP Slices 128 128 2760

BRAM 4 Mb 5 Mb 38 Mb

MGT 16 × 6.5 Gbps 16 × 6.5 Gbps 32 × 16.3 Gbps

CPU PPC405 PPC440 -

A.2.2 FPGA Hardware Speci�cations

Comparison between the CNCB v3.3, the AMC and the CNCB v4.4 is

shown in table A.2. The CNCB v4.4 does not utilize a CPU. Instead,

it uses a Microblaze, because the PowerPC insertion is not supported

anymore. The operation of the Microblaze is slower, but the monitoring

capabilities with EPICs are veri�ed. The percentage of occupied hard-

ware by the �rmware is shown in �gure A.2.

A.3 Firmware Details

A.3.1 Full Block Design

The block design of the whole project is shown in �gures A.3 to A.6.

- 65 -

5 Summary and Outlook

FAB_GT_REFCLK1_0

amc1_p10_rxn_0

amc1_p10_rxp_0

amc2_p10_rxn_0

amc2_p10_rxp_0

amc3_p10_rxn_0

amc3_p10_rxp_0

amc4_p10_rxn_0

amc4_p10_rxp_0

m00_axis_tchup

s00_axi_aclk

s00_axi_aresetn

s00_axis_aclk

clk_wiz_1

Clocking Wizard

resetn

clk_in1

clk_out1

clk_out2

locked
clk_100

clk_625_fab_pll_ckout1

clk_625_fab_pll_ckout2

cpu_reset

fab3_rxn_0

fab3_rxp_0

fab4_rxn_0

fab4_rxp_0

s_axi_aclk

s_axi_aresetn

gtrefclk0_227_mgt_pll_ckout2

mdm_1

MicroBlaze Debug Module (MDM)

S_AXI MBDEBUG_0

S_AXI_ACLK

S_AXI_ARESETN

Interrupt

Debug_SYS_Rst

microblaze_0

MicroBlaze

INTERRUPT
DLMB

ILMB

M_AXI_DP

M_AXI_DC

M_AXI_IC

DEBUG

Clk

Reset

microblaze_0_axi_intc

AXI Interrupt Controller

s_axi

interrupt

s_axi_aclk

s_axi_aresetn

intr[10:0]

processor_clk

processor_rst

microblaze_0_local_memory

DLMB

ILMB

LMB_Clk

SYS_Rst

microblaze_0_xlconcat

Concat

In0[0:0]

In1[0:0]

In2[0:0]

In3[0:0]

In4[0:0]

In5[0:0]

In6[0:0]

In7[0:0]

In8[0:0]

In9[0:0]

In10[0:0]

dout[10:0]

rst_clk_wiz_1_100M

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

smartconnect_0

AXI SmartConnect

S00_AXI

M00_AXI

M01_AXI

M02_AXI

M03_AXI

M04_AXI

M05_AXI

M06_AXI

M07_AXI

M08_AXI

M09_AXI

M10_AXI

M11_AXI

M12_AXI

M13_AXI

M14_AXI

M15_AXI

M16_AXI

M17_AXI

M18_AXI

M19_AXI

aclk

aresetn

Figure A.3 � Top left side of the block design.

- 66 -

A.3 Firmware Details

axi_ethernet_0

AXI 1G/2.5G Ethernet Subsystem

s_axi

s_axis_txd

s_axis_txc

m_axis_rxd

m_axis_rxs

mdio

sfp

lvds_clk

s_axi_lite_resetn

s_axi_lite_clk

mac_irq

axis_clk

axi_txd_arstn

axi_txc_arstn

axi_rxd_arstn

axi_rxs_arstn

interrupt

signal_detect

clk125_out

clk312_out

rst_125_out

riu_valid_3

riu_valid_2

riu_valid_1

riu_prsnt_3

riu_prsnt_2

riu_prsnt_1

riu_rddata_3[15:0]

riu_rddata_2[15:0]

riu_rddata_1[15:0]

tx_dly_rdy_1

rx_dly_rdy_1

tx_vtc_rdy_1

rx_vtc_rdy_1

tx_dly_rdy_2

rx_dly_rdy_2

tx_vtc_rdy_2

rx_vtc_rdy_2

tx_dly_rdy_3

rx_dly_rdy_3

tx_vtc_rdy_3

rx_vtc_rdy_3

tx_logic_reset

rx_logic_reset

rx_locked

tx_locked

tx_bsc_rst_out

rx_bsc_rst_out

tx_bs_rst_out

rx_bs_rst_out

tx_rst_dly_out

rx_rst_dly_out

tx_bsc_en_vtc_out

tx_bs_en_vtc_out

rx_bsc_en_vtc_out

rx_bs_en_vtc_out

riu_clk_out

riu_wr_en_out

tx_pll_clk_out

rx_pll_clk_out

tx_rdclk_out

riu_addr_out[5:0]

riu_wr_data_out[15:0]

riu_nibble_sel_out[1:0]

rx_btval_1[8:0]

rx_btval_2[8:0]

rx_btval_3[8:0]

phy_rst_n[0:0]

axi_ethernet_0_dma

AXI Direct Memory Access

S_AXI_LITE

M_AXI_SG

M_AXI_MM2S

M_AXI_S2MM

M_AXIS_MM2S
S_AXIS_S2MM

M_AXIS_CNTRL
S_AXIS_STS

s_axi_lite_aclk

m_axi_sg_aclk

m_axi_mm2s_aclk

m_axi_s2mm_aclk

axi_resetn

mm2s_prmry_reset_out_n

mm2s_cntrl_reset_out_n

s2mm_prmry_reset_out_n

s2mm_sts_reset_out_n

mm2s_introut

s2mm_introut

axi_smc

AXI SmartConnect

S00_AXI

S01_AXI

S02_AXI

S03_AXI

S04_AXI
M00_AXI

aclk

aclk1

aresetn

axi_timer_0

AXI Timer

S_AXI

capturetrig0

capturetrig1

generateout0

generateout1

pwm0

interrupt

freeze

s_axi_aclk

s_axi_aresetn

axis_monitor_0

axis_monitor_v1.0 (Pre-Production)

S00_AXI

S00_AXIS

M00_AXIS

s00_axis_tchup

m00_axis_tchup

s00_axi_aclk

s00_axi_aresetn

s00_axis_aclk

axis_monitor_1

axis_monitor_v1.0 (Pre-Production)

S00_AXI

S00_AXIS

S01_AXIS

S02_AXIS

S03_AXIS
M00_AXIS

M01_AXIS

M02_AXIS

M03_AXIS

s00_axis_tchup

s01_axis_tchup

s02_axis_tchup

s03_axis_tchup

m00_axis_tchup

m01_axis_tchup

m02_axis_tchup

m03_axis_tchup

s00_axi_aclk

s00_axi_aresetn

s00_axis_aclk

s01_axis_aclk

s02_axis_aclk

s03_axis_aclk

axis_monitor_2

axis_monitor_v1.0 (Pre-Production)

S00_AXI

S00_AXIS

S01_AXIS

S02_AXIS

S03_AXIS
M00_AXIS

M01_AXIS

M02_AXIS

M03_AXIS

s00_axis_tchup

s01_axis_tchup

s02_axis_tchup

s03_axis_tchup

m00_axis_tchup

m01_axis_tchup

m02_axis_tchup

m03_axis_tchup

s00_axi_aclk

s00_axi_aresetn

s00_axis_aclk

s01_axis_aclk

s02_axis_aclk

s03_axis_aclk

belle2_format_handler_0

belle2_format_handler_axis_v1.0 (Pre-Production)

S00_AXI

S00_AXIS

M00_AXIS
S_AXI_INTR

evt_id_offer
evt_id_accept

evt_id_databus[0:31]
s00_axi_aclk

s00_axi_aresetn

s00_axis_aclk

s_axi_intr_aclk

s_axi_intr_aresetn

irq clk_pll_i2c

AXI IIC

S_AXI IIC

s_axi_aclk

s_axi_aresetn

iic2intc_irpt

gpo[0:0]

clk_pll_i2c

cncb4_mgt_aurora_axis_1

S00_AXI

amc3_p10_out

amc3_p10_in

S_AXI_INTR

GT_REFCLK1

amc1_p10_out

amc1_p10_in

amc2_p10_out

amc2_p10_in

amc4_p10_out

amc4_p10_in

fab11_out

fab11_in

FAB_GT_REFCLK1

fab3_out

fab3_in

fab4_out

fab4_in

fab5_out

fab5_in

fab6_out

fab6_in

fab7_out

fab7_in

fab8_out

fab8_in

fab9_out

fab9_in

fab10_out

fab10_in

fab12_out

fab12_in

fab13_out

fab13_in

fab14_out

fab14_in

s00_axi_aclk

s00_axi_aresetn

s_axi_intr_aclk

s_axi_intr_aresetn

irq

amc1_p10_rxp

amc1_p10_rxn

amc3_p10_rxp

amc3_p10_rxn

amc2_p10_rxp

amc2_p10_rxn

amc4_p10_rxp

amc4_p10_rxn

fab3_rxp

fab3_rxn

fab4_rxp

fab4_rxn

conf_flash

AXI EMC

S_AXI_MEM

EMC_INTF

STARTUP_IO

s_axi_aclk

s_axi_aresetn

rdclk

conf_flash

data_flash

AXI EMC

S_AXI_MEM

EMC_INTF
s_axi_aclk

s_axi_aresetn

rdclk

data_flash

ddr4

ddr4_0

DDR4 SDRAM (MIG)

C0_SYS_CLK

C0_DDR4

C0_DDR4_S_AXI

c0_init_calib_complete

dbg_clk

dbg_bus[511:0]

c0_ddr4_ui_clk

c0_ddr4_ui_clk_sync_rst

c0_ddr4_aresetn

sys_rst

eth_switch_1000basex

gpio_aurora_status

AXI GPIO

S_AXI
GPIO

gpio_io_i[17:0]

GPIO2

gpio2_io_i[17:0]

s_axi_aclk

s_axi_aresetn

roi_distribution_axis_0

roi_distribution_axis_v1.0 (Pre-Production)

S00_AXI

S00_AXIS

M00_AXIS

M01_AXIS

M02_AXIS

M03_AXIS

M04_AXIS

M05_AXIS

M06_AXIS

M07_AXIS

axis_clk

s00_axi_aclk

s00_axi_aresetn

rst_ddr4_0_250M

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

Figure A.4 � Top right side of the block design.

- 67 -

5 Summary and Outlook

fab4_rxn_0

fab5_rxn_0

fab5_rxp_0

fab6_rxn_0

fab6_rxp_0

fab7_rxn_0

fab7_rxp_0

fab8_rxn_0

fab8_rxp_0

fab9_rxn_0

fab9_rxp_0

fab10_rxn_0

fab10_rxp_0

fab11_rxn_0

fab11_rxp_0

fab12_rxn_0

fab12_rxp_0

fab13_rxn_0

fab13_rxp_0

fab14_rxn_0

fab14_rxp_0

Figure A.5 � Bottom left side of the block design.

- 68 -

A.3 Firmware Details

amc1_p10_txn_0

amc1_p10_txp_0

amc2_p10_txn_0

amc2_p10_txp_0

amc3_p10_txn_0

amc3_p10_txp_0

amc4_p10_txn_0

amc4_p10_txp_0

cncb4_mgt_aurora_axis_v1.2 (Pre-Production)

irq

amc1_p10_txp

amc1_p10_txn

amc3_p10_txp

amc3_p10_txn

amc2_p10_txp

amc2_p10_txn

amc4_p10_txp

amc4_p10_txn

fab3_txp

fab3_txn

fab4_txp

fab4_txn

fab4_rxn

fab5_txp

fab5_txn

fab5_rxp

fab5_rxn

fab6_txp

fab6_txn

fab6_rxp

fab6_rxn

fab7_txp

fab7_txn

fab7_rxp

fab7_rxn

fab8_txp

fab8_txn

fab8_rxp

fab8_rxn

fab9_txp

fab9_txn

fab9_rxp

fab9_rxn

fab10_txp

fab10_txn

fab10_rxp

fab10_rxn

fab11_txp

fab11_txn

fab11_rxp

fab11_rxn

fab12_txp

fab12_txn

fab12_rxp

fab12_rxn

fab13_txp

fab13_txn

fab13_rxp

fab13_rxn

fab14_txp

fab14_txn

fab14_rxp

fab14_rxn

init_clk_in

amc1_out_axis_clk

amc3_out_axis_clk

amc2_out_axis_clk

amc4_out_axis_clk

fab3_out_axis_clk

fab4_out_axis_clk

fab5_out_axis_clk

fab6_out_axis_clk

fab7_out_axis_clk

fab8_out_axis_clk

fab9_out_axis_clk

fab10_out_axis_clk

fab11_out_axis_clk

fab12_out_axis_clk

fab13_out_axis_clk

fab14_out_axis_clk

amc1_in_axis_clk

amc3_in_axis_clk

amc2_in_axis_clk

amc4_in_axis_clk

fab3_in_axis_clk

fab4_in_axis_clk

fab5_in_axis_clk

fab6_in_axis_clk

fab7_in_axis_clk

fab8_in_axis_clk

fab9_in_axis_clk

fab10_in_axis_clk

fab11_in_axis_clk

fab12_in_axis_clk

fab13_in_axis_clk

fab14_in_axis_clk

user_clk_out

fab_user_clk_out

data_flash_clk[0:0]

data_flash_rst_n[0:0]

data_flash_wpn[0:0]

eth_switch_reset_n[0:0]

eth_switch_spi

AXI Quad SPI

SPI_0

AXI_LITE

ext_spi_clk

s_axi_aclk

s_axi_aresetn

ip2intc_irpt

eth_switch_spi

fab3_txn_0

fab3_txp_0

fab4_txn_0

fab4_txp_0

fab5_txn_0

fab5_txp_0

fab6_txn_0

fab6_txp_0

fab7_txn_0

fab7_txp_0

fab8_txn_0

fab8_txp_0

fab9_txn_0

fab9_txp_0

fab10_txn_0

fab10_txp_0

fab11_txn_0

fab11_txp_0

fab12_txn_0

fab12_txp_0

fab13_txn_0

fab13_txp_0

fab14_txn_0

fab14_txp_0

gpio_led_ipmc

AXI GPIO

S_AXI
GPIO

GPIO2
s_axi_aclk

s_axi_aresetn
ipmc_io

led

uart

uart_rtm

AXI Uartlite

S_AXI
UART

s_axi_aclk

s_axi_aresetn
interrupt

xlconcat_laneup

Concat

In0[0:0]

In1[0:0]

In2[0:0]

In3[0:0]

In4[0:0]

In5[0:0]

In6[0:0]

In7[0:0]

In8[0:0]

In9[0:0]

In10[0:0]

In11[0:0]

In12[0:0]

In13[0:0]

In14[0:0]

In15[0:0]

In16[0:0]

In17[0:0]

dout[17:0]

xlconcat_txlock

Concat

In0[0:0]

In1[0:0]

In2[0:0]

In3[0:0]

In4[0:0]

In5[0:0]

In6[0:0]

In7[0:0]

In8[0:0]

In9[0:0]

In10[0:0]

In11[0:0]

In12[0:0]

In13[0:0]

In14[0:0]

In15[0:0]

In16[0:0]

In17[0:0]

dout[17:0]

xlconstant_0

Constant

dout[0:0]

xlconstant_1

Constant

dout[0:0]

Figure A.6 � Bottom right side of the block design.

- 69 -

5 Summary and Outlook

A.3.2 RoI Data Format

The data format of a frame is depicted in �gure A.7. The data is divided

into 32-bit words, that together build a frame. The meta data consists of

a header word, trigger information of the HLT and DATCON. Followed

by the RoI data, which should always be an even number of RoI words.

This is because every DATCON RoI has a HLT RoI partner. At the end

of frame is the checksum word.

Figure A.7 � Schematic of merged data format [11].

A.3.3 Errors of the Belle II Format Hander Core

The RoI parser of the Format Handler core checks the data format for

errors. The list of errors with a description is written in the table A.3.

Table A.3 � Detectable errors of the Belle II Format Handler core [24].

Error Bit Description

ERR_BIT_CRC 31 The checksumme is incorrect.

ERR_BIT_FRAME_SIZE 29 The frame size exceeds RoI FIFO

depth.

ERR_BIT_MAGIC 28 Incorrect header word.

ERR_BIT_UNEXP_TLAST_0 26 TLAST high inside header.

- 70 -

A.3 Firmware Details

ERR_BIT_UNEXP_TKEEP 25 Wrongly assigned TKEEP inside

header.

ERR_BIT_DATCON_ACC 24 ACC Bit set to high. This error can

be only produced, if data source is

only DATCON.

ERR_BIT_MISALIGNED 23 Uneven number of RoIs.

ERR_BIT_DATCON_SIZE 22 Number of RoIs exceeds limit. The

limit can be set between 1 and 256.

The default limit is 128. This error

can be only produced, if data source

is only DATCON.

ERR_BIT_DATCON_TRIG_MM 21 Trigger number of DATCON and

HLT source does not match.

- 71 -

Bibliography

[1] Tom W. B. Kibble. The standard model of particle physics, 2014.

[2] P.A. Zyla et al. Review of Particle Physics. PTEP, 2020(8):083C01,

2020.

[3] Paul Langacker. The Standard Model and Beyond. Series in High

Energy Physics, Cosmology, and Gravitation. CRC Press, second

edition, 2017.

[4] Glenn Elert. https://physics.info/standard/. Last accessed on

24.11.2021.

[5] Katharina Dort. Search for Highly Ionizing Particles with the Pixel

Detector in the Belle II Experiment. Master's thesis, Justus-Liebig-

Universität Gieÿen, 2019.

[6] C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P.

Hudson. Experimental test of parity conservation in beta decay.

Phys. Rev., 105:1413�1415, Feb 1957.

[7] J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay. Evi-

dence for the 2π decay of the k02 meson. Phys. Rev. Lett., 13:138�140,

Jul 1964.

[8] Stephen G. Gasiorowicz and Paul Langacker. Elementary Particles

in Physics. University of Pennsylvania, 2005.

[9] Part I Phenomenology of Elementary Particles, 2008. Inproceed-

ings of MAPFis Lecture: Experimental Particle and Astroparticle

Physics.

[10] Konrad Kleinknecht and Burkhard Renk. Unitarity Triangle from

CP invariant quantities. Johannes-Gutenberg Universität Mainz,

2008.

- 73 -

https://physics.info/standard/

Bibliography

[11] Thomas Geÿler. Development of FPGA-Based Algorithms for the

Data Acquisition of the Belle II Pixel Detector. PhD thesis, Justus-

Liebig-Universität Gieÿen, 2015.

[12] Y. H. Ahn, Hai-Yang Cheng, and Sechul Oh. Wolfenstein

Parametrization at Higher Order: Seeming Discrepancies and Their

Resolution. Physics Letters B, 703:571�575, 2011.

[13] Qiang Li and Qi-Shu Yan. Initial State Radiation Simulation with

MadGraph. 2018. Prepared for submission to JHEP.

[14] Michel Bertemes. Dark Sector Searches at Belle II, 2020. Belle II

Collaboration.

[15] F. Abudinén, I. Adachi, and P. et al. Ahlburg. Measurement of the

integrated luminosity of the Phase 2 data of the Belle II experiment.

Chinese Physics C, 44(2), 2020. Belle II Collaboration.

[16] Kazunori Akai, Kazuro Furukawa, and Haruyo Koiso. Superkekb

collider. Nuclear Instruments and Methods in Physics Research

Section A: Accelerators, Spectrometers, Detectors and Associated

Equipment, 907, 2018.

[17] T. Abe, I. Adachi, K. Adamczyk, et al. Belle II Technical Design

Report, 2010. pp. 76-89, 139-144, 202-208, 220-225, 250-253, 284-

285, 313-319, 404-407.

[18] Thomas Geÿler. Private messages.

[19] Xilinx. Aurora 8B/10B v11.0 LogiCORE IP Product Guide, 2016.

Vivado Design Suite PG046.

[20] https://logowik.com/usb-symbol-vector-logo-4538.html.

Last accessed on 26.11.2021.

[21] https://de.depositphotos.com/vector-images/rj45.html.

Last accessed on 26.11.2021.

[22] https://www.allaboutcircuits.com/technical-articles/

jtag-connectors-and-interfaces/. Last accessed on 26.11.2021.

[23] Eli Billauer. http://billauer.co.il/blog/2011/08/

linux-microblaze-howto-tutorial-primer-1/, 2011. Last

accessed on 26.11.2021.

- 74 -

https://logowik.com/usb-symbol-vector-logo-4538.html
https://de.depositphotos.com/vector-images/rj45.html
https://www.allaboutcircuits.com/technical-articles/jtag-connectors-and-interfaces/
https://www.allaboutcircuits.com/technical-articles/jtag-connectors-and-interfaces/
http://billauer.co.il/blog/2011/08/linux-microblaze-howto-tutorial-primer-1/
http://billauer.co.il/blog/2011/08/linux-microblaze-howto-tutorial-primer-1/

Bibliography

[24] Simon Reiter. Private messages.

[25] Thomas Geÿler. Compute Node Status and Upgrade, 2017. PANDA

DAQ-FEE-Event Filtering Workshop.

- 75 -

Danksagung

Zuallererst möchte ich mich bei Apl. Prof. Dr. Jens Sören Lange be-

danken, der mir nicht nur die Arbeit an diesen Projekt ermöglicht hat,

sondern auch Perspektiven diese Arbeit fortzusetzen. Weiterhin bedanke

ich mich bei meinen Betreuern Dr. Thomas Geÿler und Simon Reiter,

die mich eingearbeitet haben und mich bei meiner Arbeit immer un-

terstützt haben. Besonderen Dank möchte ich Simon geben, der sehr

ausführlich komplizierte Zusammenhänge erklärt und mich in die Belle

II Kollaboration integriert hat. Die Arbeitsatmosphäre der AG Lange

ist eine der angenehmsten und freundlichsten, die ich kenne. Ich be-

danke mich vielmals bei alle Mitglieder dieser AG. Schlieÿlich möchte ich

meinen Dank bei meiner Familie und Freunden ausdrücken. Ich bedanke

mich bei meinen Eltern für ihre moralische und �nanzielle Unterstützung.

Insbesondere danke ich meiner Freundin Franziska und ihrer Familie, die

mich ebenfalls in sehr vielen Aspekten unterstützt haben.

- 76 -

Selbstständigkeitserklärung

Hiermit versichere ich, die vorgelegte Thesis selbstständig und ohne uner-

laubte fremde Hilfe und nur mit den Hilfen angefertigt zu haben, die ich in

der Thesis angegeben habe. Alle Textstellen, die wörtlich oder sinngemäÿ

aus verö�entlichten Schriften entnommen sind, und alle Angaben die

auf mündlichen Auskünften beruhen, sind als solche kenntlich gemacht.

Bei den von mir durchgeführten und in der Thesis erwähnten Unter-

suchungen habe ich die Grundsätze gute wissenschaftlicher Praxis, wie

sie in der Satzung der Justus-Liebig-Universität zur Sicherung guter wis-

senschaftlicher Praxis` niedergelegt sind, eingehalten. Gemäÿ � 25 Abs.

6 der Allgemeinen Bestimmungen für modularisierte Studiengänge dulde

ich eine Überprüfung der Thesis mittels Anti-Plagiatssoftware.

Ort, Datum Unterschrift

- 77 -

	1 Theoretical Background
	1.1 The Standard Model and Fundamental Forces
	1.2 CP-Violation

	2 Belle II Experiment
	2.1 SuperKEKB
	2.2 Belle II Detector
	2.3 PXD and DEPFET
	2.4 Trigger and Data Acquisition
	2.5 ONSEN System

	3 Compute Node Carrier Board v4.0
	3.1 Motivation
	3.2 CNCB Upgrade
	3.2.1 Components of the Compute Node Carrier Board

	3.3 Block Design of the Merger Carrier
	3.4 Custom IP Cores
	3.4.1 Aurora Core
	3.4.2 Monitor Core
	3.4.3 Format Handler Core
	3.4.4 RoI Distribution Core

	4 Additions to the Firmware
	4.1 Aurora Core Fabric Channel Extension
	4.2 Aurora Core Reset Sequence Logic
	4.3 Core Resets
	4.4 Interrupts of Aurora Core and Belle II Format Handler Core
	4.5 Results of Tests

	5 Summary and Outlook
	Appendix
	A.1 Firmware for the Microblaze
	A.1.1 Linux
	A.1.2 Slow Control

	A.2 Hardware Information
	A.2.1 Backplane Connections of the ATCA Shelf
	A.2.2 FPGA Hardware Specifications

	A.3 Firmware Details
	A.3.1 Full Block Design
	A.3.2 RoI Data Format
	A.3.3 Errors of the Belle II Format Hander Core

	Bibliography

