First $B \rightarrow DK$ results at Belle II

11th International Workshop on the CKM Unitarity Triangle 22 - 26 Nov, 2021, Melbourne, Australia

Niharika Rout Indian Institute of Technology Madras, India (On behalf of the Belle II collaboration)

22 Nov, 2021

Outline

- CKM angle ϕ_3 from B \rightarrow DK decays
- Belle II detector and status
- Results from $B \rightarrow D^{(*)}h$ decays at Belle II arXiv: 2104.03628

Outline

- CKM angle ϕ_3 from B \rightarrow DK decays
- Belle II detector and status
- Results from $B \rightarrow D^{(*)}h$ decays at Belle II arXiv:2104.03628
- Measurement of ϕ_3 from combined Belle + Belle II analysis arXiv:2110.12125
- Future prospects
- Summary

B→DK decays at Belle II

CKM angles - current status

Niharika Rout

NP sensitivity arises from comparison of results from tree- and loop-dominated processes

ϕ_3 measurements from B \rightarrow DK decays

ϕ_3 is the phase between $b \rightarrow u$ and $b \rightarrow c$ quark transitions: $B \rightarrow DK$

Results are limited by the sample size because of the small branching fraction of the decays involved

Niharika Rout

- Common final states allow the interference between the two paths
- Interference gives access to the phase
- The level of interference, and its exact interpretation, depend on the physics of *B* and *D* decays

$$B^{-} \rightarrow D^{\theta} K^{-}$$

B→DK decays at Belle II

ϕ_3 measurements from B \rightarrow DK decays

GLW *Phys. Lett. B* **253**, 483

- CP eigenstates such as $K^+K^-, \pi^+\pi^-$ (CP-even) or $K^0_S\pi^0, K^0_S\eta$ (CP-odd)
- Four observables: R_{CP}^{\pm} , A_{CP}^{\pm}
- No external charm factory inputs are required

$$\begin{split} R_{CP}^{\pm} &= \frac{\mathscr{B}(B^- \to D_{CP\pm}K^-) + \mathscr{B}(B^+ \to D_{CP\pm}K^+)}{\mathscr{B}(B^- \to D^0K^-) + \mathscr{B}(B^+ \to \bar{D}^0K^+)} \\ &= 1 + r_B^2 \pm 2r_B\cos(\delta_B)\cos(\phi_3) \end{split}$$
$$\begin{aligned} A_{CP}^{\pm} &= \frac{\mathscr{B}(B^- \to D_{CP\pm}K^-) - \mathscr{B}(B^+ \to D_{CP\pm}K^+)}{\mathscr{B}(B^- \to D_{CP\pm}K^-) + \mathscr{B}(B^+ \to D_{CP\pm}K^+)} \\ &= \pm 2r_B\sin(\delta_B)\sin(\phi_3)/R_{CP}^{\pm} \end{split}$$

ADS

- D from a favoured amplitude decays to a doubly-Cabibbosuppressed state
- Two observables: R_{ADS} , A_{ADS}
- External inputs: r_D, δ_D

Phys. Rev. Lett. 78, 3257

 $D^{0}K$ $A_{D}r_{D}e^{-i\delta_{D}}$ $[f]_{D}K$ $(\delta_{B}-\varphi_{3})$ A_{D} $\overline{D}^{0}K$

BPGGSZ *Phys. Rev. D* 68, 054018

- Self-conjugate multi body final states : $K_S^0 \pi \pi, K_S^0 KK, K_S^0 \pi \pi \pi^0$
- Sensitivity to φ₃ by comparing D Dalitz plot distributions of B⁺ and B⁻
- Fit D Dalitz plot with full Amplitude model

$$A_{B^{+}} = \overline{A}(m_{-}^{2}, m_{+}^{2}) + r_{B}e^{i(\delta_{B} - \phi_{3})}A(m_{-}^{2})$$

 m_{\pm}^2 = squared invariant mass of $K_S^0 h^{\pm}$: *D* Dalitz plot variable

BPGGSZ: Model-independent approach

- In presence of CP violation, differences between B⁺ and B⁻ distributions are expected
- The magnitude and position of the difference is driven by r_B, δ_B, ϕ_3 and the physics of the D decays
- Model-dependent uncertainty is avoided through *D* Dalitz plot binning
- Binning schemes are chosen to provide maximum sensitivity
- Observed yields in each bin can be related to physics parameters of interest and *D* decay information

BPGGSZ: Model-independent approach

- In presence of *CP* violation, difference between B⁺ and B⁻ distributions are expected
- The magnitude and position of the difference is driven by r_R, δ_R, ϕ_3 and the physics of the *D* decays

$$\mathbf{N}_{i}^{\pm} = \mathbf{h}_{\mathsf{B}^{\pm}} \left[\mathbf{F}_{i} + \mathbf{r}_{\mathsf{B}}^{2} \mathbf{\overline{F}}_{i} + \mathbf{r}_{\mathsf{B}}^{2} \mathbf{\overline{F}}_{i} \right]$$

 $h_{B\pm}$: Normalization constant. Physics parameters of interest: $(x_{\pm}, y_{\pm}) = r_B(\cos(\phi_3 + \delta_B), \sin(\phi_3 + \delta_B))$ Amplitude-averaged strong phase difference between $\overline{D^0}$ and D^0 over i^{th} bin and are obtained from external charm factories like CLEO and BESIII. Fraction of pure D^0 decay to bin i taking into account the reconstruction and selection efficiency.

SuperKEKB accelerator

Asymmetric energy e⁺e⁻ collider at KEK: 7 GeV e⁻ and 4 GeV e⁺

Belle II detector and status

- Higher beam background
- Higher trigger rate
- New tracking system and improved vertexing capability
- New particle identification systems
- Better time resolution at calorimeter

K_L and μ Detector:

Resistive Plate Chambers (barrel outer layers) Scintillator + WLSF + SiPM's (end-caps , inner 2 barrel layers)

Particle Identification:

Time-of-Propagation Counter (TOP) (barrel) Proximity focusing Aerogel RICH (ARICH) (fwd) dE/dx in CDC (centre)

positrons (4 GeV)

Central Drift Chamber:

He(50%):C₂H₆(50%), smaller cell size, longer lever arm, fast electronics

Belle II detector and status

- Next goal is to accumulate Belle equivalent data set before the long shut-down scheduled in Jan 2023 (may vary because of the difficulties due to the COVID-19 restrictions)
- 50 ab⁻¹ of data sample will be collected as soon as possible

11-1

Measurement of R^{0(*)}

$$B^{-} \to D^{0}(K^{-}\pi^{+}, K^{0}_{S}\pi^{-}\pi^{+})h^{-}$$

$$B^{-} \to D^{*0}(D^{0}(K^{-}\pi^{+})\pi^{0})h^{-}$$

$$B^{0} \to D^{-}(K^{+}\pi^{-}\pi^{-})h^{+}$$

$$B^{0} \to D^{*-}(D^{0}(K^{-}\pi^{+})\pi^{-})h^{+}$$

- $B \to D^{(*)}\pi$ modes are important control channels for time-dependent CPV analyses and charmless B decays.
- $B^- \rightarrow D^{(*)0}K^-$ are sensitive to angle ϕ_3

Results from $B \rightarrow D^{(*)}h$ decays

Niharika Rout

Results from $B \rightarrow D^{(*)}h$ decays

$$D^0(K\pi)h$$
Belle II (62.7 fb $^{-1}$)**7.66 \pm 0.55** $^{+0.11}_{-0.08}$ LHCb (5 (1) fb $^{-1}$)7.77 \pm 0.04 \pm 0.07

D

Belle II (62.7 fb⁻¹) 6.80 \pm 1 LHCb (5 (1) fb⁻¹) 7.93 \pm 0.

In agreement with the W.A value within $2\sigma!$

R⁰ (10⁻²) results

$D^0(K_S^0\pi\pi)h$		$D^{-}(K\pi\pi)$) <i>h</i>
$6.32 \pm 0.81^{+0.09}_{-0.11}$		9.22 ± 0.58	+0.11 -0.09
$7.77 \pm 0.04 \pm 0.07$		$8.22\pm0.11\pm$	0.25
)* ⁰ h		D*-h	
$.01 \pm 0.07$	5.99 ±	$\pm 0.82 \stackrel{+0.17}{-0.08}$	
$.11\pm0.56$	$7.76 \pm$	0.34 ± 0.26	

$B^{\pm} \rightarrow D(K_{S}^{0}h^{-}h^{+})K^{\pm}$ decays at Belle and Belle II

Selections are similar to previous Belle analysis

PRD **85**, *112014* (*2012*)

Improvements

- 1. Multivariate K_S^0 selection (9%) increase in signal yield)
- 2. Improved background rejection tool
- 3. New signal extraction strategy
- 4. New strong-phase inputs from BESIII (reduces systematics)
- 5. Additional statistics from $K_{S}^{0}KK$ final state and Belle II (more 30% increase in signal yield)

- using PID info
- Track quality criteria • K/π separation
- $|M_i M_{PDO}|$
- $M_{\rm bc} > 5.27 \; {\rm GeV}/c^2$
- $-0.13 < \Delta E < 0.18 \text{ GeV}$

$$_{\rm G}| < 3\sigma; i = D, K_S^0$$

Background suppression

Signal extraction: Belle data

Niharika Rout

- 2D ($\Delta E, C'$) simultaneous fit of $B \rightarrow D\pi$ and $B \rightarrow DK$
 - $K \pi$ misidentification rate is directly extracted from data

N_{signal}: Belle

 $K_S^0 \pi \pi = 1467 \pm 53$

 $K_{\rm c}^0 KK = 194 \pm 17$

40% increase in signal yield as compared to previous best result of Belle

Signal extraction: Belle II data

Niharika Rout

- 2D ($\Delta E, C'$) simultaneous fit of $B \rightarrow D\pi$ and $B \rightarrow DK$
- $K \pi$ misidentification rate is directly extracted from data

Extraction of CPV parameters

- [LHCb collaboration: JHEP 02 (2021) 169]

Niharika Rout

$$y_{-}^{DK} = 0.100 \pm 0.042$$

Results

$\delta_{B}(^{\circ})$	124.8 \pm 12.9 (stat.) \pm 0.5 (syst.) \pm 1.7
r ^{DK}	0.129 ± 0.024 (stat.) \pm 0.001 (syst.) \pm 0.0
φ₃(°)	78.4 \pm 11.4 (stat.) \pm 0.5 (syst.) \pm 1.0

Belle previous results: PRD 85, 112014 (2012)

$$\phi_3(^\circ) = 77.3^{+15.1}_{-14.9} \pm 4.1 \pm 4.3$$

- This result is most precise to date from the B-factory experiments
- New inputs from BESIII on strong-phase has significant impact on systematic uncertainty
 Phys. Rev. D 101 (2020) 112002

• Use of $B \rightarrow Dh$ decay mode to incorporate efficiency effects reduces the experimental systematic uncertainty

B→DK decays at Belle II

Future prospects

Niharika Rout

Summary

- The analysis of the first Belle and Belle II combined model-independent measurement of the CKM angle ϕ_3 have been presented.
- The uncertainty on ϕ_3 has been reduced from 15° to 11° along with the systematic uncertainty and uncertainty due to strong-phase.
- This is the most precise result so far from B-factories.
- The results from measurements of ratio of B.F of $B \rightarrow DK$ to $B \rightarrow D\pi$ from various final states is consistent with the world average value.
- Future analyses with Belle II data will provide an uncertainty of 3° or so with 10 ab⁻¹ of data set.

Backup

Niharika Rout

Systematics

Source	$\sigma_{\mathbf{x}_{+}^{DK}}$	$\sigma_{y_+^{DK}}$	$\sigma_{x_{-}^{DK}}$	$\sigma_{y_{-}^{DK}}$	$\sigma_{\mathbf{x}_{\mathbf{\xi}}^{D\pi}}$	$\sigma_{y_{\xi}^{D\pi}}$
Fit bias	0.16	0.04	0.05	0.14	0.49	0.08
PDF parametrisation	0.07	0.08	0.12	0.16	0.12	0.12
PID	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01
Peaking bkg	0.03	0.05	0.03	0.04	0.02	0.10
Total	0.18	0.10	0.13	0.22	0.51	0.18
Input c _i , s _i	0.22	0.55	0.23	0.67	0.73	0.82
Statistical	3.15	4.20	3.27	4.20	4.75	5.44

All values are quoted $\times 10^{-2}$.

Data resolution

20% improvement in resolution at Belle II.

