
BE
LL

E2
-M

TH
ES

IS
-2

01
5-

00
1

11
/1

1/
20

14

IEKP-KA/2014-18

The Full Event Interpretation
for Belle II

Thomas Keck

Masterarbeit

an der Fakultät für Physik des
Karlsruher Instituts für Technologie (KIT)

Referent: Prof. Dr. M. Feindt
Korreferent: Dr. T. Kuhr

Institut für Experimentelle Kernphysik

November 2014

Contents

1. Introduction 1
1.1. From Belle to Belle II . 1
1.2. From Full Reconstruction to Full Event Interpretation 3

2. Experimental Setup 5
2.1. KEKB . 5
2.2. SuperKEKB . 6
2.3. Original Belle Detector . 9
2.4. Belle II Detector . 10

3. Multivariate Classification 19
3.1. Statistics . 19
3.2. Artificial Neural Network . 22
3.3. Stochastic Gradient Boosted Decision Tree 23

4. Belle II Analysis Software Framework 25
4.1. General Structure . 26
4.2. Illustrating Example . 27
4.3. Multivariate Classification . 30
4.4. Parallelisation . 39

5. Full Event Interpretation 43
5.1. Hadronic, Semileptonic and Inclusive Tagging 44
5.2. Hierarchical Approach . 44
5.3. Intermediate Cut Determination . 46
5.4. Multi-Level Decay Topology Reconstruction 53
5.5. Multivariate Analysis Method Training 56
5.6. Automatic Reporting . 63

6. Training and Application of the Full Event Interpretation 65
6.1. Generic Full Event Interpretation . 66
6.2. Specific Full Event Interpretation . 69
6.3. Comparison of generic and specific FEI study 73

7. Summary 77

iv Contents

8. Acknowledgment 79

A. BASF2 Libraries 81
A.1. DecayDescriptor Library . 81
A.2. VariableManager Library . 82
A.3. Further TMVA control plots . 83

B. Dependency Graph Meta Framework 89
B.1. General Structure . 89
B.2. Illustrating Example . 91
B.3. Code Quality . 95

C. Full Event Interpretation Configuration 97
C.1. Final-State Particle Configuration . 97
C.2. Intermediate Particle Configuration 98
C.3. Final Particle Configuration . 99
C.4. Analysis-Specific Training . 100

D. Listings 103
D.1. Basic Example using BASF2 directly 103
D.2. Advanced Example using the actorFramework 105
D.3. Example Configuration of the FEI . 107

1. Introduction

The Belle II experiment offers the possibility to perform unique measurements with
unprecedented precision. The Full Event Interpretation (FEI) described in this thesis
is an essential component in a wide range of important analyses, including: the
measurement of the CKM element |Vub| through the semileptonic decay b → u`ν̄;
the search for a charged-Higgs effect in B → Dτν̄; and the precise measurement of
the branching fraction of B → τ ν̄, which is sensitive to new physics effects.

Like its predecessor, the Belle II experiment will be located at the KEK High
Energy Accelerator Research Organization in Tsukuba, Japan. It is designed to
perform measurements in all fields of heavy flavour physics, including: B0/± meson
decays; B(∗)

s meson decays; charm physics; τ lepton physics; spectroscopy; and pure
electroweak measurements.

Extracting precise physics results from the obtained data requires large-scale comput-
ing capabilities, high-quality software tools and advanced analysis techniques like the
FEI. Measurements of decays including neutrinos, in particular rare decays, suffer
from missing kinematic information. The FEI recovers this information partially and
infers strong constraints on the signal candidates by automatically reconstructing
the rest of the event in thousands of exclusive decay channels. This work describes
the implementation and application of the FEI in the Belle II Analysis Software
Framework (BASF2).

1.1. From Belle to Belle II

In 1999 the Belle experiment was put into operation to probe the flavour structure
of the Standard Model in general and the Kobayashi–Masukawa mechanism for CP
violation in particular. The Belle detector surrounded the single interaction point of
the KEKB e+e− collider. The collider operated primarily at the energy of the Υ(4S)
resonance, which decays exclusively to an entangled BB̄ meson pair. Therefore, this
experimental setup is called a B factory [1].

In 2001 the Kobayashi–Masukawa mechanism was verified by Belle [2, 3] and BaBar
[4] through the observation of mixing-induced CP violation in B0 → J/ψKS decays;
consequently Makoto Kobayashi and Toshihide Masukawa were awarded the Nobel
prize in physics in 2008. By November 2009 the experiment had accumulated a data
sample with an integrated luminosity of 1 ab−1.

2 Chapter 1. Introduction

Other major achievements include:

• the measurements of time-dependent mixing-induced CP violation in further
B-decays [5];

• the measurement of direct CP violation in B decays [6];

• the measurement of all unitarity triangle angles;

• the observation of the purely leptonic decay B+ → τ+ν [7];

• the discovery of a new resonance X(3872), which exhibits properties not
compatible with conventional mesons [8];

• and the observation of mixing in the system of neutral charmed D0 mesons [9].

In March 2004 an upgrade of the Belle detector was proposed in a Letter of Intent
[10]. Due to the success of Belle the project received strong encouragement and
consequently the Belle II collaboration was formed in December 2008. At present
the upgraded detector is still under construction, its commissioning is planned for
2016. At the same time, the associated accelerator KEKB is being upgraded to
SuperKEKB. It will provide 40 times higher luminosity; as a consequence, Belle II is
projected to accumulate 50 times more data than Belle [11]. A detailed description
of the upgraded experimental setup is given in Chapter 2.

Belle II will have a broad physics program, which will constrain the parameter
space of the Standard Model as well as some of its extensions. Measurements of
the branching fraction of rare and tauonic decays have the potential to reveal new
physics processes. Additionally, precise measurements of many CP asymmetries will
allow the investigation of correlations among them and therefore the possibility to
discover additional sources of CP violation. Many measurements possible at Belle II
are complementary to measurements at energy-frontier experiments like LHCb.

1.2. From Full Reconstruction to Full Event Interpretation 3

1.2. From Full Reconstruction to Full Event
Interpretation

As an analysis technique unique to B factories, the Full Event Interpretation will play
an important role in the measurement of rare decays. This technique reconstructs
one of the B mesons and infers strong constraints for the remaining B meson in the
event using the precisely known initial state of the Υ(4S). The actual analysis is
then performed on the second B meson. The two mesons are called tag-side Btag

and signal-side Bsig, respectively. This situation is depicted in Figure 1.1.

Υ(4S)
B−tag B+

sig

D0
K−

π+

π− νl

γ

l+

tag-side signal-side

Figure 1.1.: Decay of the Υ(4S) into a charged B meson pair. The signal-side and
an important tag-side are shown for the analysis of the B → `ν`γ decay.

In effect the FEI allows one to reconstruct the initial Υ(4S) resonance, and thereby
recovering the kinematic and flavour information of Bsig. Furthermore, the back-
ground can be drastically reduced by discarding Υ(4S) candidates with remaining
tracks or energy clusters in the rest of event.

Belle already employed a similar technique called Full Reconstruction (FR) with
great success [12]. As a further development the Full Event Interpretation is more
inclusive, provides more automation and analysis-specific optimisations.

Both techniques heavily rely on multivariate classifiers (MVC). An introduction into
this topic is given in Chapter 3. MVCs have to be trained on a Monte Carlo (MC)
simulated data sample. However, the analysis-specific signal-side selection strongly
influences the background distributions on the tag-side. Yet this influence had to
be neglected by the FR, because the training of the MVCs was done independently
from the signal-side analysis [12]. The training was performed only once and took
several weeks on the cluster of the KEKCC computing centre.

In contrast, the FEI will be trained for each analysis separately and can thereby
take the signal-side selection into account. The analysis-specific training is possible
due to the deployment of speed-optimized training algorithms, full automation and

4 Chapter 1. Introduction

the extensive usage of parallelization on all levels. The total training duration for a
typical analysis is in the order of days instead of weeks. In consequence, it is also
feasible to retrain the FEI if better MC data or optimized MVCs become available.

The Full Event Interpretation described in this work is built on top of the Belle II
analysis software framework. A detailed description of BASF2 is given in Chapter
4. The framework is still under development. In consequence, efficiencies and
distributions stated in this thesis serve only illustrating purposes. In particular,
at the time of writing there was no beam-background available, the Monte-Carlo
matching code did not work properly in some corner cases and the track as well as
the vertex fitting was not finished. The FEI itself is described in Chapter 5.

A summary of the first preliminary performance-studies of the FEI is provided in
Chapter 6. All details of the studies can be obtained from the separately published
Full Event Interpretation Reports (FEIR), which are automatically generated by the
FEI during the training. The FEIRs contain key performance indicators and control
plots for all reconstructed particles and decay channels.

2. Experimental Setup

This chapter describes the SuperKEKB accelerator and the Belle II detector. At
first their respective predecessors KEKB and Belle, which were shut down in 2010,
are introduced. Afterwards, SuperKEKB and Belle II are described in more detail,
with a special emphasis on improvements and modifications in comparison with their
predecessors.

2.1. KEKB

In 1994 the construction of KEKB, a two-ring, asymmetric-energy, electron–positron
collider, started in the underground tunnel of the former TRISTAN accelerator [13,
sec. 2]. The new collider was dedicated to B physics and its design parameters were
chosen with respect to the requirements of a precise observation of B mesons.

The two rings are called HER and LER for the high and low energy ring respec-
tively [13, sec. 2.1]. At the crossing point of the rings their beams collided with a
center of mass energy equal to the mass of the Υ (4S) resonance

ECMS = 2
√
EHERELER = 10.58 GeV = mΥ(4S). (2.1)

The Υ (4S) resonance decays into an entangled BB̄ pair with a branching fraction
of over 96 %. Neutral B0B̄0 and charged B+B− meson pairs are produced in almost
equal parts. Moreover, the B mesons are produced near the energy threshold and
without any further particles [15].

As can be seen from Figure 2.1 the resonance is an exited state in the bottonium
spectrum1. The cross-section for the production e+e− → Υ(4S) is 1.2 nb [16, sec. 11].
In addition, so-called continuum-events e+e− → qq̄ with q = u, d, s, c occur2 with a
production cross-section of 2.8 nb [16, sec. 11].

The asymmetric beam energies induced a Lorentz boost

βγ =
EHER − ELER

ECMS

= 0.42 (2.2)

1Bottonium is a bound system containing an b quark and b̄ anti-quark.
2There are further physics processes in e+e− collisions like 2γ, µ+µ−, τ+τ−, and Bhabha processes,
however these events can be suppressed very efficiently [16, sec. 11].

6 Chapter 2. Experimental Setup

Figure 2.1.: e+e− cross section in the Υ(1S) – Υ(4S) region. The red dashed line
marks the kinematic threshold for the production of BB̄ pairs [14].

of the center of mass frame relative to the laboratory system, which was required
to observe the time evolution of B decays. The only interaction point (IP) was
surrounded by the Belle detector to detect and identify particles produced by the
collisions [13, sec. 2.1].

During its runtime between 1998 and 2010 KEKB reached a peak luminosity of
2.1 · 1034 cm−2s−1, which is still the highest luminosity ever obtained by a collider [1,
sec. 1.3].

2.2. SuperKEKB

The accelerator was shut down in June 2010 and is currently being upgraded to
SuperKEKB to increase the luminosity to 8 · 1035cm−2s−1, which is 40 times as large
as the peak luminosity achieved by KEKB [11, sec. 2].

The higher luminosity is being obtained by adopting the Nano-Beam scheme [11,
sec. 2], which was first proposed for the SuperB factory in Italy. In this scheme the
vertical beta function at the interaction point β∗y is squeezed by almost a factor of 20
with respect to KEKB. For this the final quadrupole magnets have to be positioned
closer to the IP, which requires in exchange a larger crossing angle [17, sec. 3.1]. In
addition, the beam current in both rings is being doubled to obtain the final design
luminosity of 8.0 · 1034 cm−2s−1 [17, sec. 2.1.1].

2.2. SuperKEKB 7

Table 2.1.: Achieved parameters of KEKB and design parameters of SuperKEKB [17].

Machine Parameter KEKB SuperKEKB
e− e+ e− e+

Beam current (A) 1.64 1.19 3.60 2.61
Energy (GeV) (EHER/ELER) 8.0 3.5 7.0 4.0
β∗y (mm) 5.9 5.9 0.27 0.41
Crossing angle (mrad) 22 83
Beam emittance (µm) 300 2100 20 10
Beam lifetime (min) 200 150 10 10
Luminosity (1034 cm−2s−1) 2.11 80

The increased beam current and the small beta function lead to a shorter beam
lifetime due to the Touschek effect3. By reducing the asymmetry of the beam energies
this problem is mitigated because the Touscheck effect is proportional to E−3 [17,
sec. 3.2.1]. Therefore, the Lorentz boost is reduced to βγ = 0.28.

The relevant machine parameters of KEKB and SuperKEKB are summarized in
Table 2.1.

The layout of the SuperKEKB facility is pictured in Figure 2.2. The two rings are
installed side by side and exchange their inner and outer position at the interaction
point, where the Belle II detector is placed.

Due to the Nano-Beam scheme more than one order of magnitude lower emittance
is required for both electrons and positrons. Low-emittance electrons are produced
directly by irradiating a cold cathode with laser photons. In contrast, the emittance
of the positrons is much larger because they are produced as secondary particles by
shooting electrons on a tungsten target. Therefore, the emittance of the positron
beam must be reduced in a damping ring. Afterwards, both beams are injected from
a linear accelerator into their respective rings at full energy. Like its predecessor,
SuperKEKB will adopt a continuous injection mode. The radio frequency system
compensates beam energy losses due to bremsstrahlung. With respect to KEKB it is
modified to match the higher beam current.

More information on SuperKEKB can be found in the technical design report of
Belle II [17].

3The Touschek effect is a loss mechanism due to large angle coulomb scattering inside a bunch.

8 Chapter 2. Experimental Setup

Figure 2.2.: Schematic layout of SuperKEKB [18].

2.3. Original Belle Detector 9

2.3. Original Belle Detector

The single interaction point of KEKB was surrounded by the Belle detector. Like
the accelerator, the detector was specifically designed for a precise observation of
B meson decays. This includes precise measurement of secondary vertices and
good particle identification capabilities. In total, Belle collected a data sample of
(772± 10) · 106 BB̄ pairs [17, sec. 3.2.1].

Figure 2.3 shows a schematic side view of the Belle detector.

0 1 2 3 (m)

e- e+
8.0 GeV 3.5 GeV

SVD

CDC

CsI
KLM

TOF

PID

150°

17°

EFC

Belle

Figure 2.3.: Side view of the original Belle detector [16].

Going outwards from the interaction point the Belle detector consisted of:

• a double-walled Beryllium beam pipe with a radius of 20 mm cooled by He gas;

• radiation-hard Bismuth Germanate crystals used as an extreme forward
calorimeter (EFC) as well as a beam and luminosity monitor;

• four layers of double-sided Si strip detectors for precise vertex detection (SVD);

• a drift chamber, which measured momentum and energy loss of charged particles
(CDC);

• an Aerogel Cherenkov counter system for particle identification (PID);

• a time-of-flight detector system using plastic scintillation counters (TOF);

10 Chapter 2. Experimental Setup

• a segmented array of CsI(Tl) crystals with silicon photodiode readout for
electromagnetic calorimetry (ECL);

• a superconducting solenoid which provided a homogeneous magnetic field of
1.5 T;

• and an iron support structure, which served as the return path of the magnetic
flux and was instrumented with glass-electrode resistive plate counters for KL

and muon detection (KLM).

This summary of the Belle detector is based on the detailed description of the detector
in [16].

2.4. Belle II Detector

The original detector is currently upgraded to match the higher luminosity of
SuperKEKB. The most important objectives for the upgraded detector are higher
physics and background rate tolerance, better physics performance despite smaller
Lorentz boost, and improved radiation hardness [11].

Figures 2.4 and 2.9 show the Belle II detector.

Barrel KLMEndcap
KLM

ECL

Endcap
KLM

CDC

E
n
d

ca
p

 P
ID

PXD

SVD

TOP

Solenoid

1 2 3 4 (m)0

Figure 2.4.: Side view of the upgraded Belle II detector [19].

The following description of the detector is based on the technical design report of
Belle II [17] and focuses on the improvements with respect to Belle.

2.4. Belle II Detector 11

2.4.1. Vertex Detector (PXD and SVD)

The vertex detector is divided into two parts: a two-layered pixel detector (PXD);
and a four-layered strip detector (SVD). They are used to precisely reconstruct
decay vertices and for finding low-momentum tracks. The design goal is to provide
a lifetime resolution as good as or better than Belle, despite the reduced Lorentz
boost and the increased background rate.

Figure 2.5.: View of the PXD and SVD.

The pixel detector is based on the DEPFET4 technology, which allows for very thin
sensors without the need for additional support or cooling material in the active region
of the detector. This reduces the required material budget and multiple scattering,
which improves precision vertex reconstruction of B-meson decays. Additionally,
the innermost layer of the pixel detector can be located very close to the IP at a
radial distance of 14 mm, because the radius of the Beryllium beam pipe will be only
12 mm compared to 20 mm in the past.

In total, the pixel detector uses over eight million pixels leading to a low occupancy5

of approximately 1% in spite of the long readout time of 20µs and the increased
background rate. To obtain a maintainable event size per readout only pixel clusters
are saved which either have enough associated hits in the SVD and CDC or are
selected by a multivariate analysis method implemented in FPGAs. In doing so,
low-momentum particles which don’t reach the CDC and don’t have enough hits in
the SVD are retained [19].

The SVD provides data to extrapolate the tracks reconstructed in the CDC to the
PXD. In addition, it can detect low-momentum tracks without an associated track

4DEPleted Field Effect Transistor.
5The occupancy is the fraction of channels hit in each triggered event.

12 Chapter 2. Experimental Setup

in the CDC. It consists of double-sided silicon strip detectors (DSSD) and covers the
full 17◦ − 150◦ acceptance of the Belle II detector. The strips towards the IP are
oriented along the z-axis, whereas the strips facing outside are aligned parallel to
the r-φ plane. As can be seen from the side view in Figure 2.5, the SVD is more
strongly instrumented in forward direction.

2.4.2. Central Drift Chamber (CDC)

The Central Drift Chamber (CDC) is used to reconstruct charged tracks and measure
their momenta. Moreover, particle-identification information is provided using the
specific energy loss of the track inside the volume. On that account, the measured
energy losses of each hit of a track are combined in a likelihood for each charged
final-state particle hypothesis6.

The chamber is filled with He(50%):C2H6(50%) gas and contains in total 14336 sense
wires in a cylindrical arrangement of 56 layers. To obtain information about the z
position of a track, the layers are grouped into 9 superlayers which differ in their
stereo angles (see Figure 2.6). The inner and outer radius of the CDC is 16 cm and
113 cm respectively.

Figure 2.6.: Wire configuration of the CDC [19]. Superlayers with a stereo angle are
shown in red and blue.

With respect to Belle the readout electronics system is replaced by a faster one
based on ASIC chips with less deadtime. Furthermore, the azimuthal cell-size of
the innermost layers is reduced to decrease the occupancy due to the large beam
background. The CDC will supply an efficient and reliable trigger signal for the
Level-1 (L1) trigger system. Fast 2D and 3D track finding algorithms, which are
implemented in FPGAs, will provide the necessary information about track counts
and opening angles. Additionally, the new 3D track finder provides a z-trigger signal,
which is essential to reduce the large beam background without sacrificing physics
events.

6Only five charged particles are considered as stable final-state particles inside the detector:
Electrons; muons; pions; kaons; and protons.

2.4. Belle II Detector 13

2.4.3. Particle Identification (TOP and ARICH)

The particle identification system of Belle II consists of a Time-Of-Propagation
counter (TOP) in the barrel region and a proximity-focusing Aerogel Ring-Imaging
Cherenkov detector (ARICH) in the forward end-cap.

The TOP is an array of 16 quartz bars, which will be installed between the calorime-
ter’s inner surface and the outer CDC cover. It uses less material and space in
comparison with the former time-of-flight and aerogel Cherenkov counter systems,
therefore the calorimeter response to electromagnetic particles is improved.

Figure 2.7.: Schematic side-view of TOP counter showing the path of photons due
to internal reflection for different final-state particles [17].

Charged particles passing through one of the quartz bars with a velocity higher
than the speed of light in quartz create Cherenkov photons. The photons are
internally reflected and measured by photon-multipliers at the end surface of the bar
in backward direction. The time of propagation of these photons is measured as well
as their point of impact. From this three-dimensional information the Cherenkov
image can be reconstructed. All detected photons of a track are combined in a
likelihood for each final-state particle hypothesis. This likelihood represents the
particle identification information of the TOP7.

Furthermore, the TOP can provide a timing signal with a resolution of a few
nanoseconds to the trigger system. In offline reconstruction a time resolution of
< 100 ps can be achieved.

The ARICH is located outside the CDC in the forward end-cap. Charged particles
passing through the ARICH produce Cherenkov photons inside an aerogel radiator,
these photons traverse an expansion volume and are finally detected by an array of
position sensitive photon detectors, which are capable of detecting single photons in
a high magnetic field. The Cherenkov angle of each photon is reconstructed using the
photon hit coordinate and the particle trajectory as given by the CDC. Afterwards,

7To use this information one has to calculate the likelihood-ratio with respect to another hypothesis.

14 Chapter 2. Experimental Setup

the velocity of the particle is estimated by combining the measured Cherenkov angles
of all detected photons. A non-homogeneous aerogel radiator with an increasing
refractive index is used to reduce the spread of the ring image due to emission point
uncertainty8.

Figure 2.8.: Schematic side-view of a proximity-focusing ring-imaging Cherenkov
counter with inhomogeneous radiator [17].

2.4.4. Calorimeter (ECL)

The electromagnetic calorimeter of Belle II reuses the scintillating CsI(Tl) crystals
from Belle in the barrel region. The advantages of CsI(Tl) crystals are high light
output, short radiation length and good mechanical properties. In the end-caps the
CsI(Tl) crystals are replaced with pure CsI crystals which have a shorter scintillation
decay time. The whole calorimeter covers a polar angle region of 12.4◦ − 155.1◦,
contains 8736 crystals with a total mass of about 43 tons, and provides 16.1 radiation
lengths of material in radial direction.

The scintillation light is read out by photo-diodes, which are glued to the rear surface
of the crystals. The analog signal is first pre-amplified and than processed by a
digital signal processor which shapes the signal and performs a waveform analysis in
real time. With respect to Belle the electronics are upgraded to shorten the shaping
time and match the shorter scintillation decay time in the end-caps. This reduces
the pile-up noise drastically.

8In fact the radiator consists of only two layers with different refractive indices.

2.4. Belle II Detector 15

The main purpose of the calorimeter is the detection of photons with high efficiency
and determination of energy and angular coordinates of these photons with high
resolution. This is important for the reconstruction of B-decay products like π0 and
D∗ which provide photons in a wide energy range. It is also used to identify electrons
based on the shape of the electromagnetic shower and detect K0

L together with the
KLM.

Furthermore, the calorimeter provides fast trigger signals for the L1 trigger system.
The total energy is sensitive to physics events with high electromagnetic energy
deposit, whereas the amount of isolated clusters is sensitive to multi-hadronic physics
events with low energy clusters. In addition, the calorimeter can identify Bhabha
and γγ events, which are used for online and offline luminosity measurement.

2.4.5. Superconducting Solenoid

The previously described detector components are located inside a superconducting
solenoid with a diameter of 3.4 m and a length of 4.4 m, which generates a homo-
geneous magnetic field of 1.5 T. The solenoid is surrounded by an iron yoke which
serves as the return path for the magnetic flux and as overall support structure for
all of the detector components.

2.4.6. K0
L and µ Detection (KLM)

Like in the original Belle experiment the iron yoke is instrumented with glass-electrode
resistive plate chambers (RPC) in the barrel region, whereas the RPCs in the end-
caps are replaced with scintillators because of the higher beam background. The
iron yoke consists of 14 layers of iron plates and 14 layers of active detector elements.
In addition, to the 0.8 interaction lengths of the ECL, the iron plates provide 3.9
interaction lengths or more of material in which K0

L mesons can shower hadronically.
This outer part of the detector is called KLM and is mostly taken over from the
original Belle experiment.

The KLM identifies muons using hits near the crossing of an extrapolated track with
a detector layer. Furthermore, it can identify K0

L mesons by clustering the hits in
its active detector elements and requiring no associated tracks. The clusters only
provide information about the direction of the K0

L candidates and not about the
incident energy, because the number of hits within a cluster fluctuates strongly in
the shower development of a K0

L-nuclear collision. The resolution of the direction
can be further improved if the KLM cluster can be associated with a nearby cluster
in the ECL.

16 Chapter 2. Experimental Setup

The end-caps of Belle II are instrumented with scintillator strips. The scintillation
light is delivered through wavelength-shifting (WLS) fibers to multi-pixel photon
counters (MPPC), which are compact and able to operate in a strong magnetic field.

The KLM can provide trigger signals for muon pair events, which are useful for
detector calibration, as well as measuring the efficiencies of other independent trigger
signals like from the CDC.

2.4.7. Data Acquisition

Belle II uses a two-level trigger system, with an FPGA-based Level-1 (L1) trigger
decision and a high level trigger (HLT) farm.

At the design luminosity the nominal average L1 trigger rate is expected to be up to
30 kHz. For each trigger signal the data is read out by the data acquisition system
from the detector front-end electronics. The front-end boards are placed near or
inside the detector structure and are based on FPGAs. They digitize the data and
perform simple data reduction like zero suppression.

Afterwards, the data from the front-end boards is transferred through the COmmon
Pipelined Platform for Electronics Readout (COPPER) to the event builder PCs,
which merge the data from the different sub-detectors. Further data compression,
formatting and reduction is applied. Finally, the high level trigger farm reconstructs
the event and performs a physics-level event selection using the event data from
all sub-detectors. The final rate of raw events which are written to the storage is
expected to be between 6 kHz and 10 kHz. The HLT consists of multiple Linux-based
PC clusters and runs the Belle II Analysis Software Framework (BASF2) [20].

2.4.8. Offline Reconstruction and Monte Carlo Production

The same software framework is used in offline reconstruction, Monte Carlo pro-
duction, and physics analysis. After machine-dependent calibration parameters
are determined, the raw data is reconstructed and stored at the KEK computing
centre. Monte Carlo production and reconstruction will be distributed to computing
facilities all over the world. Belle II is going to use a grid-based approach like the
LHC experiments to share computing resources at the different computing facilities
(so-called grid-sites).

The reconstructed information is saved in mDST files9, which are stored at the
grid-sites. The final physics analysis is performed on analysis-specific ntuple-files,
which can be created from the mDST files.

9A reduced and compressed form of the data summary tables, which store the raw-data.

2.4. Belle II Detector 17

electron (7GeV)

positron (4GeV)

KL and muon detector:
Resistive Plate Counter (barrel)
Scintillator + WLSF + MPPC (end-caps)

Particle Identification
Time-of-Propagation counter (barrel)
Prox. focusing Aerogel RICH (fwd)

Central Drift Chamber
He(50%):C2H6(50%), Small cells, long
lever arm, fast electronics

EM Calorimeter:
CsI(Tl), waveform sampling (barrel)
Pure CsI + waveform sampling (end-caps)

Vertex Detector
2 layers DEPFET + 4 layers DSSD

Beryllium beam pipe
2cm diameter

Belle II Detector

Figure 2.9.: Perspective view of the Belle II detector with comments summarising
the most important features [21].

3. Multivariate Classification

Many problems in science, engineering, and economics can be can be reduced to a
multivariate classification task. An object described by a feature vector ~x has to be
classified as either signal or background.

A multivariate classifier (MVC) maps the multidimensional feature vector ~x ∈ Rn

onto a one-dimensional test-statistic. The test-statistic is designed to separate signal
and background from one another.

The FEI relies heavily on multivariate classification. In particular, for each final-
state particle and decay channel a binary classifier is trained, which can distinguish
between correctly reconstructed candidates (signal) and incorrectly reconstructed
candidates (background). The feature vector usually contains quantities derived
from the kinematic and the fitted track of the candidate. This chapter contains
an introduction into the used terminology, mathematical tools and classification
methods.

3.1. Statistics

The distribution of signal and background is determined by multidimensional prob-
ability density functions (PDF). In the remainder of this chapter the distribution
of signal and background is denoted by f(~x|H0) and f(~x|H1) respectively. One can
interpret f(~x|H) d~x as the probability to encounter a candidate in the hypercube
spanned by ~x± d~x. As a consequence, the PDFs are normed to∫

f(~x|H) d~x = 1.

The distribution of signal and background in the test-statistic can again be described
in terms of PDFs T (~x|H). If transformed properly the test-statistic corresponds to
the signal-probability. All classifier outputs used by the FEI are transformed to a
probability as discussed in section 4.3.3.

To classify a candidate as signal or background a critical value Tc has to be chosen.
If the output of the MVC is above Tc the candidate is considered as signal, otherwise

20 Chapter 3. Multivariate Classification

Figure 3.1.: PDFs of signal T (~x|H0) and background T (~x|H1) candidates in the test-
statistic. An arbitrary critical value Tc was chosen to separate signal and
background. The areas corresponding to the error of first and second
kind are inked in blue and brown respectively.

as background. Yet this is just a convention. Usually the classification is not perfect,
hence some candidates are misclassified. The error of the first kind α states the
fraction of signal, which is wrongly classified as background

α =

∫ Tc

−∞
T (~x|H0).

Contrastingly, the error of the second kind β states the fraction of background, which
is wrongly classified as signal.

β =

∫ ∞
Tc

T (~x|H1).

Figure 3.1 shows signal and background PDFs as well as the areas corresponding to
the errors of first and second kind.

It is useful to quantify the performance of a classifier using the signal-efficiency
and signal-purity instead of the error of first and second kind, due to their better
interpretability. The signal-efficiency ε states the fraction of real signal candidates
classified as signal

ε =

∫ ∞
Tc

T (~x|H0) = 1− α.

And the signal-purity p states the fraction of the candidates classified as signal, which
are classified correctly

p =
NS

∫∞
Tc
T (~x|H0)

NS

∫∞
Tc
T (~x|H0) +NB

∫∞
Tc
T (~x|H1)

,

3.1. Statistics 21

where NS is the number of signal and NB is the number of background candidates
in the sample. In the same way one can define the background-efficiency and
background-purity, however these quantities are not used in this thesis, hence the
prefix ”signal” is omitted in the following.

The optimal critical value Tc depends on the desired efficiency and purity. Additional
information on statistics and choosing Tc can be found in [22].

3.1.1. Optimal and Near-Optimal Test-Statistics

If the PDFs f(~x|H0) and f(~x|H1) are known in analytical or numerical form, the
optimal test-statistic is given by

T (~x) =
f(~x|H0)

f(~x|H1)
.

The Neyman-Pearson Lemma [23] states that this test-statistic leads to the smallest
error of second kind for a fixed error of first kind.

Yet it is not possible to calculate the PDFs in an analytical form in the use case
presented later. Nor is it possible to numerically approximate the complete PDFs
due to the curse of dimensionality. Between twenty and thirty features are typically
employed by the classifiers of the FEI, even with a rough approximation using ten
bins in every dimension, one would need to simulate astronomical amounts of data
to obtain enough statistics in all 1020 to 1030 bins.

In consequence, many methods were developed to obtain a near-optimal test-statistic
with less computational effort. Simple linear discrimination functions were around as
early as 1936 [24], more advanced methods like artificial neural networks followed a
few years later [25], were discarded in 1969 because they were inapplicable to simple
separation problems like XOR [26] and resurrected in 1986 with the invention of the
backpropagation algorithm [27], which lifted this limitation. In the last years the
deployment of stochastic gradient-boosted decision trees [28] became popular in high
energy physics experiments, for instance in the recent discovery of the Higgs boson
[29].

All methods considered in this thesis have to be trained on a so-called training-sample
for which the classification is known. The training-sample is created by a Monte
Carlo simulation of the underlying physics processes and followed by a detector
simulation. The employed method adapts its internal parameters and structure to
minimize a given loss-function L on the provided training-sample.

To perform well on an independent test-sample it is crucial that the trained MVC has
the ability to generalize. An MVC looses this ability if it uses statistical fluctuations

22 Chapter 3. Multivariate Classification

of the training-sample to minimize the training-error, this is termed as over-training.
In consequence, the model is more complex than necessary and the performance
on an independent test-sample is often very poor. A well-trained MVC describes
all important effects in the data with as few parameters as possible. Many MVC
methods allow to adjust the complexity of the model using hyper-parameters1.

The main difference between the performance of MVC methods arises from their
different strategies, so-called regularization techniques, to inhibit over-training. Typi-
cally these techniques reduce the effective number of free parameters of the method by
smoothing internally used distributions, introducing penalty terms in the loss-function
or simplifying the structure of the method.

Although the FEI can utilize an arbitrary MVC, usually it employs either an com-
mercial Artificial Neural Network implementation or a specially adapted Stochastic
Gradient Boosted Decision Tree as MVC. In the following both methods are discussed
in more detail.

3.2. Artificial Neural Network

Artificial neural networks (ANN), or more precisely multi-layer perceptrons, consist
of several layers of neurons. Each neuron is connected to all neurons in the preceding
and succeeding layer, each connection has a weight wij. The neurons in the first
layer correspond to the input features, the neuron in the last layer produces the final
output of the classifier. The resulting network topology is depicted in Figure 3.2.

The response of the network to an input vector is calculated by propagating the
input vector from the first layer to the last. Therefore, this type of ANN is called
a feed-forward network. Other kind of ANNs exist, but are not discussed here.
During the propagation each neuron transforms its received weighted inputs from
the preceding layer into a single output using an activation function.

The weights are adjusted to create a near-optimal test-statistic minimizing the given
loss-function for the given training-sample. Initially the weights are randomly chosen
using a standard-normal distribution. Afterwards, the output of the network for
a candidate from the training-sample is calculated and the induced error in the
loss-function is back-propagated through the network using the chain rule. The
algorithm corresponds to a steepest-descent minimization of the loss-function in the
high-dimensional space of the weights

∆wij = −η dL

dwij
.

1The term hyper-parameter is used to distinguish parameters of the method from parameters of
the model created by the method.

3.3. Stochastic Gradient Boosted Decision Tree 23

Figure 3.2.: Simple feed-forward network with two input features, three hidden
neurons and a single output.

The parameter η is the learn-rate of the network and crucial for a fast but stable
convergence into a near-optimal minimum. If the learn-rate is too small the algorithm
will slowly converge into a local minimum far away from the optimum. On the other
hand, if the learn-rate is too large the algorithm does not converge at all. Different
methods were developed to adjust the learn-rate during the training automatically
like the BFGS algorithm [22] and resilient back-propagation.

The complexity of an ANN can be adjusted by modifying the maximum number
of iterations, the number of layers in between the input and output layer, and the
number of neurons in these layers. Furthermore, different activation functions and
loss-functions can be employed.

The NeuroBayes package [30], which will be used in the FEI, is based on an ANN. It
includes extensive pre-processing of the input features and advanced weight-update
strategies like the BFGS algorithm.

3.3. Stochastic Gradient Boosted Decision Tree

A decision tree divides the training-sample into disjunct regions dominated by either
signal or background. The training-sample is consecutively divided into two parts by
a simple cut on an input feature. Each cut is chosen to maximise the separation gain,
as calculated by a separation measure like the entropy difference. Hence, the method
can be represented by a tree-structure with a simple cut at each branching-point as
shown in Figure 3.3. The final classifier output for a candidate is the signal-fraction
of the corresponding region2. In the following the branching-points and regions are
called nodes and leafs, respectively.

2From a mathematical point of view the regions are hyper-cubes in the feature space Rn

24 Chapter 3. Multivariate Classification

0

1 2

3 4 5 6

0

1

2

Layer Tree

Figure 3.3.: Decision tree with two consecutive cuts at the branching-points/nodes
(in brown) and the resulting four regions/leafs (in green).

A single decision tree is very prone to over-training. A boosted decision tree avoids
over-training by strongly limiting the depth of a single tree (or equivalently the
number of consecutive cuts). In consequence, a single tree is a so-called weak-learner
and separates the signal and background only roughly.
By using many weak-learners one can construct a well-regularized classifier with great
separation power. A boosting algorithm attributes a weight to each candidate and
trains a weak-learner. Afterwards, the weights of the wrongly classified candidates are
increased and another weak-learner is constructed. Usually this process is repeated
a few hundred times. The final classifier output is calculated as a weighted sum of
the outputs of the individual weak-learners.
In the case of decision trees, the boosting algorithm constructs, figuratively speaking,
a whole forest. Therefore, boosted decision trees belong to the category of ensemble
methods. Different boosting algorithms are available.
For this thesis the gradient boost as described in [28] was implemented. The new
weights wi of the candidates are calculated as the negative gradient of the loss-function
L with respect to the current classifier output σ(~xi)

wi = − ∂L

∂σ(~xi)
.

Thereby, the algorithm detects the candidates in the sample which are hard to classify
and increases their weight. In effect, the weak-learners concentrate on the difficult
candidates and do not learn statistical fluctuations of the other candidates. In fact,
after a few boosting iterations most of the candidates become irrelevant and can be
ignored, to speed up the training.
To further increase the ability of the boosted decision tree to generalize, only a
random subset of the candidates is used for the construction of the individual trees,
hence the name stochastic gradient boosted decision trees (SGBDT).
The complexity of SGBDTs can be adjusted by modifying the number of trees, the
depth of the trees and the fraction of candidates used to construct the trees.
If NeuroBayes is not available, the FEI uses a speed-optimized SGBDT as MVC.

4. Belle II Analysis Software
Framework

The software framework for the Belle II experiment (BASF2) was rewritten from
scratch to obtain better usability and code quality with respect to Belle. It is used
for online as well as offline data handling. The framework is written in C++11 and
Python 2.7. In addition, popular third-party libraries like evtgen [31], Geant4 [32]
and ROOT [33] are employed. The basic concept of BASF2 adopts ideas from the
GAUDI architecture [34] used by LHCb [35], ATLAS [36] and other high energy
physics experiments; as well as from the ILC and Belle software framework. The
architecture of BASF2 is visualized in Figure 4.1. The remainder of this chapter
describes the structure of BASF2 in general, with emphasis on the parts developed
for the FEI.

DataStore

Exchange of data-objects

Libraries
Use common functions

Path... ...Module Module Module Module OutputInput

Figure 4.1.: Modules operating event-by-event on the data. They are chained into
a path and executed for each event. The modules use functionality
provided by libraries and share information encoded in data-objects via
the common DataStore.

26 Chapter 4. Belle II Analysis Software Framework

4.1. General Structure

The framework is divided into packages, each covering a different aspect of data
processing like:

• data acquisition (daq);

• Monte Carlo event generation (generators);

• general detector simulation (simulation);

• sub-detector simulation, unpacking1 and reconstruction (ir, pxd, svd, cdc,
ecl, top, arich, bklm);

• track reconstruction (tracking);

• visualization of individual events inside the detector (display);

• and physics analysis (analysis).

The packages contain libraries, modules and data-objects. The libraries are im-
plemented in C++ and tested with the google unit-test framework. They provide
functionality which is shared between different modules.

Modules are small processing blocks built on top of the libraries. They operate on
the data event-by-event and perform self-contained tasks. A chain of such modules
is called a path. An illustrating example is given in the next section. Most of the
modules are implemented in C++, but it is also possible to implement modules in
Python.

Information which is shared between the modules is encoded in data-objects. The
data-objects are stored in a common DataStore, which every module can read and
write. Typical examples for data-objects are Track, ECLCluster, Particle and
ParticleList objects. In addition, the DataStore keeps track of relations between
the data-objects. For example between associated Track and Particle objects. The
data-objects can be serialized using ROOT. Serialization is important to support
persistence, multi-processing, distributed computing and real-time monitoring of the
HLT farm.

To use BASF2 the user has to provide a steering file written in Python. In the steering
file the path is created and filled with modules, afterwards the path is processed.
Input and output data files can be read and written by adding the RootInput and
RootOutput modules at the beginning and end of the path, respectively. The input
and output data file names can be either passed to these modules as arguments or
specified via command line arguments. One has to distinguish between two levels
of code execution. Firstly, the Python steering file is executed and builds the path
(steering level). Secondly, the path is applied to all specified events (path level),
usually the code executed at this level is written in C++.

1Conversion of detector data into BASF2 data-objects.

4.2. Illustrating Example 27

4.2. Illustrating Example

The steering file in Listing D.1 shows a simple reconstruction of the decay D0 →
K−π+. All the basic tools needed for the FEI already appear in this example. The
steering file expects generic BB̄ Monte Carlo data files as command line argument.
The Monte Carlo data is created by a separate steering file and contains among
others serialized Track, ECLCluster, KLMCluster and MCParticle data-objects. In
the following the listing is explained step by step to illustrate the abstract concepts
of BASF2 described in the previous section.

1 from basf2 import *
2 from modularAnalysis import *

At first all identifiers from the basf2 and modularAnalysis Python modules are
loaded into the current namespace. basf2 provides direct access to the modules using
the register_module function, whereas modularAnalysis provides convenience
functions to add modules to the current path. In this example only the RootInput
and RootOutput modules are added directly using the register_module function.
The other modules described below are inserted into the path by corresponding
convenience functions provided by modularAnalysis.

3 # Read data from files given via command line argument.
4 analysis_main.add_module(register_module(’RootInput ’))

The RootInput module is registered and added to a path named analysis_main.
The module transfers the data-objects from the provided Monte Carlo data into the
DataStore.

5 # Load Belle II detector parameters file.
6 loadGearbox ()
7 # Create FSP hypotheses for tracks and clusters.
8 loadReconstructedParticles ()

The Belle II detector parameters are loaded by the Gearbox module. The
ParticleLoader module creates for each Track in the DataStore particle
hypotheses for K, π, p, e and µ, the so-called charged final-state particles (FSP).
Furthermore, for each KLMCluster a K0

L particle hypothesis is created, as well as a
γ particle hypothesis for each ECLCluster without an associated track. The particle
hypotheses are represented by Particle data-objects.

9 # Collect all kaon and pion hypotheses into
10 # ParticleLists and apply cuts on the PID information.
11 selectParticle(’K-’,’Kid > 0.01’)
12 selectParticle(’pi+’,’piid > 0.01’)

28 Chapter 4. Belle II Analysis Software Framework

Afterwards, K and π candidates are selected by the ParticleSelector module and
a soft cut on the PID information given by the likelihood-ratio of the individual
outputs of the PID subdetectors is applied. Internally a ParticleList data-object,
which contains references to the corresponding Particle data-objects, is created
for each selected particle type. Moreover, associated ParticleLists are created,
containing references to the charge conjugated Particle data-objects.

13 # Combines the hypotheses to D0 candidates and
14 # cut on the invariant mass of each candidate.
15 reconstructDecay(’D0 -> K- pi+’,’1.6 < M < 2.0’,
16 persistent=True)
17 # Match the MC Truth of all D0 candidates
18 matchMCTruth(’D0’)

The ParticleCombiner module combines theK and π candidates to D0 candidates if
the invariant mass of the candidates falls within a mass range near the nominal mass of
the D0. The candidates are stored in a ParticleList data-object. Additionally, the
ParticleList is marked as persistent, thereby it is written into the final ROOT
file by the RootOutput module. The decay is specified by a DecayDescriptor string.
Details on the syntax of ParticleLists and DecayDescriptors can be found in the
Appendix in section A.1.

After that the MCMatching module sets a relation between the Particle data-object
of each D0 candidate to the corresponding MCParticle data-object.

Like in all modules the charge conjugate is implicitly implied. It means in effect
that reconstructDecay(’D0 -> K- pi+’) creates two ParticleLists. One for
candidates of the channel D0 → K−π+ and another for D̄0 → K+π−. Likewise
matchMCTruth(’D0’) and all further modules operate automatically on the D̄0

ParticleList as well.

19 # Fit the secondary vertex of all D0 candidates and
20 # apply a soft cut on the p value of the fit.
21 fitVertex(’D0’ ,0.0001)

Thereafter, the Geometry module loads the geometry of the Belle II detector,
which is currently needed to fit the secondary vertex of the D0 with the follow-
ing ParticleVertexFitter module. BASF2 contains two different vertex-fitting
libraries: KFit and Rave [37]. At the moment Rave is used by default. A soft cut
on the p value of the fit is applied to remove candidates which are combined out of
tracks without a common vertex.

4.2. Illustrating Example 29

22 # Train the standard MVC
23 # If the method is already trained , calculate the
24 # signal probability and save it together with its
25 # mass and mcStatus in an ntuple file.
26 if isTMVAMethodAvailable ():
27 applyTMVAMethod(’D0’)
28 variablesToNTuple(’D0’,[’getExtraInfo(isSignal)’,
29 ’mcStatus ’, ’M’])
30 else:
31 trainTMVAMethod(’D0’,[’M’,’p’,’pz’,’dr’,’dz’,
32 ’chiProb ’,’daughter(0,Kid)’,
33 ’daughter(1,piid)’])

Then standard2 MVC is trained by the TMVATeacher module. The MVC separates
correctly reconstructed D0 from background candidates using provided Variables
like the invariant mass M or the momentum p. Details on Variables are described
in the Appendix in section A.2.

If the weight-file of the MVC is already available, the TMVAExpert module is added
to the path instead of TMVATeacher. TMVAExpert calculates the signal probability
for each Particle in the given ParticleList. As a consequence, the user has to
run the steering file twice: in the first pass the MVC is trained and in the second
pass the probability for each candidate is calculated.

Additionally, in the second pass the VariablesToNtuple module writes the signal
probability, which is stored in the ExtraInfo field of each Particle data-object,
together with the mass and the Monte Carlo status flag of the candidate into an
ntuple-file. This is useful if a user is only interested in some properties of the
reconstructed candidates.

34 # Write out the D0 candidates.
35 analysis_main.add_module(register_module(’RootOutput ’))

The RootOutput module on the other hand writes out all data-objects stored in the
DataStore to a ROOT file if they are marked as persistent, like it is the case for the
D0 ParticleList.

36 # Execute the path.
37 process(analysis_main)

The code execution on steering level ends here, up to this point only Python code
was executed. Now the transition to C++ code execution on path level is performed.
The generated Python path object is translated to C++ by the boost python library.

2Currently the standard MVC is the FastBDT method, which is discussed later in this chapter.

30 Chapter 4. Belle II Analysis Software Framework

Gearbox

RootInput

RootOutput

VariablesToNtuple

TMVAExpert ParticleVertexFitter D0

Geometry

MCMatching D0

ParticleCombiner D0

ParticleLoader ParticleSelector K-

ParticleSelector pi+

Figure 4.2.: Path which is created and executed by the steering file in Listing D.1 in
the second pass.

All modules contained in the path are instantiated using the corresponding C++
classes. Afterwards, the modules are called one after another for every event.

Over ten different modules are employed by the path which is created by the steering
file. The whole path is shown in Figure 4.2.

Although the basic tools shown in the example are already sufficient to implement
the FEI, it would be a tedious, complicated and error-prone task. Therefore, the FEI
is implemented using a meta-framework at steering level which resolves dependencies
between decay channels automatically. It is described in Appendix B.

4.3. Multivariate Classification

The Belle II software framework employs TMVA to perform multivariate classifica-
tions. The library TMVAInterface provides an interface to TMVA inside BASF2.
The library was originally developed for the FEI, but is already adopted by other
groups for implementing techniques like flavour tagging.

Based on the library two BASF2 modules were developed: the TMVATeacher and the
TMVAExpert module, which train and apply a MVC respectively. Since the FEI relies
heavily on MVCs, TMVA and the used MVCs are described in more detail below.

4.3. Multivariate Classification 31

4.3.1. TMVA

TMVA is a standard component of the ROOT library, therefore it is well tested,
well documented and widely used in particle physics. In addition, it includes a large
number of different data analysis methods, among others Boosted Decision Trees,
Artificial Neural Networks and Support Vector Machines.

It is also possible to provide custom TMVA methods, which are automatically loaded
at runtime via the plugin interface of ROOT. Therefore, one can easily employ
commercial software like NeuroBayes without recompiling BASF2 or ROOT.

TMVA provides a rich set of preprocessing methods for the used variables like:
normalization; decorrelation; transformation to a Gaussian distribution; and prin-
cipal component transformation. Furthermore, it can apply boosting, bagging and
categorization on arbitrary methods. The given sample is automatically split into a
training and a test sub-sample.

In particular, the FEI uses TMVA to create probability density functions (PDF)
of the output of the used classifier for signal and background candidates. TMVA
converts the output of the classifier into a probability using these PDFs.

A complete discussion of all TMVA features and options can be found in [38].

4.3.2. TMVA Control Plots

TMVA automatically creates control plots for each training. The most useful plots
are shown in Figure 4.3. The plots were generated by the example steering file in
Listing D.1, with small modifications to train further methods in addition to the
default one. The receiver operating characteristic and over-training control plots are
included in the automatic reporting system of the FEI. Further control plots can be
created on demand (see Appendix A.3 for some examples).

a) Receiver operating characteristic

The receiver operating characteristic (ROC) plot illustrates the performance of binary
classifiers. It shows the performance of the classifications in terms of signal efficiency
and background rejection. Mathematically the receiver operating characteristic is a
curve in the two-dimensional signal efficiency, background rejection space, which is
parametrized by the cut applied on the test-statistic of the classifier. The integral
below the curve is a measure for the discrimination power of the classifier.

Figure 4.3a shows a comparison of the TMVA built-in Boosted Decision Tree (TMVA-
BDT), the TMVA built-in Multi-Layer Perceptron (TMVA-MLP), a speed-optimized

32 Chapter 4. Belle II Analysis Software Framework

Signal efficiency
0.5 0.6 0.7 0.8 0.9 1

B
ac

kg
ro

un
d

re
je

ct
io

n

0.5

0.6

0.7

0.8

0.9

1

MVA Method:
FastBDT
NeuroBayes
TMVA-BDT
TMVA-MLP

Background rejection versus Signal efficiency

(a) Receiver operating characteristic

NeuroBayes response
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

dx/
(1

/N
) d

N

0

2

4

6

8

10

12

Signal (test sample)

Background (test sample)

Signal (training sample)

Background (training sample)
Kolmogorov-Smirnov test: signal (background) probability = 0.068 (0.653)

U
/O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

TMVA overtraining check for classifier: NeuroBayes

(b) Overtraining check

Figure 4.3.: TMVA control plots for Listing D.1

4.3. Multivariate Classification 33

Boosted Decision Tree classifier written especially for the FEI and the commercial
NeuroBayes classifier. The closer the ROC curve of a classifier is to the (1,1) point in
the plane the bigger its integral and the better its separation. Hence, the FastBDT
and NeuroBayes methods offer a better separation than the built-in classifiers of
TMVA in this example, at least for signal efficiencies below 95%. For instance, a
cut on the classifier output which suppresses 95% of the background leads to a
signal efficiency of 80% using TMVA-BDT, 70% using TMVA-MLP and 84% using
FastBDT or NeuroBayes.

b) Overtraining check

The overtraining check plot compares the distributions of the classifier output on the
training and test sample, each for signal and background. If the classifier in question
is overtrained, its output distributions will differ for training and test data. A
Kolmogorov-Smirnov test3 is performed to check if the distributions for training and
test sub-samples are statistically compatible. Furthermore, the shapes of the signal
and background distributions are a good measure for the quality of the separation.
One expects mono-modal4 and smooth distributions which are well separated from
each other.

In the example plot 4.3b the distributions are compatible for a significance level of
5%. The signal and background distributions are well separated and peak at -1 and
1 respectively. Hence, the classifier performs well in this example.

4.3.3. Transformation of the classifier output to a probability

The FEI assumes that the output of each employed classifier is a probability. Hence,
it is important to ensure this property. Fortunately, TMVA can create PDFs for the
signal S and background B distributions of the classifier output σ, in addition it is
possible to apply different smoothing algorithms to these PDFs.

The final transformed classifier output is given by

p =
S(σ)

S(σ) +B(σ)
,

which is a probability by construction. Differences in the signal-fraction of the
data used for training and application are taken into account by scaling the PDFs
accordingly.

3A statistical test calculating the probability to obtain the observed or a greater deviation of two
samples under the assumption that both samples are generated from the same distribution.

4A distribution is mono-modal if it has only one peak.

34 Chapter 4. Belle II Analysis Software Framework

The interpretability of the classifier output as a probability is validated by plotting
the purity of the candidates over the binned transformed classifier output. The
output corresponds to a probability if all data-points in such a plot are compatible
with a line through the origin with slope 1. This plot is included in the automatic
reporting system of the FEI for each particle and decay channel.

(a) Purity over raw classifier output. (b) Purity over transformed classifier output.

Figure 4.4.: Purity over FastBDT output for example Listing D.1.

Figure 4.4 shows the purity over classifier plot for the FastBDT method. Although
the FastBDT output should already be a probability, this is sometimes not fulfilled
over the entire output range as can be seen in Figure 4.4a. The TMVA transformation
enforces the interpretability as a probability over the entire output range.

4.3.4. FastBDT

For each decay channel the FEI trains a separate MVC with a few million samples for
signal and background. In total over 100 methods have to be trained. Unfortunately,
the TMVA built-in methods are not designed to minimise the duration of the
training. Therefore, the standard MVC in BASF2 is a speed-optimized stochastic
gradient-boosted decision tree (FastBDT), which is integrated in TMVA via its
plugin mechanism.

The gradient boosting algorithm is described in the original paper [28], boosted
decision trees in general are discussed in Chapter 3. The FastBDT implementation
is up to 50 times faster than the equivalent stochastic gradient boosted decision
tree implemented in TMVA, which is based on the same paper. Differences in the
quality of the separation between the FastBDT and TMVA-BDT arise from a different
separation measure used for the determination of the cuts. In addition, the calculation
of the FastBDT response is up to 10 faster than the TMVA implementation.

4.3. Multivariate Classification 35

Figure 4.5.: Transformation of an arbitrary distribution to a uniform binning using
the cumulative distribution [14].

Speed optimizations in the implementation

The input features are represented by floating point numbers. At first the FastBDT
implementation maps every feature onto an integer-based binning, such that every
bin contains the same number of entries. After this transformation the algorithm is
independent from the shape of the input data and slow floating point calculations
can be replaced by fast integer operations. An example mapping of an arbitrary
distribution to a uniform binning is visualized in Figure 4.5. Furthermore, the binning
defines the grid which is used to search for the optimal cut at each node in the tree.

The FastBDT implementation determines the cuts simultaneously for all nodes in
the same layer of the tree, in contrast to a traditional implementation of a decision
tree, which determines the cuts node after node. This allows to access the events in
linear order, which is faster due to the cache of the CPU. In other words, instead
of accessing the events in random order and train node after node, the nodes are
accessed randomly whereas the events are processed in a linear order matching the
memory layout.

There are further optimisations in the implementation which go beyond the scope of
this thesis. However, a common feature of all speed optimisations implemented in the
FastBDT algorithm is the principle of locality. Modern CPU caches are optimised
for this principle:

• Temporal locality (a value is frequently accessed) – The cut optimisation at
each node can be represented as a series of counting and summing operations.
These operations frequently update a single value. In the optimal case this
value never leaves the CPU cache during the computation.

36 Chapter 4. Belle II Analysis Software Framework

int a = 0;
int b = 0;
for(int i=0; i<1e9; ++i) {

if(rand()%2 == 0) a++;
else b++;

}
cout <<a<<" "<<b<<endl;

(a) Straight-forward implementation –
Execution time 10.4 sec

int a[] = {0,0};

for(int i=0; i<1e9; ++i) {
a[rand() %2]++;

}
cout <<a[0]<<" "<<a[1]<<endl;

(b) If statement replaced by array lookup –
Execution time 7.4 sec

Figure 4.6.: Branch locality optimisation example which increments two counters
randomly. Both codes were compiled with the highest optimization level
available. The optimised version is 30% faster.

• Spatial locality (a value is accessed after a nearby value was accessed) – Events
are always accessed in linear order. Therefore, the spatial locality is maximally
exploited.

• Branch locality (few conditional branching instructions) – Conditional branch
instructions (e.g. if and switch statements) are avoided and replaced by array
lookups using the integer-based binning of the features. See Figure 4.6 for an
example of this technique.

4.3.5. NeuroBayes

NeuroBayes is a multivariate analysis method based on an artificial neural network
(see Chapter 3). It was originally designed for high energy physics. It is orders of
magnitude faster than the TMVA built-in artificial neural networks, has an advanced
preprocessing mechanism for the input features and is very resistant against over-
training due to automatic relevance determination of the input features and internal
regularization algorithms. Since it is a commercial product it is not shipped with
BASF2, instead it is loaded at runtime via the plugin mechanism of ROOT if it is
available.

Moreover, NeuroBayes offers its own control plots with more detailed information
on the individual contribution of the input variables. The output produced by
NeuroBayes for the reconstructed invariant mass M used in the training performed in
the steering file in Listing D.1 is shown in Figure 4.7.

The box in Figure 4.7a contains additional information about the significance of the
variable and the correlation to other variables. NeuroBayes automatically determines

4.3. Multivariate Classification 37

(a) Information about significance and correlation.

(b) Signal and background distribution of feature after transformation to a uniform binning.

(c) Spline fit on the purity in each bin.

(d) Input into neural network after preprocessing.

(e) Receiver operator characteristic for this feature.

Figure 4.7.: Detailed information on the individual contribution of a input feature
provided by NeuroBayes. The plot shows the reconstructed mass variable
M of the decay D0 → K−π+.

38 Chapter 4. Belle II Analysis Software Framework

the relevance of each feature and discards features with a significance below a user-
defined threshold to avoid over-training. Figure 4.7b shows the M distribution of
signal and background candidates in a uniform binning, similar to the one used by
the FastBDT algorithm. Figure 4.7c shows a spline fit on the purity of each bin.
This spline fit regularizes the feature and prevents over-training. The fitted purity
on the y-axis is transformed to a distribution with mean 0 and standard deviation 1.
Finally, the input features are decorrelated by a principal component analysis. This
distribution of the final network input is shown in Figure 4.7d. Figure 4.7e is a ROC
plot, similar to the TMVA ROC plot, however showing only the contribution of the
M feature.

Although the training using NeuroBayes requires more time, it is used in favour of
FastBDT if available, because its regularization techniques are better, which yields an
overall better performance on an independent test-sample. NeuroBayes was already
extensively employed in the FR [12]. In addition, NeuroBayes is constantly developed
further in contrast to the TMVA built-in methods and FastBDT. Therefore, users
employing NeuroBayes profit from the possibility to retrain the FEI as soon as new
versions and features become available.

4.3.6. Speed Comparison

The TMVA built-in gradient boosted decision tree (BDT) and multi-layer perceptron
(MLP) were compared with the FastBDT implementation and the NeuroBayes
package. The methods were trained using the example steering file in Listing D.1
and one million generic BB̄ Monte Carlo events. The hyper-parameters of FastBDT
(e.g. the number and depth of the trees) and NeuroBayes (e.g. the maximum number
of iterations and preprocessing flags) were optimized to give the best separation.
Fortunately, both methods are almost equal in the quality of their separation; in
consequence the duration of training is a meaningful quantity for comparison.

Afterwards, the same hyper-parameters were applied to the corresponding TMVA
built-in methods if a corresponding parameter was available. The quality of the
achieved separation is similar for TMVA-BDT, FastBDT and NeuroBayes as can
be seen from the ROC curves in Figure 4.3a. The correlation between the classifier
outputs of these methods is above 96 %. TMVA-MLP performed worse and required
the longest training and application time.

Both NeuroBayes and FastBDT are faster than their equivalent methods in TMVA,
while providing a better separation. If one uses more variables, events and trees
the FastBDT implementation is up to 50 times faster than the TMVA-BDT in
training and up to 10 times faster in application. NeuroBayes is not as fast as
the TMVA-BDT and FastBDT but provides better separation in more complicated
trainings. In addition, one can operate NeuroBayes without the neural network,

4.4. Parallelisation 39

Table 4.1.: Speed comparison for training and application of FastBDT and Neu-
robayes versus their respective TMVA-builtin counter-parts TMVA-BDT
and TMVA-MLP.

Method Training time in sec Application time in sec

NeuroBayes 89.8 1.3
NeuroBayes (without network) 3.9 1.3
FastBDT 3.4 0.3
TMVA-BDT 19.2 1.5
TMVA-MLP 1670 1.9

which is faster than TMVA-BDT while providing a similar separation. The time
spent to train and apply the methods is summarized in Table 4.1.

4.4. Parallelisation

Processing billions of events is not possible on a single CPU core. In consequence, it is
important to exploit parallelization opportunities on all levels. In modern computing
there are several parallelization techniques:

• execution of different CPU instructions at the same time using pipelines;

• execution of the same CPU instruction on data aligned consecutively in the
memory using vector instructions;

• multi-processing using threads or processes on a multi-core system;

• and distributed computing using multiple computing nodes.

Although the first two techniques are automatically used if a state-of-the-art compiler
and a modern CPU is employed, software developers can optimize their time-critical
code by avoiding conditional jumps like shown in Figure 4.6. On the other hand,
the deployability of multi-processing and distributed computing depends on the
implemented algorithms. Fortunately, the processing of independent events is an
embarrassingly parallel problem. Hence, using these techniques is comparatively
easy.

40 Chapter 4. Belle II Analysis Software Framework

Root
Input. tx

Ring
Buffer

rx module chain tx

Ring
Buffer

rx module chain tx

rx module chain tx

Root
Output.

rx

input
process

event processes

output
process

Figure 4.8.: Schematic view of the parallel processing implemented in BASF2.

4.4.1. Multi-Processing

BASF2 supports multi-processing out of the box using processes and shared-memory
[39]. However, the RootInput and RootOutput module cannot run in parallel due to
limitations in the ROOT framework. In particular, writing a ROOT file in parallel
is not supported. Therefore, the module path provided by the user is split into three
parts: an input part running on a single core; a main part running in parallel on
multiple cores; and an output part running again on a single core. In between these
parts, special modules are inserted which serialize (deserialize) the events into (from)
a shared-memory ring-buffer. The final path executed in parallel is visualized in
Figure 4.8. The serialize and deserialize modules are named tx and rx respectively.

Besides the RootInput and RootOutput module, there are several other mod-
ules which perform I/O operations on ROOT files, e.g. VariableToNtuple and
TMVATeacher. The output operations of these modules are synchronized using the
DataStore. As a result these modules can run in parallel despite their access of
ROOT files.

4.4.2. Distributed Computing

BASF2 can also run on multiple computing nodes, yet there are several options
available. The simplest option is to run independent BASF2 instances on each
node using the same steering file. A dedicated tool named gBasf2 is available for
submitting grid-based BASF2 jobs. In the end the ROOT output files of these
instances can be merged if needed. This approach works fine for simple steering files
for example Monte Carlo production and simple analyses.

4.4. Parallelisation 41

However, for non-trivial steering files like the one used by the FEI it is not acceptable
to run the steering file multiple times, because the steering file may do event
independent calculations like training MVCs. In addition, the steering file may have
to be executed multiple times on the same data, like the example in Listing D.1.

A Map-Reduce [40] approach was implemented to take care of these complications, it
is visualized in Figure 4.9. At first, the Monte Carlo data is distributed by the Master
to the different computing nodes. Afterwards, the Master executes the steering file for
the first time and sends the generated BASF2 path to all nodes. Each node applies
the path to its part of the Monte Carlo data. The ROOT output file generated by the
RootOutput module remains on the node and is used as input in the following runs.
The remaining ROOT files produced by other modules like VariableToNtuple or
TMVATeacher are sent back to the Master and are merged together. Typically these
files are significantly smaller than the ones produced by the RootOutput module. If
multiple runs over the data are needed the previous steps are repeated, starting with
the execution of the steering file. During this second run of the steering file, the files
received from the nodes are usually used to train MVCs and to calculate pre-cuts.
At the end of execution the steering file generates a new path, which is again sent to
the nodes.

The FEI uses this Map-Reduce approach; in consequence its training is performed
highly parallel employing up to one-thousand computing nodes at the KEK computing
centre simultaneously.

For the sake of completeness it should be mentioned that the DAQ package implements
a third possibility for distributed computing. It is used to run different parts of a
path on different nodes. In between the parts, modules are added which serialize
(deserialize) the data and send (receives) them through (from) a network socket.
This is similar to the approach used to implement multi-processing in BASF2. The
communication between the event-builder PCs and the high-level trigger farm is
based on this approach, as well as the live monitoring of the data acquisition.

42 Chapter 4. Belle II Analysis Software Framework

Steering File

Merge

Steering File

Merge

Data

Path

Data

Data

Path

Data

Path

Data

Data

Path

MC Data

Node 1 Node 2Master

Figure 4.9.: Map-Reduce approach for distributed computing in BASF2.

5. Full Event Interpretation

The Full Event Interpretation (FEI) is part of the Belle II Analysis Software Frame-
work (BASF2) and implemented in the analysis package. It was the first advanced
analysis technique implemented in BASF2, hence it served as an extensive test of
the whole framework. The implementation of additional features was necessary and
existing code had to be developed further. The modifications were driven by the
main design goals of the FEI: speed, usability and a high degree of automation.

Furthermore, new features were implemented in a general way. In consequence
libraries developed for the FEI like TMVAInterface and VariableManager are al-
ready adopted by other groups for implementing techniques like flavour tagging and
continuum suppression.

The algorithm itself is implemented purely in Python and takes care of:

• reconstructing a user-defined multi-level decay topology;

• training mutually dependent multivariate classifiers (MVCs) for each decay
channel;

• determining sensible channel-specific pre-cuts and particle-specific post-cuts to
reduce combinatorics;

• and generating a document1 summarizing the key performance indicators and
control plots of all decay channels and particles used in the FEI.

The reconstructed decay topology, methods and variables used in the multivariate
classification as well as desired efficiencies and purities of pre-cuts and post-cuts are
defined by the user (see Appendix C).

The multi-level decay topology induces complicated dependencies between the re-
quired BASF2 modules. Therefore, the FEI uses a dependency graph meta-framework
built on top of BASF2 which runs at steering level. It automatically solves the
dependencies and generates the correct BASF2 module path optimized for parallel
processing. The technical details of this framework are discussed in Appendix B.

The BASF2 framework is still under development. The efficiencies and distributions
stated in this thesis serve only illustrating purposes. In particular, at the time of
writing there was no beam-background available, the Monte-Carlo matching code
did not work properly in some corner cases and the track as well as the vertex fitting
was not finished.

1The Full Event Interpretation Report (FEIR)

44 Chapter 5. Full Event Interpretation

5.1. Hadronic, Semileptonic and Inclusive Tagging

As previously described, the FEI automatically reconstructs one out of the two B
mesons in an Υ(4S) decay to recover information about the remaining B meson. In
fact, there is an entire class of analysis methods, so-called tagging-methods, based
on this concept. In the past there were three distinct tagging-methods: hadronic,
semileptonic and inclusive tagging.

Hadronic tagging solely uses hadronic decay channels for the reconstruction. Hence,
the kinematics of the reconstructed candidates are well known and the tagged sample
is very pure. Then again, hadronic tagging is only possible for a tiny fraction of the
dataset on the order of a few per mille.

Semileptonic tagging uses semileptonic B decays. Due to the high branching fraction
of semileptonic decays this approach usually has a higher tagging efficiency. On
the other hand, the semileptonic reconstruction suffers from missing kinematic
information due to the neutrino in the final state of the decay. Hence, the sample is
not as pure as in the hadronic case.

Inclusive tagging combines the four-momenta of all particles in the rest of the event
of the signal-side B candidate. The achieved tagging efficiency is usually one order
of magnitude above the hadronic and semileptonic tagging. Yet the decay topology
is not explicitly reconstructed and cannot be used to discard wrong candidates. In
consequence, the methods suffers from a high background and the tagged sample is
very impure.

The FEI combines the first two tagging-methods: hadronic and semileptonic tag-
ging, into a single algorithm. Simultaneously it increases the tagging efficiency by
reconstructing more decay channels in total. The long-term goal is to unify all three
methods in the FEI. The algorithm presented in this thesis is only the first step in
this direction.

5.2. Hierarchical Approach

The basic idea of the Full Event Interpretation is to reconstruct the particles and
train the MVCs in a hierarchical approach. The approach is depicted in Figure 5.1.
At first the final-state particle candidates are selected and corresponding classification
methods are trained using the detector information. Building on this, intermediate
particle candidates are reconstructed and a multivariate classifier is trained for each
employed decay channel. The MVC combines all information about a candidate into
a single value – the signal-probability. In consequence, candidates from different
decay channels can be treated equally in the following reconstruction steps.

5.2. Hierarchical Approach 45

For instance, the FEI currently reconstructs 15 decay channels of the D0. Afterwards,
the generated D0 candidates are used to reconstruct D∗0 in 2 decay channels. All
information about the specific D0 decay channel of the candidate is encoded in its
signal-probability, which is available to the D∗0 classifiers. In effect, the hierarchical
approach reconstructs 2 · 15 = 30 exclusive decay channels and provides a signal-
probability for each candidate, which makes use of all available information.

Finally, the B candidates are reconstructed and the corresponding classifiers are
trained. The final output of the FEI to the user contains four ParticleLists:
B+:hadronic, B+:semileptonic, B0:hadronic and B0:semileptonic.

Tracks ECLClusters

D
etector
D
ata

e+ µ+ K+ π+

K0
s

γ

F
inal

State
P
articles

π0

J/ψ

D∗0 D∗+ D∗s

Interm
ediate

Stages

B0 B+

D0 D+ Ds

Figure 5.1.: Hierarchical approach of the FEI.

In the remainder of this section the process is explained in detail. All shown control
plots and tables are taken from the generic FEI study in Section 6.1. They serve
only illustrative purposes.

46 Chapter 5. Full Event Interpretation

5.3. Intermediate Cut Determination

A typical event at Belle II contains 12 tracks, hence reconstructing the channel
D0 → K−π+π+π− already yields (

6

2

)2

= 225

D0 candidates, assuming 6 positively and 6 negatively charged tracks. A further
reconstruction D∗+ → D0π+ increases this to

225 ·
(

4

1

)
= 900

D∗+ candidates. Finally, the reconstruction of B0 → D∗−π+π+π− yields

900 ·
(

4

2

)
·
(

3

1

)
= 16200

B0 candidates. On top of that, this is only one out of thousands of exclusive channels
and at most two of these candidates are correct as there are only two B mesons in
an Υ(4S) event. This problem, rooted in factorial growth, is termed combinatorics.
Consequently, it is important to introduce intermediate cuts to reduce combinatorics
in order to save computation time.

Table 5.1 is an extract of the CPU time statistics of the generic FEI study in Section
6.1. The effect of the factorial growth is clearly visible in decay channels with high
multiplicity like D0 → K−π+π+π−π0, which consumed 38 % of the total computation
time.

The FEI uses three types of cuts:

• channel-specific pre-cuts are applied directly during the combination of the
Particle objects and are very fast;

• particle-specific post-cuts are applied after all information about the candidate
from the vertex fitting and the MVC is available;

• and user-cuts are additionally applied before all other cuts to introduce a-priori
knowledge, which is otherwise not easily employable in the highly automated
process.

5.3. Intermediate Cut Determination 47

Table 5.1.: Total CPU time spent in event() calls for each channel. Bars show:
ParticleSelector, ParticleCombiner, ParticleVertexFitter, MCMatching,
TMVAExpert, Other, in this order. Does not include I/O, initalisation,
training, post-cuts etc. Taken from the generic FEI study in Section 6.1

Decay CPU time By module Per (true) Relative
candidate time

π+ 17h54m 1ms (3ms) 0.22%
e+ 16h22m 1ms (3ms) 0.20%
µ+ 16h23m 1ms (3ms) 0.20%
K+ 16h37m 1ms (3ms) 0.21%
γ 12h1m 621µs (1ms) 0.15%
π0 → γ γ 227h47m 21ms (43ms) 2.82%
K0
S → π+ π− 38h31m 4ms (9ms) 0.48%

K0
S → π0 π0 5h31m 816µs (3ms) 0.07%

D0 → K− π+ 13h10m 2ms (11ms) 0.16%
D0 → K− π+ π0 293h17m 38ms (138ms) 3.63%
D0 → K− π+ π0 π0 77h49m 12ms (135ms) 0.96%
D0 → K− π+ π+ π− 336h42m 46ms (194ms) 4.17%
D0 → K− π+ π+ π− π0 3073h41m 526ms (10s) 38.08%
. . .
B+ → D̄0 π+ 4h48m 16ms (238ms) 0.06%
B+ → D̄0 π+ π0 21h20m 3ms (365ms) 0.26%
B+ → D̄0 π+ π+ π− 40h7m 8ms (902ms) 0.50%
. . .
Total 8070h46m 100.00%

48 Chapter 5. Full Event Interpretation

5.3.1. Channel-Specific Pre-Cut

The decay channels of the same particle have different branching ratios and back-
ground contributions. A channel-specific pre-cut is applied during the combination
of each candidate in order to save computing time and to adjust for differences in
the signal-to-background ratio S

B
of the decay channels. The cut values are chosen

so that the cut boundaries are at the same S
B

ratio for each channel. Therefore,
channels with more background receive tighter cuts than clean channels.

The pre-cut variable is configurable. Usually the invariant mass M is used for
intermediate ground-state particles, because its calculation is very fast and signal
candidates are only discarded if they are poorly reconstructed. Figure 5.2 shows
the chosen pre-cuts for two decay channels of the K0

S. The K0
S → π0π0 has a lower

branching fraction and reconstruction efficiency than K0
S → π+π−. In addition,

it suffers from a higher background contribution due to the large amount of π0

candidates in each event. In consequence, the signal to background ratio is worse
and it receives a tighter cut in comparison with K0

S → π+π−.

(a) K0
S → π0π0 (b) K0

S → π+π−

Figure 5.2.: Signal to background ratio over invariant mass and determined channel-
specific pre-cuts for K0

S. Taken from the generic FEI study in Section
6.1

For D∗ (excited D) particles the released energy in the decay Q is used instead of M.
Thus, the uncertainty of the D mass reconstruction does not enter the calculation
and the signal peaks very sharply, which makes the cut more efficient. Figure 5.3
shows the signal and background distributions used to calculate the pre-cuts for
D∗+ → D0π+. Noteworthy is the narrow cut, which discards large amounts of
background while preserving almost all signal candidates.

The beam-constrained mass2 Mbc of the hadronicB candidates is used in an analysis to
extract the signal-fraction on real data, therefore peaking background contributions

2The beam-constrained mass is calculated like the invariant mass, with the energy of the particle
replaced by the beam-energy.

5.3. Intermediate Cut Determination 49

(a) Signal (b) Background

Figure 5.3.: Pre-cut distributions for D∗+ → D0π+. Taken from the generic FEI
study in Section 6.1.

due to channel-dependent cuts on Mbc or correlated quantities must be avoided.
In consequence, the pre-cuts on the hadronic B candidates cannot use kinematic
variables like the invariant mass or the momentum. The calculation of vertex variables
like the distance to the interaction point on the other hand needs a lot of computing
time, hence they are not suitable for fast pre-cuts as well.

Similar to the hadronic case, the cosine of the angle between the B and the Dl(π)-
system, named cos ΘBDl, is used to extract the signal-fraction on real data for
semileptonic B candidates. Hence, a correlation between this quantity and the
applied pre-cuts has to be avoided. Moreover, the distribution of kinematic variables
is very broad for semileptonic B candidates due to the missing neutrino.

Therefore, the pre-cuts of the final B candidates employ the product of the daughter
signal probabilities

∏
σ, which is fast to calculate and avoids a correlation toMbc and

cos ΘBDl. Figure 5.4 shows the signal to background ratio over the product of the
daughter probabilities. Instead of a two-sided cut, only a cut with a lower boundary
is applied. It is evident from the Figure that

∏
σ works well for the hadronic and

the semileptonic case.

5.3.2. Particle-Specific Post-Cut

The post-cut employs all available information about a candidate by cutting on the
signal-probability calculated by the MVC. Since the interpretation of the signal-
probability is the same for all candidates independent of their decay channels the
cut is channel-independent.

It is important to choose this cut tight enough, otherwise one loses a lot of signal
candidates in the consecutive reconstruction steps due to a bad signal-to-noise ratio.

50 Chapter 5. Full Event Interpretation

(a) Semileptonic B+ → D−π+e+ (b) Hadronic B0 → D̄0π+π−

Figure 5.4.: Signal to background ratio for final B candidates. Taken from the generic
FEI study in Section 6.1.

This is especially true for the final-state particles. The post-cuts for intermediate
particles are typically not as tight as the ones for the final-state particles. However, it
is essential to choose a tight cut for π0 and K0

S candidates to reduce combinatorics in
consecutive reconstruction steps, because both particles have a high average number
of candidates per event.

The resulting efficiencies and purities after applied pre- and post-cuts are stated in
Tables 5.3, 5.4 and 5.5 for the final-state, intermediate and B particles, respectively.
They are discussed in more detail below.

5.3.3. User-Cut

The previously described cuts are automatically determined, yet sometimes it is
necessary to apply cuts requiring a-priori knowledge about the employed data or
physics analysis. The FEI allows the user to introduce user-cuts, which are applied
before the automatic cuts are determined and applied.

For instance, usually in a physics analysis one is only interested in well reconstructed
tag-side B mesons. The energy of the B mesons is determined by the beam-energy.
In consequence the difference between the center of mass beam-energy and the
reconstructed center of mass energy of the B meson itself is a measure for the quality
of the reconstruction. Hence, a user-cut for hadronic B candidates on this energy
difference |∆E| < 0.5 GeV makes sense. From the ∆E distribution in Figure 5.5 it
is evident that this cut is very loose.

Furthermore, the beam-constrained mass Mbc is used to extract the signal-fraction
on data, therefore the automatic cuts avoid modifying the shape of this quantity.
However, usually only the region above 5.2 GeV is considered for this extraction.

5.3. Intermediate Cut Determination 51

deltaE (GeV)
-0.4 -0.2 0 0.2 0.40

2000

4000

6000

8000

10000

12000

14000

Figure 5.5.: Distribution of ∆E for signal in green and background in blue for B+.
The signal and background yields are normalized to the same order of
magnitude.

Hence, a user-cut for hadronic B candidates on the beam-constrained mass Mbc >
5.2 GeV makes sense as well. See Figure 5.10.

Besides, the user-cut could be used to introduce cuts to suppress continuum back-
ground. For instance, D mesons from continuum background exhibit a greater
momentum in the center of mass frame than D mesons from an Υ(4S) event. The
oldFull Reconstruction (FR) applied a cut at pcms < 2.6 GeV, to suppress continuum
events. Currently the FEI does not employ continuum events in its training and
does not use this cut.

Finally, the user-cut is used to enforce the constraint that no additional tracks are
left after the signal-side and tag-side reconstruction. From Figure 5.6 it is evident
that this cut is a very strong constraint, which removes large amounts of background,
while preserving nearly all signal candidates.

The FEI automatically exploits this constraint during the reconstruction of the
tag-side if the user provides his analysis-specific signal-side selection. Consequently,
the computation time for events with high multiplicity is drastically reduced and
at the same time the MVCs are adjusted to the specific signal-side selection of the
analysis.

52 Chapter 5. Full Event Interpretation

Figure 5.6.: Remaining tracks in the rest of event of the final Υ(4S) candidate. The
candidates are reconstructed from one million signal, generic charged,
generic mixed, continuum cc̄, continuum ss̄, continuum ss̄, amd con-
tinuum ss̄ Monte Carlo data. The signal component is scaled up by a
factor of ten. Generated using the generic FEI study in Section 6.1.

5.4. Multi-Level Decay Topology Reconstruction 53

5.4. Multi-Level Decay Topology Reconstruction

This section describes the hierarchical reconstruction in detail. Currently over 100
distinct channels are automatically reconstructed. This amounts to over 12000
exclusive B decay channels. The resulting covered branching fractions are shown in
Table 5.2.

Table 5.2.: Covered branching fractions by the generic FEI study in Section 6.1. The
inclusive is the sum of the branching fractions of all used decay channels.
The exclusive branching fractions take the covered branching fractions of
the daughter particles into account.

Particle # decay channels Branching Fraction in %
Inclusive Exclusive

π0 1 98.8 98.8
K0
S 2 99.7 99.0

D0 15 31.4 31.0
D∗0 2 100 30.7
D+ 11 22.2 22.0
D∗+ 3 100 28.0
D+
s 10 6.6 6.5

D∗+s 2 100 6.5
J/psi 2 11.9 11.9

B+ (semileptonic) 21 17.4 5.2
B+ (hadronic) 8 9.0 1.7

B0 (semileptonic) 19 15.3 4.0
B0 (hadronic) 8 9.8 1.1

Final-State Particles

At first the Particle data-objects representing the final-state particle hypotheses
are generated for each Track, ECLCluster and KLMCluster.

Subsequently, the Particles are gathered up into ParticleLists. Usually only
e+, µ+, π+, K+, γ are considered, because B decay channels containing baryons like
p (protons) and n (neutrons) in their final-state have only a small branching-fraction.
Moreover, the energy and momentum of K0

L particles are measured poorly, therefore
they are not suitable for hadronic reconstruction.

54 Chapter 5. Full Event Interpretation

A post-cut is applied on the signal-probability of each final-state particle candidate.
The efficiency and purity of the final-state particles before and after the applied cut
are shown in Table 5.3. The loss in signal-efficiency is small compared to the gain in
purity. The efficiency is normalized by the amount of primary particles at generator
level. Therefore, muons produced by pions decaying in-flight are not considered in
the denominator of the muon efficiency, in consequence the efficiency for muons is
above 100 %.

Furthermore, these efficiencies are likely to increase in the future, due to expected
improvements in the tracking software. In particular, the VXD standalone tracking,
which recovers low-momentum tracks, is not finished at the time of writing.

Table 5.3.: Final-state particle efficiency and purity before and after the applied
post-cut. Calculated during the training of the generic FEI study in
Section 6.1.

Final-state Efficiency in % Purity in %
particle detector post-cut detector post-cut

π+ 82.62 82.25 68.964 84.866
e+ 88.88 80.23 5.972 64.274
µ+ 182.79 147.37 8.643 35.794
K+ 80.36 78.44 12.988 67.082
γ 50.30 50.37 54.849 54.934

Intermediate Particles

The standard FEI configuration reconstructs the following intermediate particles:
π0, K0

S, J/ψ, D0, D0∗, D+, D+∗, D+
s and D+∗

s .

Intermediate resonances like K∗, ρ and ω are not explicitly reconstructed, because it
is not easy to account for possible interferences between resonant and non-resonant
decays with the same final state. Instead it is assumed that the Monte Carlo data uses
the correct Dalitz models to describe these decays, hence information about the Dalitz
structure of decays is automatically exploited to separate signal and background
candidates by the MVCs if the necessary kinematic information is provided.

Each decay channel of an intermediate particle is reconstructed separately. All
generated candidates for the channel are stored in a channel-specific ParticleList.
During the combination of the daughter lists a fast channel-specific pre-cut is applied.
Afterwards, the Monte Carlo truth of the remaining candidates is matched.

5.4. Multi-Level Decay Topology Reconstruction 55

Finally, all channel-specific ParticleLists of a particle are combined into a single
ParticleList and a particle-specific post-cut is applied.

The efficiencies and purities of all intermediate particles are shown in Table 5.4.
Noteworthy are the tight post-cuts for π0 and K0

S, which increase the purity by a
factor 6 and 15, respectively. Again the efficiencies are likely to increase in the future,
due to better final-state particle efficiencies and improved vertexing. For instance,
the vertexing for K0

S will be improved by a dedicated vertex finding algorithm, which
takes advantage of the peculiar vertex structure of the K0

S.

Table 5.4.: Per-particle efficiency and purity before and after the applied pre- and
post-cut. Calculated during the training of the generic FEI study in
Section 6.1.

Particle Efficiency in % Purity in %
recon. pre-cut post-cut recon. pre-cut post-cut

π0 89.06 68.59 49.37 2.508 5.534 30.912
K0
S 47.44 45.05 34.85 0.745 3.969 62.213

D0 21.75 19.45 13.69 0.018 0.098 5.825
D+ 14.66 11.62 8.15 0.010 0.100 5.600
D∗+ 5.53 5.10 5.08 0.087 15.116 16.808
D∗0 8.45 8.40 4.99 0.059 0.121 3.808
D+
s 9.77 6.93 4.42 0.009 0.099 4.149

D∗+s 4.07 4.03 2.31 0.086 0.178 3.739
J/ψ 9.82 8.69 8.69 0.256 22.177 22.177

Final B candidates

The final charged B+ and neutral B0 mesons are reconstructed separately in hadronic
and semileptonic channels. There is no fundamental difference to the reconstruction
of an intermediate particle. However, an additional user-cut is applied in the hadronic
case to restrict the parameter space to the region of interest 5.2 GeV < Mbc and
|∆E| < 0.5 GeV.

The final efficiencies are stated in Table 5.5. In the hadronic case roughly half of the
maximally reachable efficiency given by the covered exclusive branching fraction in
Table 5.2 is achieved. In the semileptonic case roughly a third. Hence, the loss of
signal events due to the applied cuts is acceptable in comparison with the savings of
computation time.

56 Chapter 5. Full Event Interpretation

Table 5.5.: Final tagging efficiency and purity before and after the applied user-
and pre-cut. Calculated during the training of the generic FEI study in
Section 6.1.

Particle Efficiency in % Purity in %
recon. user-cut pre-cut recon. user-cut pre-cut

B+ (hadronic) 0.87 0.80 0.76 0.002 0.120 0.411
B+ (semileptonic) 1.34 1.34 1.25 0.116 0.116 0.488
B0 (hadronic) 0.60 0.55 0.52 0.004 0.354 0.911

B0 (semileptonic) 1.60 1.60 1.50 0.064 0.064 0.264

5.5. Multivariate Analysis Method Training

For each final-state particle and each decay channel an MVC is trained and applied.
In general a candidate is considered signal if it is reconstructed correctly ignoring
intermediate resonances and final-state radiation. Semileptonic decay channels
additionally allow for missing neutrinos. The secondary vertices of all candidates
are automatically fitted if the training contains Variables which require a previous
vertex fit. The classifier outputs of all daughter particles are included as Variables
in the training of the mother particle. Therefore, the training of the MVCs follows
the same hierarchical approach as the reconstruction.

In this thesis the speed-optimized stochastic gradient boosted decision tree implemen-
tation was used as MVC method. The NeuroBayes package was unfortunately not
applicable due to main-memory restrictions at the KEK computing centre. This re-
striction will be circumvented in the near future by using a custom-built NeuroBayes
version with less memory consumption.

5.5.1. Final-State Particles

The MVCs for the charged final-state particles receive: the PID information from
the TOP, ARICH, CDC and ECL sub-detectors; kinematic variables in the center of
mass system and the laboratory frame; and the p-value calculated by the track-fit.
The photon MVC contains information about the shape and magnitude of the ECL
cluster and kinematic variables.

Currently each charged final-state particle is trained against all other charged FSPs
as background. Yet one could try to improve the separation further by performing
a multi-class classification using error-correction output-codes or by separating the
particles pairwise from one another. However, the achieved separation for the charged

5.5. Multivariate Analysis Method Training 57

FastBDT response
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

dx/
(1

/N
) d

N

0

5

10

15

20

25

30

35
Signal (test sample)

Background (test sample)

Signal (training sample)

Background (training sample)

Kolmogorov-Smirnov test: signal (background) probability = 0.423 (0.02)

U
/O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

TMVA overtraining check for classifier: FastBDT

Figure 5.7.: Signal and background distribution of the K MVC. Taken from the
generic FEI study in Section 6.1.

final-state particles is already excellent, as can be seen in the example of the kaon
MVC in Figure 5.7.

In contrast, the γ MVC has more potential for improvement, in particular since
the current training was done without beam-background. Hence, more detailed
information about the shape and isolation of the corresponding ECL cluster should
be provided to the MVC in the future. Figure 5.8 shows the test-statistic produced
by the γ MVC.

5.5.2. Intermediate Particles

For each decay channel of an intermediate particle a separate MVC is trained. Each
MVC incorporates kinematic variables, vertex variables and the signal-probabilities
of the daughter particles. Additionally, one can include the invariant mass and decay
angle of pairs of daughter particles in order to implicitly take resonances like K∗ ,
ρ and ω into account. However, this was not utilized in this thesis, because it was
not clear if MC data already described the distribution of these variables correctly.
In the future MC data will use the correct Dalitz models to simulate intermediate
resonances and consequently the MVCs will be able to take advantage of the peculiar
kinematics of decays including intermediate resonances.

In general the intermediate MVCs separate well if enough signal candidates are
available. If less than one thousand signal candidates are available for training, the

58 Chapter 5. Full Event Interpretation

FastBDT response
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

dx/
(1

/N
) d

N

0

0.5

1

1.5

2

2.5

3

3.5

4 Signal (test sample)

Background (test sample)

Signal (training sample)

Background (training sample)

Kolmogorov-Smirnov test: signal (background) probability = 0.001 (0.007)

U
/O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

TMVA overtraining check for classifier: FastBDT

Figure 5.8.: Signal and background distribution of the γ MVC. Taken from the
generic FEI study in Section 6.1.

channel is automatically discarded. Usually the most important variables are the
distance of the secondary vertex to the IP, the p-value of the vertex fit, and the
daughter probabilities. Yet for some channels like D0 → K−π+π0π0, which include
multiple π0 the vertex fit cannot be performed, due to restrictions in the current
implementation of the vertex fitter. Therefore the corresponding MVCs can be
further improved. Moreover, the vertex fitter is not well optimized at the moment
and consumes most of the computation time. Both problems are evident from Table
5.1.

Because the different decay channels of daughter particles are not distinguished in
the training, it is important that the signal-probability of all daughters is really a
probability. Hence, the classifier output of each channel is transformed to ensure this
property as described in Section 4.3.3.

5.5.3. Final B candidates

As mentioned earlier, the beam-constrained mass is used to calculate the fraction
of correctly reconstructed B candidates from hadronic decay channels on data. On
that score, it is important to avoid correlations between the signal probability and
the beam-constrained mass Mbc. Hence, variables which are strongly correlated to
Mbc are not included in the training of the MVC.

Typical examples for correlated variables are: the momentum of the particle, decay
angles of daughter particles, and invariant mass of combinations of daughter particles.

5.5. Multivariate Analysis Method Training 59

Figure 5.9.: Purity over classifier output after the transformation of the individual
classifier outputs of each channel to a probability. Taken from the generic
FEI study in Section 6.1.

Therefore, the MVCs include only vertex variables, ∆E and some decay angles which
are not correlated to Mbc. Similarly, the MVCs for the semileptonic channels have to
avoid variables correlated to cos ΘBDl.

In this thesis only a subset of the variables used in the FR are utilized. More detailed
studies are needed to discover variables which are uncorrelated to Mbc and cos ΘBDl,
and are well described in MC data.

The final distribution of Mbc and cos ΘBDl is shown for different cuts on the signal-
probability in Figure 5.10 and 5.11.

In the Mbc plot the signal peaks at the nominal B mass. The background covers the
whole range up to the kinematic limit at 5.29 GeV. The Mbc plots exhibit a clear
peaking background component. This component was extensively studied. It is not
caused by a correlation betweenMbc and the employed variables in the MVC training.
A cross-check training using the same variables to predict Mbc showed no significant
correlations. Neither is it caused by intermediate cuts, because

∏
σ, which is used

to perform the intermediate cuts at B level, has no correlation to Mbc.

Detailed investigations showed that the peak consists of B candidates which miss a
π0 or have a misidentified track. This component was not visible in previous studies
using the FR, because the FR was always trained on generic and continuum events.
The continuum background evens out and covers up the peak. In contrast the FEI
does not utilize continuum events in its training.

Fortunately, the peaking component can successfully be suppressed by applying a
tighter cut on the signal-probability of the candidate, which is evident from the plots

60 Chapter 5. Full Event Interpretation

in Figure 5.10. Furthermore, the peaking component becomes less visible if the FEI
is applied to data including continuum, in particular real-data.

However, this raises the question if the beam-constrained mass is the best way to
extract the signal-fraction on real-data. Other methods using well known control-
channels similar to the signal-channel may be superior, especially because the MVC
methods could use a lot more information if the limitation to variables independent
of Mbc is dropped. Further studies are necessary to clarify this point.

The signal component in the cos ΘBDl peaks between −1 and 1 under the assumption
that only one massless particle was not included in the reconstruction of the B
candidate. In contrast, background candidates are not subjected to this constraint.
As can be seen from Figure 5.11 the semileptonic candidates are not as pure as the
hadronic candidates, even if a very tight signal-probability cut is applied.

In summary, the MVCs at B level will be further improved in the near-future by
adopting all variables already employed in the FR and maybe by discarding the
limitation to variables independent of Mbc.

5.5. Multivariate Analysis Method Training 61

5.23 5.24 5.25 5.26 5.27 5.28 5.290

10000

20000

30000

40000

50000

60000

70000

80000

90000 All: Prob > 0.01
Background: Prob > 0.01
All: Prob > 0.1
Background: Prob > 0.1
All: Prob > 0.5
Background: Prob > 0.5

Mbc (GeV)

(a) B0

5.23 5.24 5.25 5.26 5.27 5.28 5.290

20

40

60

80

100

120

140

160

180
310×

All: Prob > 0.01
Background: Prob > 0.01
All: Prob > 0.1
Background: Prob > 0.1
All: Prob > 0.5
Background: Prob > 0.5

Mbc (GeV)

(b) B+

Figure 5.10.: Beam-constrained mass Mbc of all hadronic B candidates after the
pre-cut. Dashed lines correspond to background only. Solid lines to all
candidates. Taken from the generic FEI study in Section 6.1.

62 Chapter 5. Full Event Interpretation

-10 -5 0 5 100

100

200

300

400

500

600

700

800

900
310×

All: Prob > 0.01
Background: Prob > 0.01
All: Prob > 0.1
Background: Prob > 0.1
All: Prob > 0.5
Background: Prob > 0.5

cosThetaBDl

(a) B0

-10 -5 0 5 100

200

400

600

800

1000

1200

310×
All: Prob > 0.01
Background: Prob > 0.01
All: Prob > 0.1
Background: Prob > 0.1
All: Prob > 0.5
Background: Prob > 0.5

cosThetaBDl

(b) B+

Figure 5.11.: cosThetaBDl of all semileptonic B candidates after the pre-cut. Dashed
lines correspond to background only. Solid lines to all candidates. Taken
from the generic FEI study in Section 6.1.

5.6. Automatic Reporting 63

5.6. Automatic Reporting

During the training the algorithm generates automatically a Full Event Interpretation
Report (FEIR). A FEIR summarizes the key performance indicators and control
plots of every particle and decay channel used in the reconstruction. In particular it
includes:

• configuration of all particles;

• efficiency and purity of each particle before any cuts are applied;

• efficiency and purity of each particle after the user-defined cut;

• efficiency and purity of each particle and decay channel after channel-specific
pre-cuts;

• efficiency and purity of each particle after particle-specific post-cuts;

• signal, background and S
B
distribution of the pre-cut variable for each decay

channel;

• calculated channel-specific pre-cuts;

• ROC and overtraining control plots for each MVC training;

• used Variables with ranking and description for each MVC training;

• diagonal control plots for signal probability of each particle and decay channel;

• calculated particle-specific post-cuts;

• beam-constrained mass plots for B mesons reconstructed from hadronic decay
channels;

• cosThetaBDl plots for B mesons reconstructed from semileptonic decay chan-
nels;

• and CPU statistics partitioned by decay channels and BASF2 modules.

In addition, the automatic reporting has a built-in email notification system, which
informs the user via email about the completion of the training and the achieved
performance.

6. Training and Application of the
Full Event Interpretation

The FEI has to be trained on Monte Carlo data and is applied subsequently on real
data after an analysis-specific signal-side selection. There are three different types of
events one has to consider in the training and application of the FEI:

• double-generic events – e+e− → Υ(4S)→ BB̄ with equal branching fractions
for charged and neutral B pairs, where both B mesons decay generically1;

• continuum events – e+e− → cc̄, ss̄, dd̄, uū;

• and signal events – e+e− → Υ(4S)→ BB̄ where one B decays generically and
the other decays in an analysis-specific signal-channel like B+ → τ+ντ .

The final classifier output for the Btag mesons has to identify correctly reconstructed
Btag mesons in the signal events of the analysis and reject background Btag mesons
from double-generic, continuum and signal events efficiently.

To accomplish a high efficiency for correctly reconstructed Btag in signal events
a training on pure signal Monte Carlo after the signal-side selection would be
appropriate, but in this scenario background components from double-generic and
continuum events would not be considered in the training and therefore could not be
rejected efficiently. On the other hand, a training on double-generic and continuum
Monte Carlo after signal-side selection suffers from low statistics especially for
correctly reconstructed Btag mesons, because the constraint that the reconstructed
candidate has to use all remaining tracks is very strict. Moreover, it is not clear
if D mesons from continuum background should be considered as signal in the
corresponding trainings.

In this thesis the background components are factorized into background from Υ(4S)
decays and from continuum events. It is assumed that the continuum events can be
suppressed efficiently with the ContinuumSuppression module, therefore no Monte
Carlo data for continuum events is used in the training of the FEI. Further studies
have to be performed to test this assumption.

The FR of Belle was trained on double-generic and continuum Monte Carlo without
considering the signal-side selection. In consequence, the background distributions

1The B mesons decay in all possible final states with the appropriate branching fractions.

66 Chapter 6. Training and Application of the Full Event Interpretation

were fundamentally different in training and application. For example, most of the
CPU time in the training was used for events with more than 12 tracks, yet these
events never led to a valid Btag meson in an analysis with only one track on the
signal-side like B → τ ν̄τ .

Two example trainings of the FEI were performed and are discussed in the following
sections. The first training was done on double-generic Monte Carlo without signal-
side selection, which corresponds to the FR of Belle. The second training was
optimized for the signal-side B → τ ν̄τ and trained on double-generic and signal
Monte Carlo, in order to get enough signal statistics despite the no-remaining-tracks
constraint.

Both studies were performed without beam-background, because unfortunately there
was no usable beam-background available. Furthermore, there are known problems
in the MC-matching code of BASF2 which can lead to multiple correct tag-side
candidates. The effect on the stated efficiencies is of the order of 5 - 10 %. In
consequence, the studies below are preliminary. Both FEI trainings were applied to
an independent test-sample of one million:

• double-generic charged B+B− MC;

• double-generic mixed B0B̄0 MC;

• continuum cc̄ MC;

• continuum ss̄ MC;

• continuum dd̄ MC;

• continuum uū MC;

• and B → τ(→ µντ ν̄µ)ν̄τ signal MC data events.

6.1. Generic Full Event Interpretation

For the generic study, the FEI was trained on 100 million double-generic BB̄ events.
The training took three days at the KEK computing centre. In total BASF2 consumed
8070 hours of computing time. Additionally, the training of the MVCs consumed 6
hours, however this is the raw time consumed by the FastBDT algorithm. Loading
and preprocessing the training-data via TMVA required additional computing time
in the same order of magnitude.

Due to the hierarchical approach it is necessary to run multiple times over the
training-data. The presented training required 14 iterations, however all interim
results like ParticleLists, vertex fit results and calculated signal-probabilities were

6.1. Generic Full Event Interpretation 67

cached between the runs. As a result the training required 13 terabyte of temporary
storage. Unfortunately, this amount of free space was only available on an hierarchical
storage management (HSM) data-storage. As a consequence, most of the time was
wasted while waiting for the magnetic tape drives.

No analysis-specific signal-side selection was used. Hence, the performance can be
compared to the FR. The final tagging efficiencies on the test-sample are shown
in Table 6.1. The calculation of the efficiencies and purities was restricted to the
signal-region: Mbc > 5.27 for hadronic and | cos ΘBDl| < 1 for semileptonic B+

candidates. All 8 semileptonic B+ channels and 19 out of 21 hadronic B+ channels
were employed by the FEI. The remaining two hadronic channels were discarded
because of low statistics.

Table 6.1.: Tagging efficiency on the independent test-sample in percent calculated
in the signal-region.

Signal MC Charged Generic MC Overall

Hadronic 0.81 0.71 0.74
Semileptonic 1.13 0.99 1.03

The tagging efficiency on signal MC is higher than on generic charged MC. This
demonstrates the influence of the signal-side on the tag-side efficiency. The analysis-
specific FEI training can take this influence into account. The overall efficiency is two
to three times higher compared to the FR. However, this result is preliminary, further
studies have to be conducted, after the known problems in the BASF2 frameworks
have been fixed, to confirm these results.

The resulting Mbc and cos ΘBDl plots on the test-sample are shown in Figure 6.1.
The peaking background component is not as prominent as in the training data.
Furthermore, it is evident that the continuum background components can be
efficiently suppressed by the MVC despite their absence in the training data.

68 Chapter 6. Training and Application of the Full Event Interpretation

Mbc (GeV)
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

C
an

di
da

te
s

pe
r 1

 M
eV

0

0.5

1

1.5

2

2.5
310×

signal from signal Monte Carlo
signal from generic charged Monte Carlo
background from signal Monte Carlo
background from generic charged Monte Carlo
background from generic mixed Monte Carlo
background from continuum uubar Monte Carlo
background from continuum ddbar Monte Carlo
background from continuum ssbar Monte Carlo
background from continuum ccbar Monte Carlo

(a) Hadronic candidates: Mbc distribution with a purity of 50 % and a tagging
efficiency of 0.35 %.

 CosThetaBDl
-4 -2 0 2 4 6 8 10

 C
an

di
da

te
s

pe
r

0.
5

0

2

4

6

8

10

310×

signal from signal Monte Carlo

signal from generic charged Monte Carlo

background from signal Monte Carlo

background from generic charged Monte Carlo

background from generic mixed Monte Carlo

background from continuum uubar Monte Carlo

background from continuum ddbar Monte Carlo

background from continuum ssbar Monte Carlo

background from continuum ccbar Monte Carlo

(b) Semileptonic candidates: cos ΘBDl distribution with a purity of 32 % and a
tagging efficiency of 0.35 %.

Figure 6.1.: Distribution of final B+ candidates calculated on the independent test-
sample.

6.2. Specific Full Event Interpretation 69

6.2. Specific Full Event Interpretation

The specific FEI study investigates the gain in performance due to consideration of
an analysis-specific signal-side selection. The rare tauonic decay

B → τντ

↪→ µντνµ

was chosen as signal-side and the corresponding signal-side selection path was specified
in the FEI configuration:

1 selectParticle(’mu+’, ’muid > 0.6 and nTracks <= 12’)
2 reconstructDecay(’tau+ -> mu+’)
3 reconstructDecay(’B+:sig -> tau+’)
4 matchMCTruth(’B+:sig’)
5 buildRestOfEvent(’B+:sig’)

The FEI was trained on 40 million double-generic BB̄ and 20 million signal events.
Thereby only the rest of event of the Bsig candidates were considered in the recon-
struction. In particular, events with more than 12 tracks were immediately discarded,
because no exclusive B decay channel with a multiplicity of 11 or more tracks was
considered in the training. Hence, it is not possible to reconstruct a valid2 Υ(4S)
candidate in these events.

In addition, a user-cut for the Btag candidates was applied, which required that the
candidate results in a valid Υ(4S) together with the signal-side selection. This cut
discarded nearly all candidates from double-generic BB̄ events, therefore it is crucial
to include enough signal Monte Carlo events to obtain a reasonable statistic for the
training of the B classifiers.

The training took two days at the KEK computing centre. In total BASF2 consumed
only 585 hours of computing time and the training of the MVCs only 3 hours. Like
in the generic FEI study, the HSM data-storage was the limiting resource in terms
of training duration, yet the specific FEI training required only 1.5 terabyte of free
space for caching. To summarize, the computing time and the required storage space
is reduced by one order of magnitude due exploitation of the signal-side selection.

Figure 6.2 shows Mbc and cos ΘBDl distributions for the hadronic and semileptonic
B+ candidates respectively. Neutral B0 were automatically discarded during the
training of the FEI due to low statistics after the user-cut. This behaviour was
expected and means that background from neutral B0 can be efficiently suppressed
by the user-cut. Since only 20 million signal events were used for the training, only 9
out of 21 hadronic B+ channels were successfully trained and employed by the FEI.

70 Chapter 6. Training and Application of the Full Event Interpretation

cosThetaBetweenParticleAndTrueB
-10 -5 0 5 100

5000

10000

15000

20000

25000

30000
All: Prob > 0.01
Background: Prob > 0.01
All: Prob > 0.1
Background: Prob > 0.1
All: Prob > 0.5
Background: Prob > 0.5

(a) Distribution of cos ΘBDl of all semileptonic B+ candidates.

5.23 5.24 5.25 5.26 5.27 5.28 5.290

1000

2000

3000

4000

5000

6000

7000

8000 All: Prob > 0.01
Background: Prob > 0.01
All: Prob > 0.1
Background: Prob > 0.1
All: Prob > 0.5
Background: Prob > 0.5

Mbc (GeV)

(b) Beam-constrained mass Mbc distribution of all hadronic B+ candidates.

Figure 6.2.: Distribution of final B+ candidates after the pre-cut calculated on the
training-data. Dashed lines correspond to background only, whereas
solid lines correspond to all candidates.

6.2. Specific Full Event Interpretation 71

The remaining channels were discarded because of low statistics. In contrast, all 8
semileptonic B+ channels were successfully trained.

The user-cut reduces the background by two to three orders of magnitude. A
considerable amount of signal from double-generic charged events is also discarded.
Yet these candidates would be rejected anyway later in the analysis, because one
is only interested in tag-candidates which are compatible with the signal signature
of the analysis. In consequence combinatorics are drastically reduced and the B
classifiers exhibit a better performance, because they are specifically trained to
identify tag-candidates, which are usable in the analysis.

Besides, the classifiers of the intermediate particles also exhibit a better performance,
due to the absence of background from high multiplicity events with more than 12
tracks. Hence, the specific training has a higher efficiency even before applying the
cuts on the final B signal-probability, because the post-cuts on the intermediate
candidates are more efficient.

The final tagging efficiencies on the test-sample are shown in Table 6.2, Again
the calculation of the efficiencies and purities was restricted to the signal-region:
Mbc > 5.27 for hadronic and | cos ΘBDl| < 1 for semileptonic B+ candidates. Yet
the constraint to candidates which lead to a valid Υ(4S) was not applied, to obtain
distributions and efficiencies which are comparable to the generic FEI training.

Table 6.2.: Tagging efficiency on the independent test-sample in percent calculated
in the signal-region.

Signal MC Charged Generic MC Overall

Hadronic 0.82 0.72 0.75
Semileptonic 1.26 1.11 1.16

The resulting Mbc and cos ΘBDl plots on the test-sample are shown in Figure 6.3.
They look very similar to the generic case, however for the same efficiency in the
signal region their purity is worse, because as, already mentioned, the constraint to
candidates which lead to a valid Υ(4S) was not applied. The effects of this constraint
is investigated in the next section.

2A Υ(4S) candidate is considered as valid if its rest of event contains no tracks.

72 Chapter 6. Training and Application of the Full Event Interpretation

5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

C
an

di
da

te
s

pe
r 1

 M
eV

0

0.5

1

1.5

2

2.5

310×
signal from signal Monte Carlo
signal from generic charged Monte Carlo
background from signal Monte Carlo
background from generic charged Monte Carlo
background from generic mixed Monte Carlo
background from continuum uubar Monte Carlo
background from continuum ddbar Monte Carlo
background from continuum ssbar Monte Carlo
background from continuum ccbar Monte Carlo

Mbc (GeV)

(a) Hadronic candidates: Mbc distribution with a purity of 43 % and a tagging
efficiency of 0.35 %.

 CosThetaBDl
-4 -2 0 2 4 6 8 10

 C
an

di
da

te
s

pe
r

0.
5

0

2

4

6

8

10

12

14

16

18

310×

signal from signal Monte Carlo

signal from generic charged Monte Carlo

background from signal Monte Carlo

background from generic charged Monte Carlo

background from generic mixed Monte Carlo

background from continuum uubar Monte Carlo

background from continuum ddbar Monte Carlo

background from continuum ssbar Monte Carlo

background from continuum ccbar Monte Carlo

(b) Semileptonic candidates: cos ΘBDl distribution with a purity of 19 % and a
tagging efficiency of 0.35 %.

Figure 6.3.: Distribution of final B+ candidates calculated on the independent test-
sample.

6.3. Comparison of generic and specific FEI study 73

6.3. Comparison of generic and specific FEI study

The number of correctly reconstructed Υ(4S) in the signal MC data sample was
chosen as the key performance indicator to compare both studies. In contrast, to
the previous sections the efficiency of the signal-side selection εsig = 65 % enters
the overall efficiency of the correctly reconstructed Υ(4S). In addition, candidates
with remaining tracks in their rest of event are discarded. This cut has an efficiency
of εcut,had = 87 % and εcut,sem = 90 % for hadronic and semileptonic candidates
respectively.

The ROC curves in Figure 6.4 show the efficiency and purity of the reconstructed
Υ(4S) as a function of the signal-probability of the Btag meson. The curves were
calculated on the independent test-sample. The restriction to valid Υ(4S) with no
remaining tracks in their respective rest of event was applied for both studies.

It is noteworthy that both generic FEI and specific FEI have roughly the same
hadronic tagging efficiency, yet the specific FEI could not take advantage of all
available hadronic B decay channels due to low statistics. Thus, the hadronic tagging
efficiency of the specific FEI can be further improved by using more signal MC data
in the training. The semileptonic tagging efficiency is higher for the analysis-specific
training.

However, in both studies the final reconstruction efficiencies for Υ(4S) is lower
than expected from the tag-side and signal-side efficiencies. This effect was not
investigated yet.

Figures 6.5 and 6.6 show the distribution of the signal-probability fo the Btag meson
on the independent test-sample in the specific and generic training respectively.
It is evident that the analysis-specific training exhibits a better performance for
signal-events. Furthermore, the specific FEI requires roughly one order of magnitude
less computation time and temporary storage space.

In conclusion, the analysis-specific training is superior to the generic training in
terms of computation time, storage space and tagging efficiency.

74 Chapter 6. Training and Application of the Full Event Interpretation

Purity [%]
0 20 40 60 80 100

E
ffi

ci
en

cy
 [%

]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Generic FEI
Specific FEI

(a) Semileptonic B channels.

Purity [%]
0 20 40 60 80 100

E
ffi

ci
en

cy
 [%

]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Generic FEI
Specific FEI

(b) Hadronic B channels.

Figure 6.4.: Comparison of the ROC curves calculated on the independent test-sample.
Each point represents the efficiency and purity of the reconstructed
Υ(4S) mesons as a function of the cut on the signal-probability of
the tag-side B mesons. The efficiency corresponds to the fraction of
correctly reconstructed Υ(4S) mesons in the signal events. The specific
FEI is superior to the generic FEI even though its training sample
was smaller and consequently it employed less hadronic channels in the
reconstruction.

6.3. Comparison of generic and specific FEI study 75

 Signal Probability
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 C
an

di
da

te
s

pe
r

0.
1

0

2

4

6

8

10

12

14

310×
signal from signal Monte Carlo
background from signal Monte Carlo
background from generic charged Monte Carlo
background from generic mixed Monte Carlo
background from continuum uubar Monte Carlo
background from continuum ddbar Monte Carlo
background from continuum ssbar Monte Carlo
background from continuum ccbar Monte Carlo

(a) Specific FEI

 Signal Probability
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 C
an

di
da

te
s

pe
r

0.
1

0

2

4

6

8

10

12

14

16

18

310×
signal from signal Monte Carlo
background from signal Monte Carlo
background from generic charged Monte Carlo
background from generic mixed Monte Carlo
background from continuum uubar Monte Carlo
background from continuum ddbar Monte Carlo
background from continuum ssbar Monte Carlo
background from continuum ccbar Monte Carlo

(b) Generic FEI

Figure 6.5.: Hadronic signal probability output distribution.

76 Chapter 6. Training and Application of the Full Event Interpretation

 Signal Probability
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 C
an

di
da

te
s

pe
r

0.
1

0

1

2

3

4

5

6

7

310×
signal from signal Monte Carlo
background from signal Monte Carlo
background from generic charged Monte Carlo
background from generic mixed Monte Carlo
background from continuum uubar Monte Carlo
background from continuum ddbar Monte Carlo
background from continuum ssbar Monte Carlo
background from continuum ccbar Monte Carlo

(a) Specific FEI

 Signal Probability
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 C
an

di
da

te
s

pe
r

0.
1

0

2

4

6

8

10

12

310×
signal from signal Monte Carlo
background from signal Monte Carlo
background from generic charged Monte Carlo
background from generic mixed Monte Carlo
background from continuum uubar Monte Carlo
background from continuum ddbar Monte Carlo
background from continuum ssbar Monte Carlo
background from continuum ccbar Monte Carlo

(b) Generic FEI

Figure 6.6.: Semileptonic signal probability output distribution.

7. Summary

The FEI combines hadronic and semileptonic tagging into a joint method and offers
the unique possibility to be trained on an analysis-specific signal-side selection. This
analysis-specific optimization reduces the required computation time and storage
space by one order of magnitude. Furthermore, it improves the final efficiency and
purity because the training of the multivariate classifiers take constraints arising
from the signal-side into account.

The FEI was the first advanced analysis method implemented in the BASF2 frame-
work and had a great impact on the code basis. Several libraries originally developed
for the FEI are already adopted by other groups. Many analysis modules were
redesigned and optimized.

First preliminary performance studies indicate a fair improvement in the tagging
efficiency with respect to the FR. Consequently, the FEI will play a major role in
future measurements of decays including neutrinos at Belle II.

Improvements like:

• using advanced vertex finding algorithms provided by the RAVE package [37]
to reduce combinatorics;

• discarding D candidates which won’t lead to a valid Υ(4S) candidate;

• signal-fraction extraction using dedicated control channels instead of Mbc and
cos ΘBDl;

• reconstructing π0 candidates from single photons;

• reconstructing D candidates from semileptonic decay channels;

• and determining the four-momentum of incompletely reconstructed B candi-
dates using the known nominal mass of intermediate particles

are under consideration, and are already anticipated in the design of the FEI algorithm.
Configuration details like hyper-parameters and variables used in the multivariate
analysis methods, efficiency and purity limits for intermediate cuts as well as used
channels and employed Monte Carlo data are not fixed yet and will be optimized in
the future. A best candidate selection was already implemented but not employed in
this thesis. In addition, the influence of continuum and beam-background on the
performance will be studied, as soon as the continuum suppression algorithm and
the needed Monte Carlo data become available.

8. Acknowledgment

First of all, I thank Christian Pulvermacher, who is responsible for the ongoing
development of the BASF2 framework and co-author of the FEI. The implementation
of integral parts of the FEI was only possible due to his creative programming skills.
Furthermore, I thank Bastian Kronenbitter for his reliable advice in physics questions
and multivariate statistic problems. Moreover, I give thank to Dr. Thomas Kuhr
and Dr. Martin Heck for inspiring discussions resulting in lots of ideas and novel
approaches, which are now part of the FEI. In addition, to the above mentioned, I
thank Moritz Gelb and Dr. Pablo Goldenzweig for the proofreading of my thesis.
Finally, I thank Prof. Dr. Michael Feindt who awakened my interest for the topic of
my thesis three years ago and constantly stimulated it further since then.

A. BASF2 Libraries

As can be seen from Listing D.1 the reconstruction of particles in BASF2 can be
represented as a series of operations on ParticleLists. All modules use a common
syntax for identifying ParticleLists, describing decay channels and performing
cuts. The main design goal was to create intuitive, readable and consistent syntactic
conventions throughout the framework. On that score, the relevant code is provided
by two libraries. The DecayDescriptor library is responsible for the syntax of decay
channels and names of the generated ParticleLists, whereas the VariableManager
library provides the syntax of Variables and Cuts.

There are further libraries used by the analysis modules like the ParticleCombiner
and MCMatching library. Both were reimplemented during the development of the
FEI to cover previously unconsidered aspects. The description of these libraries goes
beyond the scope of this thesis and is not necessary for the understanding of the FEI.

A.1. DecayDescriptor Library

The DecayDescriptor library contains auxiliary functions which parse
ParticleList names and DecayDescriptors.

Each ParticleList data-object can be accessed with a unique name. All mod-
ules operating on a ParticleList like ParticleSelector, MatchMCTruth and
ParticleVertexFitter require this name as a parameter. The name consists of a
particle name like e+, K_S0, D*+_s, J/psi, gamma1 and an optional user-defined label
separated by a colon. Hence, valid ParticleList names are e+, B0:sig and B+:tag.
As mentioned earlier, modules also automatically operate on the charge-conjugated
ParticleLists e.g. e-, anti-B0:sig, B-:tag. Therefore, the following example
code

selectParticle(’e-:uncut’)
selectParticle(’e-: pidcut ’,’eid > 0.5’)

1The naming convention of evtgen is used. A list of valid names can be found in the file
$BELLE2_EXTERNALS_DIR/share/evtgen/evt.pdl

82 Appendix A. BASF2 Libraries

creates four ParticleLists: e-:uncut, e+:uncut, e-:pidcut and e+:pidcut.

A decay channel can be encoded in a DecayDescriptor string. Modules which oper-
ate on decay channels like ParticleCombiner, PreCutHistMaker and NTupleMaker
require a DecayDescriptor as a parameter. A DecayDescriptor consists of the
ParticleList name of the mother particle, followed by an arrow ”->” and a list of the
ParticleList names of all daughter particles separated by whitespace. Hence, valid
DecayDescriptors are B+:tag -> D*+ pi- and B-:sig -> tau+ nu_tau. The fol-
lowing example code

reconstructDecay(’B+:sig -> D0 e+: pidcut ’)

creates two ParticleLists B+:sig and B-:sig by creating unique combinations of all
particles in the D0, e+:pidcut and anti-D0, e-:pidcut ParticleLists, respectively.

A.2. VariableManager Library

The VariableManager library was originally developed for the FEI, but is now an
essential part of the framework which is used in nearly all modules provided by the
analysis package.

A Variable is a C++ function which takes a Particle data-object as its argument
and calculates a floating-point number as its return value. In order to achieve
consistency and reduce error-proneness throughout the framework all Variables are
registered in the VariableManager and are automatically available to all modules.
Some examples of simple Variables used in the FEI are:

• Kinematic Variables like momentum in laboratory and center of mass coordi-
nates p, pz, pt, p_CMS, pz_CMS,...; total energy E, released energy in decay Q,
invariant mass M and beam-constrained mass Mbc;

• PID Variables based on likelihood-ratios Kid, eid, muid, piid and prid as
well as the contribution of the individual sub-detectors eid_dEdx, Kid_ARICH,
muid_TOP, ...;

• Vertex fitting Variables like secondary vertex coordinates dx, dy, dz and the
vertex/track fit probability chiProb;

• and finally target Variables like isSignal and isSignalAcceptMissingNeutrino,
where the former includes candidates with missing final-state radiation and
missing intermediate resonances and the later allows additionally for missing
neutrinos.

Moreover, there are so-called MetaVariables, these Variables take additional pa-
rameters. Some examples of MetaVariables used in the FEI are:

A.3. Further TMVA control plots 83

• getExtraInfo returns the value which is stored under a given
key in the extra-info field of the Particle data-object e.g.
getExtraInfo(SignalProbability),

• daughter returns properties of daughter particles like the invariant mass of
the first daughter daughter(0, M) or the signal probability of the second
daughter(1,getExtraInfo(SignalProbability)),

• decayAngle returns the decay angle between two daughter particles e.g.
decayAngle(0, 1),

• invariantMass returns the invariant mass of two or more daughter particles,
thereby providing information about intermediate resonances like ρ or ω mesons.

As can be seen from the examples, Variables are extensively used in the FEI. A
nice application aside from MVC training is the determination of cuts performed
on the B candidates to reduce combinatorics. Both the Full Reconstruction (FR)
and the FEI use the product of the signal probabilities of all daughter particles of
the B candidate to perform this cut. This calculation was hard-coded in the source
code of the FR. In contrast the FEI configuration contains just an assignment of
the expression daughterProductOf(getExtraInfo(SignalProbability)) to the
pre-cut Variable of the B particle.

On top of that, all Variables are accessible in cut strings, which are accepted by
many modules. The cut strings are translated by the VariableManager library to
Cut C++-objects. These objects are then used by the modules to perform the cuts.
The Cut syntax supports logic and numeric conditions. Some valid examples are:

• 1.2 < M < 1.5 and isSignal == 1

• daughter(0, M) <= daughter(1, M) <= daughter(2, M)

• 0.5 < getExtraInfo(SignalProbability) and [M > 1.5 or M < 0.5]

A.3. Further TMVA control plots

a) Input feature distributions

The separation power of individual input features as well as basic consistency checks
can be inferred from the signal and background distribution of the input features.

Although the default binning of TMVA (which unfortunately cannot be changed
easily) is not optimal, the distributions in Figure A.1a shows some interesting
properties. For example, the signal distribution of chiProb exhibits deviations from
the theoretical expected uniform signal distribution. Furthermore, the separation
power of the charged pion PID information is significantly worse than the PID
information of the kaon. Both effects are worth investigating further in a real
analysis.

84 Appendix A. BASF2 Libraries

M
1 1.5 2 2.5 3

0.
37

9
/

(1
/N

) d
N

0

0.5

1

1.5

2

2.5 Signal
Background

U
/O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

Input variable: M

p
-20 -10 0 10 20 30 40 50

29
.3

/

(1
/N

) d
N

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

U
/O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

Input variable: p

pz
-100 -50 0 50 100

53
.5

/

(1
/N

) d
N

0
0.002
0.004
0.006
0.008

0.01
0.012
0.014
0.016
0.018

0.02

U
/O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

Input variable: pz

dr
-0.5 0 0.5 1 1.5 2 2.5

0.
63

8
/

(1
/N

) d
N

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

U
/O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.6
)%

Input variable: dr

dz
-2 -1 0 1 2

1.
11

/

(1
/N

) d
N

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

U
/O

-fl
ow

 (S
,B

):
(0

.0
, 0

.1
)%

 /
(0

.0
, 0

.3
)%

Input variable: dz

chiProb
0.2 0.4 0.6 0.8 1

0.
02

56

/
(1

/N
) d

N

0

1

2

3

4

5

6

U
/O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

Input variable: chiProb

daughter0Kid
0.2 0.4 0.6 0.8 1

0.
02

54

/
(1

/N
) d

N

0

5

10

15

20

25

30

U
/O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

Input variable: daughter0Kid

daughter1piid
0.2 0.4 0.6 0.8 1

0.
02

54

/
(1

/N
) d

N

0

5

10

15

20

25

30

35

U
/O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

Input variable: daughter1piid

(a) Signal and background distribution for input features

A.3. Further TMVA control plots 85

-100

-80

-60

-40

-20

0

20

40

60

80

100

M p pz dr dz chiProb
daughter0Kid

daughter1piid

M

p

pz

dr

dz

chiProb

daughter0Kid

daughter1piid

Correlation Matrix (signal)

100 3 2 -6 2 2

3 100 64 -2 -1 1 3

2 64 100 -1 1 -2 9 13

-6 -2 -1 100 -19

2 1 -19 100 -1 2

-1 -2 100 -1 2

2 1 9 -1 -1 100 -1

3 13 2 2 -1 100

Linear correlation coefficients in %

-100

-80

-60

-40

-20

0

20

40

60

80

100

M p pz dr dz chiProb
daughter0Kid

daughter1piid

M

p

pz

dr

dz

chiProb

daughter0Kid

daughter1piid

Correlation Matrix (background)

100 96 -96

96 100 -99

-96 -99 100

100 18 -2 -2 -1

18 100 -1

-2 100

-2 100 -4

-1 -1 -4 100

Linear correlation coefficients in %

(b) Correlation matrix for signal and background candidates.

86 Appendix A. BASF2 Libraries

Cut value applied on NeuroBayes output
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Ef
fic

ie
nc

y
(P

ur
ity

)

0

0.2

0.4

0.6

0.8

1

Signal efficiency

Background efficiency

Signal purity
Signal efficiency*purity
S/#sqrt{S+B}

For 1000 signal and 1000 background
isS+Bevents the maximum S/

28.46 when cutting at -0.20

Cut efficiencies and optimal cut value

Si
gn

ifi
ca

nc
e

0

5

10

15

20

25

30

(c) Cut efficiencies

(d) Parallel coordinates

Figure A.1.: TMVA control plots, which can be created on-demand from the FEI
training files.

A.3. Further TMVA control plots 87

b) Correlation Matrix

The correlation matrix displays Pearson’s correlation coefficient between all pairs
of input features. The values are color-encoded using blue for negative correlations
and red for positive correlations, whereas green indicates no correlation. The main
reason to employ multivariate classification methods is to take linear and non-linear
correlations between input variables into account. On the other hand, strongly
linear-correlated variables pose a threat to some statistical classification methods
like Fisher’s linear discriminant.

The correlation matrices in Figure A.1b for signal and background exhibit strong
correlations between the momentum in z direction pz and the total momentum p,
which can be explained by the Lorentz boost due to the asymmetric energy of the
colliding beams. Moreover, dr2 and dz exhibit a negative correlation for signal and
positive correlation for background candidates. This indicates that the difference of
these quantities can distinguish between signal and background candidates.

c) Cut efficiencies

A common task is optimizing the cut on the classifier output to a figure-of-merit
like the significance S√

S+B
, where S and B are the number of signal and background

events after the cut, respectively. The cut efficiency plot of TMVA displays this and
other efficiency variables as a function of the cut on the classifier output.

The cut efficiencies for the example steering file are shown in Figure A.1c. The
trained classifier shows a significance near to 28 over a wide range of cuts. Therefore,
the performance of the classification changes only slightly if the cut on the classifier
output is changed inside this region. A cut on this classifier output is stable.

d) Parallel coordinates

In parallel coordinates the classifier response and the high-dimensional input data
is projected into a plane. Each dimension corresponds to a parallel coordinate
axis and each data-point is represented by a line connecting the coordinates axes.
Clusters and correlations between features can be identified in this presentation.
Distributions in all features can be seen at once with possible cuts on multiple
features. In fact, the produced plot is interactive and data-points falling into a
user-defined range in arbitrary features can be highlighted with different colours by
manipulating interactive sliders.

2dr is the transverse distance of the secondary vertex with respect to the IP

88 Appendix A. BASF2 Libraries

In Figure A.1d the parallel coordinates for the background candidates of the example
D0 → K−π+ training are shown. The first axis on the left shows the output of the
trained classifier. The two blue arrow-shaped markers select the wrongly classified
candidates with a classifier output above 0. Due to this selection all blue lines in
the plot correspond to candidates with a classifier output above 0. One can see that
all blue lines converge to a small region around the D0 mass on the M feature-axis.
So these candidates are wrongly classified due to their small deviation from the D0

mass.

The two yellow markers on the third axis p select candidates with high momentum.
Most of the selected yellow lines run in parallel to each other and cross the pz axis at
high values. This illustrates the linear correlation between p and pz for the selected
high momentum tracks due to the asymmetric energy of the colliding beams.

B. Dependency Graph Meta
Framework

The dependency graph meta framework (actorFramework) allows to connect param-
eters of functions to returned values of other functions. The resulting dependencies
are modelled using a directed acyclic graph (DAG). This type of graph is commonly
used in computer science to model data processing networks and causal relations,
because a DAG always has a topological ordering such that every node occurs before
a node it is connected to. This ordering is not necessarily unique, however the
remaining freedom can be used to optimize the concurrency of the system.

B.1. General Structure

The actorFramework is motivated by the structure of a theatre play. Actors interact
with properties and other actors in the play producing complex dependencies among
themselves. The framework uses so-called Resources as basic building blocks to model
dependencies. A Resource is an arbitrary Python object stored by the framework
in an associative container using a unique identifier. The actorFramework defines
three Python classes which operate on these Resources:

• Property adds a new Resource to the framework using an unique identifier
and a Python object;

• Collection joins a list of required Resources to a new Resource with a common
identifier;

• Actor passes required Resources as arguments to a function and provides new
Resources extracted from the return value of the function.

In addition, the framework defines a Play class which stores instances of the above
classes, solves the dependencies between them and calls the Actor functions in the
correct order.

The example in Listing B.1 incorporates the basic concept of the actorFramework.

90 Appendix B. Dependency Graph Meta Framework

Listing B.1: Academic example
1 play = Play()
2 play.addProperty(’a’, 2)
3 play.addProperty(’b’, 3)
4 play.addActor(lambda a,b: {’sum’: a + b})
5 play.addActor(lambda a,b: {’diff’: a - b})
6 play.addActor(lambda x,y: {’z’: x/y},x=’diff’,y=’sum’)
7 play.run (...)

First a new Play is created and then the values a=2 and b=3 are added as Property
objects to the Play. Afterwards, Actors calculating the sum and difference of the
two values are added. Finally, the quotient of the difference and sum is calculated by
another Actor. The dependency of the sum and difference on a and b is implicitly
derived by the framework using the parameter names of the function. Whereas the
dependency of the quotient on sum and diff is explicitly stated, by connecting the
parameters x and y with the identifiers of the required Resources diff and sum.
As soon as the run method of the Play is called, the dependencies between the
Property objects and Actors are solved and all Actors are called with their required
parameters.

The framework adds an additional layer of abstraction and offers several advantages
over using BASF2 directly:

• dependencies between modules are explicit, therefore errors are already noticed
at steering level instead of path level;

• modules added to the path which are not needed in the current run are
discarded;

• the generated path is optimized for parallel processing;

• a hash of all dependencies is provided which can be used as prefix for weight-files;

• the developer is forced to split up her code into small independent parts, which
can easily be unit-tested;

• and these independent parts of the steering file can automatically run in parallel.

B.2. Illustrating Example 91

B.2. Illustrating Example

The following example uses the actorFramework to reconstruct the decay chain

B̄ → D∗+K−

↪→ D0π+

↪→ K−π+π0

↪→ γγ

and to train a multivariate analysis method for each appearing particle. Thereby, the
signal probabilities of the daughters particles calculated by the methods are used as
input for the method of the mother particle. In the following Listing D.2 is explained
step by step.

1 from basf2 import *
2 from modularAnalysis import *
3 import actorFramework

At first all identifiers from basf2 and modularAnalysis Python modules are loaded
into the current namespace. In addition, the actorFramework Python module is
loaded.

4 # Define needed final -state particles and
5 # decay topology.
6 my_fsps= [’K-’,’pi+’,’gamma’]
7 my_decays = [’pi0 -> gamma gamma’,
8 ’D0 -> K- pi+ pi0’,
9 ’D*+ -> D0 pi+’,

10 ’anti -B0 -> D*+ K-’]
11 # Extract particle name from ParticleList name.
12 def extract_name(plist):
13 return plist.split(’:’)[0]

The used final-state particles and the decays which should be reconstructed are
defined using the DecayDescriptor syntax. Thereafter, an auxiliary function is
defined, which returns the name of a particle by splitting a provided ParticleList
name into the name of the corresponding particle and the user-defined label.

14 # Select all Particles with given name into
15 # a ParticleList.
16 def select(path , hash , name):
17 plist = name + ’:’ + hash
18 selectParticle(plist , path=path)
19 return {’Particle_ ’ + name: plist}
20

92 Appendix B. Dependency Graph Meta Framework

21 # Reconstruct given particle out of its daughters.
22 def reconstruct(path , hash , name , daughters):
23 plist = name + ’:’ + hash
24 reconstructDecay(plist+’ -> ’+’ ’.join(daughters),
25 path=path)
26 matchMCTruth(plist , path=path)
27 return {’Particle_ ’ + name: plist}

The reconstruction part is split into selection of final-state particles and reconstruction
of a decay. Both functions generate a unique ParticleList name using the provided
hash argument, add the necessary modules, which generate these ParticleLists to
the provided path and return finally a Resource containing the name of the generated
ParticleList. These functions are later promoted to Actors.

28 # Train standard MVA method with given ParticleList.
29 def train(path , hash , plist , variables , probabilities):
30 if isTMVAMethodAvailable(hash):
31 return {’Prefix_ ’ + extract_name(plist): hash}
32 trainTMVAMethod(plist , variables , prefix=hash ,
33 path=path)
34 return {}
35
36 # Apply standard MVA method on given ParticleList.
37 def apply(path , hash , plist , prefix):
38 applyTMVAMethod(plist , prefix=prefix , path=path)
39 return {’Probability_ ’ + extract_name(plist): hash}

The multivariate analysis part is split into training and application of the method.
The train function checks if the weight-file, identified by a unique prefix, of the
requested TMVA training is already available. If so, a Resource containing the prefix
of the weight-file is provided. Otherwise the TMVATeacher module is added to the
path and the function returns an empty dictionary. In consequence, Actors requiring
the Resource provided by train, cannot run until the corresponding method was
trained.

The apply function requires the prefix of a weight-file and adds the corresponding
TMVAExpert module to the provided path. The TMVAExpert module calculates the
signal probability of every Particle in the passed ParticleList and stores it in
the ExtraInfo field of the Particle data-object under the key isSignal. Both
functions are later promoted to Actors as well.

The unique prefix is provided by the special hash Resource. It contains a SHA-1
hash1 of all Resources required by the Actor. If a Resource changes, the hash changes

1The secure hash algorithm (SHA) was developed in 1994 by the National Institute of Standards
and Technology in collaboration with the National Security Agency. Up to now there are no
known collisions.

B.2. Illustrating Example 93

and the MVA methods in the example are automatically retrained, because the hash
is used as a prefix for the weight-files.

40 # Create new Play and add MVA variables as properties.
41 play = actorFramework.Play()
42 play.addProperty(’variables_K -’,[’Kid’, ’p’, ’pt’])
43 play.addProperty(’variables_pi+’,[’piid’, ’p’, ’pt’])
44 play.addProperty(’variables_gamma ’,[’clusterReg ’,
45 ’clusterE9E25 ’])
46 play.addProperty(’variables ’,[’M’,’p’, ’pt’, ’p_CMS’,
47 ’E’, ’Q’, ’daughter(0, getExtraInfo(isSignal))’,
48 ’daughter(1, getExtraInfo(isSignal))’])

A new Play is created using the actorFramework module. The Variables which
should be used in the training for the final-state particles and in the training of the
decay channels are added as a Property to the Play. All Variables registered in
the VariableManager library can be used here. For simplicity only a small number
of Variables are used in this example.

In particular, the decay channel Variables depend on the MVA method output of the
daughter particles via daughter(0, getExtraInfo(isSignal)) and daughter(1,
getExtraInfo(isSignal)). Therefore, it is crucial that all daughter particle MVA
methods are already trained and applied before the training of the mother particle
begins.

49 # Add actors to play , which take care of
50 # final -state particles.
51 for fsp in my_fsps:
52 play.addProperty(fsp , fsp)
53 play.addActor(select , name=fsp)
54 play.addActor(train , plist=’Particle_ ’+fsp ,
55 variables=’variables_ ’+fsp ,
56 probabilities=’None’)
57 play.addActor(apply ,plist=’Particle_ ’+fsp ,
58 prefix=’Prefix_ ’+fsp)
59
60 # Add actors to play , which take care of
61 # combined particles.
62 for decay in my_decays:
63 mother = decay.split(’ ’)[0]
64 daughters = decay.split(’ ’)[2:]
65 play.addProperty(mother , mother)
66 play.addActor(reconstruct , name=mother ,
67 daughters =[’Particle_ ’+d for d in daughters])
68 play.addActor(train , plist=’Particle_ ’+mother ,
69 probabilities =[’Probability_ ’+d for d in daughters])

94 Appendix B. Dependency Graph Meta Framework

70 play.addActor(apply , plist=’Particle_ ’+mother ,
71 prefix=’Prefix_ ’+mother)

Now the dependencies between the defined functions are declared by promoting the
functions to Actors. For every particle three Actors are added to the Play:

• select/reconstruct generates the ParticleList containing candidates of
the particle;

• train trains a multivariate method on the ParticleList;

• apply calculates the signal probability for each candidate in the ParticleList.

The Resource keys assigned to the parameters of the functions define the dependencies
between the Actors. The resulting dependency graph is visualized in Figure B.1.

Although this seems complicated at first, the additional abstraction level provided by
the actorFramework pays off as soon as more decay channels and additional recon-
struction steps, like the computation of pre-cuts and vertex fitting, are considered.

72 # Define output of B0 MVA method as needed.
73 play.addNeeded(’Probability_anti -B0’)

The final B̄0 signal probability is marked as a needed Resource, thereby the framework
can automatically infer which BASF2 modules in the final path are actually required
to create this Resource. Other modules are discarded. This strategy is important
in more complicated situations frequently encountered in the FEI. For example, if
all J/ψ channels in the B reconstruction have to be discarded due to low training
statistics, this mechanism discards the reconstruction of the J/ψ altogether.

74 # Add input modules and run play.
75 path = create_path ()
76 path.add_module(register_module(’RootInput ’))
77 path.add_module(register_module(’ParticleLoader ’))
78 play.run(path , nProcesses =2)
79 # Now run the generated path with BASF2.
80 process(path)

Finally, a BASF2 path is created and passed to the run method of play. The
dependencies between the Actors are solved, and all needed modules are added to
the given path. As can be seen from the nProcesses argument, the Actors can
be executed in parallel. However, the presented example does not profit from this,
because CPU-intensive operations like the training of the MVA methods are done on
path level. In contrast, the FEI trains its multivariate analysis methods on steering
level inside an Actor. Hence, the parallel execution of Actors automatically runs
these trainings in parallel.

B.3. Code Quality 95

In contrast to the previous example in Listing D.1 which reconstructed the decay
D0 → K−π+ using the basic BASF2 modules, the example using the actorFramework
can easily be extended to hundreds of decay channels and additional reconstruction
steps.

B.3. Code Quality

The FEI algorithm consists of approximately 2500 lines of Python code. To ensure a
good code quality throughout the project the actorFramework and every Actor is
tested using the Python unittest package. The test-cases for the Actors cover the
correctness of:

• returned Resources;

• parameters of modules added to the path;

• and conditional jumps depending on the existence of weight-files.

96 Appendix B. Dependency Graph Meta Framework

Figure B.1.: Dependency Graph generated by the actorFramework for Listing D.2.
Resources created by Property objects are white. Resources created
by select and reconstruct are blue, apply are orange and train are
green.

C. Full Event Interpretation
Configuration

The decay topology which is reconstructed by the FEI is defined by the user in terms
of Particle Python objects1. A Particle object is defined by:

• a list of decay channels;

• an MVAConfiguration object for the used MVC;

• a PreCutConfiguration object for the pre-cut determination;

• and a PostCutConfiguration object for the post-cut determination.

For each Particle the algorithm creates signal and background distributions for the
defined pre-cut Variable, calculates individual pre-cuts for every channel based on
provided efficiency and purity parameters and trains a MVC to calculate a signal
probability for each reconstructed candidate.

Listing D.3 shows a simple example configuration for the FEI. Some parts like
Variables used in the MVC and TMVA config strings are omitted (marked with ...)
for simplicity.

C.1. Final-State Particle Configuration

1 from FullEventInterpretation import *
2 particles = []
3 # Define charged final -state particles
4 mva_fsp = Particle.MVAConfiguration(
5 name=’FastBDT ’,
6 type=’Plugin ’,
7 config=’...’,
8 variables =[...] ,
9 target=’isSignal ’)

10 postCut_fsp = Particle.PostCutConfiguration(

1Not to be confused with the Belle2::Particle C++ data-objects used on path level to store
information about particle candidates in the DataStore.

98 Appendix C. Full Event Interpretation Configuration

11 value =0.1)
12 particles.append(Particle(’e+’, mva_fsp , postCut_fsp))
13 particles.append(Particle(’mu+’, mva_fsp , postCut_fsp))
14 particles.append(Particle(’pi+’, mva_fsp , postCut_fsp))
15 particles.append(Particle(’K+’, mva_fsp , postCut_fsp))

At first all final-state particles which shall be considered are added to the list
of Particles. The first parameter of the Particle object must be a valid
ParticleList name. In particular, one can add a user label to this name. In
addition, each Particle object receives an MVAConfiguration object. This
configuration object contains:

• the name of the MVC e.g. FastBDT, NeuroBayes or TMVA-BDT;

• the type of the method, which is Plugin for FastBDT and NeuroBayes;

• a configuration string, where among other things the default values of the
hyper-parameters of the methods can be overwritten;

• a list of Variables, which are used in the MVC;

• the Variable which defines signal and background by returning 1 for a signal
and 0 for a background candidate.

The last parameter is an optional PostCutConfiguration object. All candidates
with a signal probability below the value defined in this configuration are discarded.

C.2. Intermediate Particle Configuration

16 # Define D0
17 mva_D0 = Particle.MVAConfiguration(
18 name=’FastBDT ’,
19 type=’Plugin ’,
20 config=’...’,
21 variables =[...] ,
22 target=’isSignal ’)
23 pre_D0 = Particle.PreCutConfiguration(
24 variable=’M’,
25 binning =(500 ,1.5 ,2.0),
26 efficiency =0.95,
27 purity =0.001 ,
28 userCut=’’)
29 p = Particle(’D0’, mva_D0 , pre_D0)
30 p.addChannel ([’K-’, ’pi+’])
31 p.addChannel ([’K-’, ’pi+’, ’pi+’, ’pi-’])
32 particles.append(p)

C.3. Final Particle Configuration 99

Subsequently, all intermediate particles are added to the Particles list. In this
example only the D0 is added for simplicity. Just as the final-state Particle,
each intermediate Particle receives an MVAConfiguration which is used to train
a MVC for each of its channels. Furthermore, an intermediate Particle expects a
PreCutConfiguration object which contains:

• the Variable on which the pre-cut is performed,

• the binning which is used to create the PDFs for signal and background in the
pre-cut Variable, the lower and upper boundary of this binning (the second
and third number respectively) define the minimum cut which is applied to all
channels,

• the desired efficiency of the pre-cut,

• the minimal purity after the pre-cut,

• an additional user-defined cut which is always applied even before the signal
and background PDFs are created.

Again the last parameter could be an optional PostCutConfiguration object, which
is not used in this example. The decay channels of the Particle are added with the
addChannel method, which expects a list of valid ParticleList names. Optionally
the method accepts an additional MVAConfiguration-object, which is used for
this channel instead of the default MVAConfiguration passed to the Particle
constructor.

C.3. Final Particle Configuration

33 # Define B+
34 mva_BPlus = Particle.MVAConfiguration(
35 name=’FastBDT ’,
36 type=’Plugin ’,
37 config=’...’,
38 variables =[...] ,
39 target=’isSignal ’)
40 pre_BPlus = Particle.PreCutConfiguration(
41 variable=’daughterProductOf(’+
42 ’getExtraInfo(SignalProbability))’,
43 binning=list (...),
44 efficiency =0.95,
45 purity =0.0001 ,
46 userCut=’Mbc > 5.2 and abs(deltaE) < 0.5’)
47 p = Particle(’B+’, mva_BPlus , pre_BPlus)
48 p.addChannel ([’anti -D0’, ’pi+’])

100 Appendix C. Full Event Interpretation Configuration

49 p.addChannel ([’anti -D0’, ’pi+’, ’pi+’, ’pi-’])
50 particles.append(p)

The final B+ Particle, which is reconstructed from hadronic channels, is defined.
As mentioned before, the final B mesons differ in their reconstruction only in the
userCut and the pre-cut Variable. Instead of an equidistant binning, a user-defined
binning is used with a smaller bin-width for smaller values, which is more suitable
for the used pre-cut Variable. The binning is defined by a list of bin boundary
values, which is omitted for simplicity.

51 mva_BPlusSemileptonic = Particle.MVAConfiguration(
52 name=’FastBDT ’,
53 type=’Plugin ’,
54 config=’...’,
55 variables =[...] ,
56 target=’isSignalAcceptMissingNeutrino ’)
57
58 pre_BPlusSemileptonic = Particle.PreCutConfiguration(
59 variable=’daughterProductOf(’+
60 ’getExtraInfo(SignalProbability))’,
61 binning=list (...),
62 efficiency =0.95,
63 purity =0.0001 ,
64 userCut=’’)
65
66 p = Particle(’B+: semileptonic ’, mva_BPlusSemileptonic ,
67 pre_BPlusSemileptonic)
68 p.addChannel ([’anti -D0’, ’e+’])
69 p.addChannel ([’anti -D0’, ’mu+’])
70 particles.append(p)

Another B+ Particle is defined, which is reconstructed from semileptonic channels.
The label semileptonic is used to distinguish it from the other B. In comparison
with the hadronic B configuration, the target Variable allows additionally for a
missing neutrino in the reconstruction and no userCut is applied.

C.4. Analysis-Specific Training

After all Particles are defined and configured the FEI can be employed in an
analysis.

71 selection = create_path ()
72 ...
73 analysis = create_path ()
74 ...

C.4. Analysis-Specific Training 101

75 main = FullEventInterpretation(selection , analysis ,
76 particles)
77 process(main)

The user can define an analysis-specific selection path. This path has to recon-
struct the signal-side Bsig candidates and create an RestOfEvent data-object for
these candidates using the RestOfEventBuilder. Afterwards, the FEI is automati-
cally trained on the rest of the event. This means only Tracks, ECLClusters and
KLMClusters are considered which are not used for the signal-side candidate. More-
over, the reconstructed Btag candidates have to use up all remaining Tracks otherwise
they are discarded. If no selection path is provided, the FEI is trained without
taking the signal-side into account.

Furthermore, the user has to provide an analysis path, which is executed as soon
as the FEI is completely trained. In this path the user can access the Btag meson
ParticleList and perform her analysis.

D. Listings

D.1. Basic Example using BASF2 directly

Listing D.1: Illustrating example reconstructing D0 → K−π+

1 from basf2 import *
2 from modularAnalysis import *
3 # Read data from files given via command line argument.
4 analysis_main.add_module(register_module(’RootInput ’))
5 # Load Belle II detector parameters file.
6 loadGearbox ()
7 # Create FSP hypotheses for tracks and clusters.
8 loadReconstructedParticles ()
9 # Collect all kaon and pion hypotheses into

10 # ParticleLists and apply cuts on the PID information.
11 selectParticle(’K-’,’Kid > 0.01’)
12 selectParticle(’pi+’,’piid > 0.01’)
13 # Combines the hypotheses to D0 candidates and
14 # cut on the invariant mass of each candidate.
15 reconstructDecay(’D0 -> K- pi+’,’1.6 < M < 2.0’,
16 persistent=True)
17 # Match the MC Truth of all D0 candidates
18 matchMCTruth(’D0’)
19 # Fit the secondary vertex of all D0 candidates and
20 # apply a soft cut on the p value of the fit.
21 fitVertex(’D0’ ,0.0001)
22 # Train the standard MVC.
23 # If the method is already trained , calculate the
24 # signal probability and save it together with its
25 # mass and mcStatus in an ntuple file.
26 if isTMVAMethodAvailable ():
27 applyTMVAMethod(’D0’)
28 variablesToNTuple(’D0’,[’getExtraInfo(isSignal)’,
29 ’mcStatus ’, ’M’])
30 else:
31 trainTMVAMethod(’D0’,[’M’,’p’,’pz’,’dr’,’dz’,
32 ’chiProb ’,’daughter(0,Kid)’,

104 Appendix D. Listings

33 ’daughter(1,piid)’])
34 # Write out the D0 candidates.
35 analysis_main.add_module(register_module(’RootOutput ’))
36 # Execute the path.
37 process(analysis_main)

D.2. Advanced Example using the actorFramework 105

D.2. Advanced Example using the actorFramework

Listing D.2: Actor framework example
1 from basf2 import *
2 from modularAnalysis import *
3 import actorFramework
4 # Define needed final -state particles and
5 # decay topology.
6 my_fsps= [’K-’,’pi+’,’gamma’]
7 my_decays = [’pi0 -> gamma gamma’,
8 ’D0 -> K- pi+ pi0’,
9 ’D*+ -> D0 pi+’,

10 ’anti -B0 -> D*+ K-’]
11 # Extract particle name from ParticleList name.
12 def extract_name(plist):
13 return plist.split(’:’)[0]
14 # Select all particles with given name into
15 # a ParticleList.
16 def select(path , hash , name):
17 plist = name + ’:’ + hash
18 selectParticle(plist , path=path)
19 return {’Particle_ ’ + name: plist}
20
21 # Reconstruct given particle out of its daughters.
22 def reconstruct(path , hash , name , daughters):
23 plist = name + ’:’ + hash
24 reconstructDecay(plist+’ -> ’+’ ’.join(daughters),
25 path=path)
26 matchMCTruth(plist , path=path)
27 return {’Particle_ ’ + name: plist}
28 # Train standard MVC method with given ParticleList.
29 def train(path , hash , plist , variables , probabilities):
30 if isTMVAMethodAvailable(hash):
31 return {’Prefix_ ’ + extract_name(plist): hash}
32 trainTMVAMethod(plist , variables , prefix=hash ,
33 path=path)
34 return {}
35
36 # Apply standard MVA method on given ParticleList.
37 def apply(path , hash , plist , prefix):
38 applyTMVAMethod(plist , prefix=prefix , path=path)
39 return {’Probability_ ’ + extract_name(plist): hash}
40
41 # Create new Play and add MVA variables as properties.

106 Appendix D. Listings

42 play = actorFramework.Play()
43 play.addProperty(’variables_K -’,[’Kid’, ’p’, ’pt’])
44 play.addProperty(’variables_pi+’,[’piid’, ’p’, ’pt’])
45 play.addProperty(’variables_gamma ’,[’clusterReg ’,
46 ’clusterE9E25 ’])
47 play.addProperty(’variables ’,[’M’,’p’, ’pt’, ’p_CMS’,
48 ’E’, ’Q’, ’daughter(0, getExtraInfo(isSignal))’,
49 ’daughter(1, getExtraInfo(isSignal))’])
50 # Add actors to play , which take care of
51 # final -state particles.
52 for fsp in my_fsps:
53 play.addProperty(fsp , fsp)
54 play.addActor(select , name=fsp)
55 play.addActor(train , plist=’Particle_ ’+fsp ,
56 variables=’variables_ ’+fsp ,
57 probabilities=’None’)
58 play.addActor(apply , plist=’Particle_ ’+fsp ,
59 prefix=’Prefix_ ’+fsp)
60
61 # Add actors to play , which take care of
62 # combined particles.
63 for decay in my_decays:
64 mother = decay.split(’ ’)[0]
65 daughters = decay.split(’ ’)[2:]
66 play.addProperty(mother , mother)
67 play.addActor(reconstruct , name=mother ,
68 daughters =[’Particle_ ’+d for d in daughters])
69 play.addActor(train , plist=’Particle_ ’+mother ,
70 probabilities =[’Probability_ ’+d for d in daughters])
71 play.addActor(apply , plist=’Particle_ ’+mother ,
72 prefix=’Prefix_ ’+mother)
73 # Define output of B0 MVA method as needed.
74 play.addNeeded(’Probability_anti -B0’)
75 # Add input modules and run play.
76 path = create_path ()
77 path.add_module(register_module(’RootInput ’))
78 path.add_module(register_module(’ParticleLoader ’))
79 play.run(path , nProcesses =2)
80 # Now run the generated path with BASF2.
81 process(path)

D.3. Example Configuration of the FEI 107

D.3. Example Configuration of the FEI

Listing D.3: Full Event Interpretation configuration file
1 from FullEventInterpretation import *
2 particles = []
3 # Define charged final -state particles
4 mva_fsp = Particle.MVAConfiguration(
5 name=’FastBDT ’,
6 type=’Plugin ’,
7 config=’...’,
8 variables =[...] ,
9 target=’isSignal ’)

10 postCut_fsp = Particle.PostCutConfiguration(
11 value =0.1)
12 particles.append(Particle(’e+’, mva_fsp , postCut_fsp))
13 particles.append(Particle(’mu+’, mva_fsp , postCut_fsp))
14 particles.append(Particle(’pi+’, mva_fsp , postCut_fsp))
15 particles.append(Particle(’K+’, mva_fsp , postCut_fsp))
16 # Define D0
17 mva_D0 = Particle.MVAConfiguration(
18 name=’FastBDT ’,
19 type=’Plugin ’,
20 config=’...’,
21 variables =[...] ,
22 target=’isSignal ’)
23 pre_D0 = Particle.PreCutConfiguration(
24 variable=’M’,
25 binning =(500 ,1.5 ,2.0),
26 efficiency =0.95,
27 purity =0.001 ,
28 userCut=’’)
29 p = Particle(’D0’, mva_D0 , pre_D0)
30 p.addChannel ([’K-’, ’pi+’])
31 p.addChannel ([’K-’, ’pi+’, ’pi+’, ’pi-’])
32 particles.append(p)
33 # Define B+
34 mva_BPlus = Particle.MVAConfiguration(
35 name=’FastBDT ’,
36 type=’Plugin ’,
37 config=’...’,
38 variables =[...] ,
39 target=’isSignal ’)
40 pre_BPlus = Particle.PreCutConfiguration(
41 variable=’daughterProductOf(’+

108 Appendix D. Listings

42 ’getExtraInfo(SignalProbability))’,
43 binning=list (...),
44 efficiency =0.95,
45 purity =0.0001 ,
46 userCut=’Mbc > 5.2 and abs(deltaE) < 0.5’)
47 p = Particle(’B+’, mva_BPlus , pre_BPlus)
48 p.addChannel ([’anti -D0’, ’pi+’])
49 p.addChannel ([’anti -D0’, ’pi+’, ’pi+’, ’pi-’])
50 particles.append(p)
51 mva_BPlusSemileptonic = Particle.MVAConfiguration(
52 name=’FastBDT ’,
53 type=’Plugin ’,
54 config=’...’,
55 variables =[...] ,
56 target=’isSignalAcceptMissingNeutrino ’)
57
58 pre_BPlusSemileptonic = Particle.PreCutConfiguration(
59 variable=’daughterProductOf(’+
60 ’getExtraInfo(SignalProbability))’,
61 binning=list (...),
62 efficiency =0.95,
63 purity =0.0001 ,
64 userCut=’’)
65
66 p = Particle(’B+: semileptonic ’, mva_BPlusSemileptonic ,
67 pre_BPlusSemileptonic)
68 p.addChannel ([’anti -D0’, ’e+’])
69 p.addChannel ([’anti -D0’, ’mu+’])
70 particles.append(p)
71 selection = create_path ()
72 ...
73 analysis = create_path ()
74 ...
75 main = FullEventInterpretation(selection , analysis ,
76 particles)
77 process(main)

Bibliography

[1] A.J. Bevan et al. „The Physics of the B Factories“. In: not published (2014).
arXiv: 1406.6311 [hep-ex].

[2] K. Abe et al. „Observation of large CP violation in the neutral B meson
system“. In: Phys.Rev.Lett. 87 (2001), p. 091802. doi: 10.1103/PhysRevLett.
87.091802. arXiv: hep-ex/0107061 [hep-ex].

[3] K. Abe et al. „Observation of mixing induced CP violation in the neutral B
meson system“. In: Phys.Rev. D66 (2002), p. 032007. doi: 10.1103/PhysRevD.
66.032007. arXiv: hep-ex/0202027 [hep-ex].

[4] Bernard Aubert et al. „Observation of CP violation in the B0 meson system“. In:
Phys.Rev.Lett. 87 (2001), p. 091801. doi: 10.1103/PhysRevLett.87.091801.
arXiv: hep-ex/0107013 [hep-ex].

[5] K. Abe et al. „Measurement of time dependent CP violating asymmetries in
B0→ phi K0(s), K+ K- K0(s), and eta-prime K0(s) decays“. In: Phys.Rev.Lett.
91 (2003), p. 261602. doi: 10.1103/PhysRevLett.91.261602. arXiv: hep-
ex/0308035 [hep-ex].

[6] A. Poluektov et al. „Evidence for direct CP violation in the decay B → D(*)K,
D → Ks Pi+ Pi- and measurement of the CKM phase phi3“. In: Phys.Rev. D81
(2010), p. 112002. doi: 10.1103/PhysRevD.81.112002. arXiv: 1003.3360
[hep-ex].

[7] A. Abdesselam et al. „Measurement of the branching fraction of B+ → τ+ντ
decays with the semileptonic tagging method and the full Belle data sample“.
In: not published (2014). arXiv: 1409.5269 [hep-ex].

[8] S.-K. Choi et al. „Observation of a Narrow Charmoniumlike State in Exclusive
B± → K±π+π−J/ψ Decays“. In: Phys. Rev. Lett. 91 (26 Dec. 2003), p. 262001.
doi: 10.1103/PhysRevLett.91.262001.

[9] B.R. Ko et al. „Observation of D0 − D̄0 Mixing in e+e− Collisions“. In:
Phys.Rev.Lett. 112 (2014), p. 111801. doi: 10.1103/PhysRevLett.112.111801.
arXiv: 1401.3402 [hep-ex].

[10] A.G. Akeroyd et al. „Physics at super B factory“. In: not published (2004).
arXiv: hep-ex/0406071 [hep-ex].

http://arxiv.org/abs/1406.6311
http://dx.doi.org/10.1103/PhysRevLett.87.091802
http://dx.doi.org/10.1103/PhysRevLett.87.091802
http://arxiv.org/abs/hep-ex/0107061
http://dx.doi.org/10.1103/PhysRevD.66.032007
http://dx.doi.org/10.1103/PhysRevD.66.032007
http://arxiv.org/abs/hep-ex/0202027
http://dx.doi.org/10.1103/PhysRevLett.87.091801
http://arxiv.org/abs/hep-ex/0107013
http://dx.doi.org/10.1103/PhysRevLett.91.261602
http://arxiv.org/abs/hep-ex/0308035
http://arxiv.org/abs/hep-ex/0308035
http://dx.doi.org/10.1103/PhysRevD.81.112002
http://arxiv.org/abs/1003.3360
http://arxiv.org/abs/1003.3360
http://arxiv.org/abs/1409.5269
http://dx.doi.org/10.1103/PhysRevLett.91.262001
http://dx.doi.org/10.1103/PhysRevLett.112.111801
http://arxiv.org/abs/1401.3402
http://arxiv.org/abs/hep-ex/0406071

110 Bibliography

[11] C. Schwanda. „SuperKEKB machine and Belle II detector status“. In: Nuclear
Physics B - Proceedings Supplements 209.1 (2010), pp. 70–72. doi: http:
//dx.doi.org/10.1016/j.nuclphysbps.2010.12.012.

[12] M. Feindt et al. „A hierarchical NeuroBayes-based algorithm for full recon-
struction of B mesons at B factories“. In: Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 654.1 (2011), pp. 432–440. doi: http://dx.doi.org/
10.1016/j.nima.2011.06.008.

[13] S. Kurokawa and E. Kikutani. „Overview of the {KEKB} accelerators“. In:
Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 499.1 (2003), pp. 1–7. doi:
http://dx.doi.org/10.1016/S0168-9002(02)01771-0.

[14] S. Neubauer. „Search for B → K(∗)νν̄ Decays Using a New Probabilistic
Full Reconstruction Method“. In: not published (2011). url: https://ekp-
invenio.physik.uni-karlsruhe.de/record/48215.

[15] J. Beringer et al. „Review of Particle Physics“. In: Phys. Rev. D 86 (2012),
p. 010001.

[16] A. Abashian et al. „The Belle detector“. In: Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 479.1 (2002). Detectors for Asymmetric B-factories,
pp. 117–232. doi: http://dx.doi.org/10.1016/S0168-9002(01)02013-7.

[17] Edited by: Z. Doležal and S. Uno. „Belle II Technical Design Report“. In: not
published (2010). arXiv: 1011.0352 [hep-ex].

[18] In: online (1.09.2014). url: http://belle2.desy.de/sites2009/site_
belle2/content/e103206/e103207/SuperKEKB:BelleII.jpg.

[19] Christian Pulvermacher. „dE/dx particle identification and pixel detector data
reduction for the Belle II experiment“. 2012. url: http://ekp-invenio.
physik.uni-karlsruhe.de/record/48263.

[20] S. Lee, R. Itoh, N. Katayama, and S. Mineo. „Development of high level trigger
software for Belle II at SuperKEKB“. In: J.Phys.Conf.Ser. 331 (2011), p. 022015.
doi: 10.1088/1742-6596/331/2/022015.

[21] In: online (1.09.2014). url: http://belle2.kek.jp/images/Belle2.pdf.

[22] V. Blobel and E. Lohrmann. Statistische und numerische Methoden der Daten-
analyse. Teubner-Studienbücher : Physik. 1998. url: http://books.google.
de/books?id=NcIxajwHOZIC.

[23] J. Neyman and E. S. Pearson. „On the Problem of the Most Efficient Tests of
Statistical Hypotheses“. In: Royal Society of London Philosophical Transactions
Series A 231 (1933), pp. 289–337. doi: 10.1098/rsta.1933.0009.

http://dx.doi.org/http://dx.doi.org/10.1016/j.nuclphysbps.2010.12.012
http://dx.doi.org/http://dx.doi.org/10.1016/j.nuclphysbps.2010.12.012
http://dx.doi.org/http://dx.doi.org/10.1016/j.nima.2011.06.008
http://dx.doi.org/http://dx.doi.org/10.1016/j.nima.2011.06.008
http://dx.doi.org/http://dx.doi.org/10.1016/S0168-9002(02)01771-0
https://ekp-invenio.physik.uni-karlsruhe.de/record/48215
https://ekp-invenio.physik.uni-karlsruhe.de/record/48215
http://dx.doi.org/http://dx.doi.org/10.1016/S0168-9002(01)02013-7
http://arxiv.org/abs/1011.0352
http://belle2.desy.de/sites2009/site_belle2/content/e103206/e103207/SuperKEKB:BelleII.jpg
http://belle2.desy.de/sites2009/site_belle2/content/e103206/e103207/SuperKEKB:BelleII.jpg
http://ekp-invenio.physik.uni-karlsruhe.de/record/48263
http://ekp-invenio.physik.uni-karlsruhe.de/record/48263
http://dx.doi.org/10.1088/1742-6596/331/2/022015
http://belle2.kek.jp/images/Belle2.pdf
http://books.google.de/books?id=NcIxajwHOZIC
http://books.google.de/books?id=NcIxajwHOZIC
http://dx.doi.org/10.1098/rsta.1933.0009

Bibliography 111

[24] R. A. Fisher. „The use of multiple measurements in taxonomic problems“.
In: Annals of Eugenics 7.2 (1936), pp. 179–188. doi: 10.1111/j.1469-
1809.1936.tb02137.x.

[25] Walter Pitts and WarrenS. McCulloch. „How we know universals the perception
of auditory and visual forms“. In: The bulletin of mathematical biophysics 9.3
(1947), pp. 127–147. doi: 10.1007/BF02478291.

[26] Marvin L. Minsky and Seymour Papert. Perceptrons : an introduction to
computational geometry. Expanded ed., 3. print. 1988.

[27] D.E. Rumelhart, G.E. Hintont, and R.J. Williams. „Learning representations
by back-propagating errors“. In: Nature 323.6088 (1986), pp. 533–536.

[28] Jerome H. Friedman. „Stochastic gradient boosting“. In: Computational Statis-
tics & Data Analysis 38.4 (2002), pp. 367–378. doi: http://dx.doi.org/10.
1016/S0167-9473(01)00065-2.

[29] Serguei Chatrchyan et al. „Observation of a new boson at a mass of 125 GeV
with the CMS experiment at the LHC“. In: Phys.Lett. B716 (2012), pp. 30–61.
doi: 10.1016/j.physletb.2012.08.021.

[30] M. Feindt and U. Kerzel. „The NeuroBayes neural network package“. In:
Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 559.1 (2006), pp. 190–194.
doi: http://dx.doi.org/10.1016/j.nima.2005.11.166.

[31] Anders Ryd et al. „EvtGen: A Monte Carlo Generator for B-Physics“. In: not
published (2005).

[32] S. Agostinelli et al. „GEANT4: A Simulation toolkit“. In: Nucl.Instrum.Meth.
A506 (2003), pp. 250–303. doi: 10.1016/S0168-9002(03)01368-8.

[33] I. Antcheva et al. „ROOT — A C++ framework for petabyte data storage,
statistical analysis and visualization“. In: Computer Physics Communications
180.12 (2009), pp. 2499–2512. doi: http://dx.doi.org/10.1016/j.cpc.
2009.08.005.

[34] G. Barrand et al. „GAUDI - A software architecture and framework for building
HEP data processing applications“. In: Comput.Phys.Commun. 140 (2001),
pp. 45–55. doi: 10.1016/S0010-4655(01)00254-5.

[35] G. Barrand et al. „GAUDI - The software architecture and framework for
building LHCb data processing applications“. In: not published (2000), pp. 92–
95.

[36] P. Calafiura et al. „The StoreGate: A Data model for the Atlas software
architecture“. In: eConf C0303241 (2003), MOJT008. arXiv: cs/0306089
[cs-se].

http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x
http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x
http://dx.doi.org/10.1007/BF02478291
http://dx.doi.org/http://dx.doi.org/10.1016/S0167-9473(01)00065-2
http://dx.doi.org/http://dx.doi.org/10.1016/S0167-9473(01)00065-2
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://dx.doi.org/http://dx.doi.org/10.1016/j.nima.2005.11.166
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2009.08.005
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2009.08.005
http://dx.doi.org/10.1016/S0010-4655(01)00254-5
http://arxiv.org/abs/cs/0306089
http://arxiv.org/abs/cs/0306089

112 Bibliography

[37] W. Waltenberger. „RAVE – A Detector-Independent Toolkit to Reconstruct
Vertices“. In: Nuclear Science, IEEE Transactions on 58.2 (Apr. 2011), pp. 434–
444. doi: 10.1109/TNS.2011.2119492.

[38] Andreas Hocker et al. „TMVA - Toolkit for Multivariate Data Analysis“. In:
not published ACAT (2007), p. 040. arXiv: physics/0703039 [PHYSICS].

[39] Ryosuke Itoh et al. „Implementation of parallel processing in the basf2 frame-
work for Belle II“. In: J.Phys.Conf.Ser. 396 (2012), p. 022026. doi: 10.1088/
1742-6596/396/2/022026.

[40] Jeffrey Dean and Sanjay Ghemawat. „MapReduce: Simplified Data Processing
on Large Clusters“. In: Proceedings of the 6th Conference on Symposium on
Opearting Systems Design & Implementation - Volume 6 (2004), pp. 10–10.
url: http://dl.acm.org/citation.cfm?id=1251254.1251264.

http://dx.doi.org/10.1109/TNS.2011.2119492
http://arxiv.org/abs/physics/0703039
http://dx.doi.org/10.1088/1742-6596/396/2/022026
http://dx.doi.org/10.1088/1742-6596/396/2/022026
http://dl.acm.org/citation.cfm?id=1251254.1251264

