Monte Carlo matching in the Belle II software

Yo Sato, High Energy Accelerator Research Organization (KEK)

Sam Cunliffe, Deutsches Elektronen-Synchrotron (DESY)

Frank Meier, Duke University

Anze Zupanc, Jozef Stefan Institute and Sinergise LTD

Belle II experiment

Belle II experiment is the successor to Belle.

Both the accelerator and the detector are upgraded.

• Belle II software has been rewritten.

- used for generation of Monte-Carlo events, tracking, clustering, high-level analysis, ...
- Belle II analysis framework (basf2) is organized into *modules* which are configured in a sequence.

Overview of Monte Carlo simulation in basf2

Detector Simulation

MCParticle

Track, ECLcluster, PIDLikelihood, ...

Monte-Carlo (MC) matching

vCHEP 2021, 17-22 May 2021

Y. Sato, S. Cunliffe, F. Meier, A. Zupanc

MC-matching

- MC-matching is an important feature of Belle II software for ...
 - investigation of detector effects
 - analysis of backgrounds
 - estimation of signal efficiency
- MC-matching of *final-state particles* (track, cluster) inherits the detector information.
- For *composite particle* (such as K* and B), Belle II employs a two stage process.

□ Find an MC-match for composite particles.

□ Evaluate the MC-match to categorise candidates.

Algorithm of MC-matching for composite particles

Core idea : Find the first common mother of all daughters.

Algorithm flow

- First, check daughter's MC-matching. If a daughter is a composite particle, call the algorithm routine for the daughter recursively.
- Then, assign the most recent common ancestor (= *first common mother*) from all MCparticles.

(e.g.)
$$B^0 \to K^{*0} (\to K^+ \pi^-) e^+ e^-$$

Generated event : MCParticle

Reconstructed candidates : Particle

$$\begin{array}{c} & & & \\ & &$$

Evaluation algorithm for composite particles

Core idea : Provide *several error flags*, so that ...

- one can identify failure cases of the reconstruction.
- one can choose to accept or not the error flags for one's own use case.

Part 1 : Process with **existing** particles.

If the MC-matching of *a reconstructed particle* is not correct, an error flag is added.

- has no daughter
 - generator-level Mi
 - detector-level

has daughters

- DecayInFlight
- AddedWrongParticle

Part 2 : Process with missing particles.

If a daughter of the given particle is *missed to be reconstructed*, an error flag is added.

- Composite particle MissingResonance
- Photon
 MissGamma or MissPHOTOS
- Neutrino
- Others
 - Klong

MissNeutrino MissMassiveParticle

MissKlong

vCHEP 2021, 17-22 May 2021

User interface of MC matching

The behavior of the algorithm can be controlled with *the decay string,* which describes the decay chain to be reconstructed.

(e.g.) decay string to reconstruct $B^0 \rightarrow K^{*0}e^+e^-$ process

- "B0 -> K^*0 e+ e-" : the ordinary MC-matching behavior is required in this case.
- "B0 =norad=> K*0 e+ e-" : (Arrow is changed from -> to =norad=>)

No missing radiative photon is required. (Missing radiative photons are accepted by default.)

One can also configure the MC-matching intuitively with *markers* and *keywords*, for example,

- (misID)pi+: mis-identified on the pion is accepted.
- ?nu : missing neutrinos are acceptable.

Summary

- Belle II is the successor to Belle and Belle II software is completely new.
- **MC-matching** is a key feature in the MC-simulation study to understand reconstruction effects and backgrounds.
- MC-matching for *composite particles* employs a two step process.
 □ Find the first common mother from daughters and assign as the MC-match.
 □ Provide several error flags to categorise the reconstructed candidates.
- User interface to configure the MC-matching is provided with the decay string.