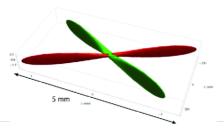
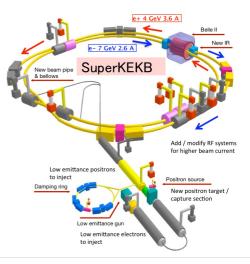


Belle II status and prospects for semileptonic decay

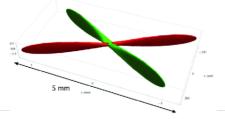
On behalf of the Belle II Collaboration for HQL2021

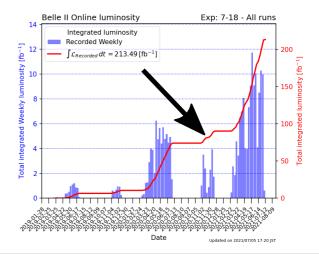

Moritz Bauer | 15. September 2021



World record luminosity: SuperKEKB accelerator

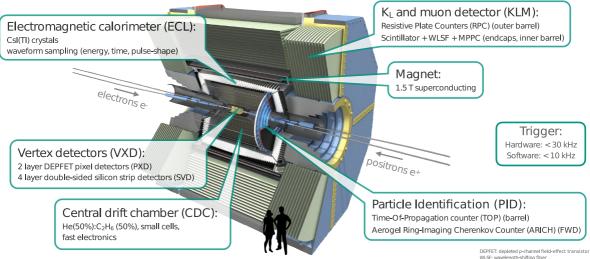
- e^+e^- collider with $\sqrt{s} \approx 10.6 \,\text{GeV}$ ($\Upsilon(4S)$ resonance)
- Peak luminosity (June 22): 3.1 × 10³⁴ cm⁻² s⁻¹ (+50% vs. KEKB)
 - In part thanks to nano-beam scheme.





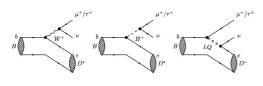
World record luminosity: SuperKEKB accelerator

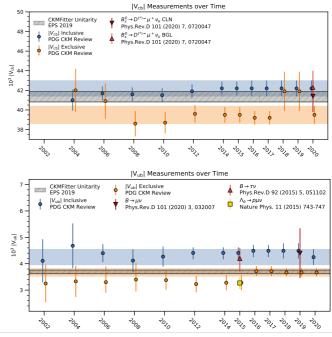
- e^+e^- collider with $\sqrt{s} \approx 10.6 \,\text{GeV}$ ($\Upsilon(4S)$ resonance)
- Peak luminosity (June 22): 3.1 × 10³⁴ cm⁻² s⁻¹ (+50% vs. KEKB)
 - In part thanks to nano-beam scheme.
- Current recorded dataset: \approx 213 fb⁻¹
 - Aiming for 50x of Belle's dataset (50 ab⁻¹)
 - Newest published analyses use \approx 70 fb⁻¹.



2

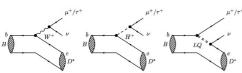
The Belle II detector

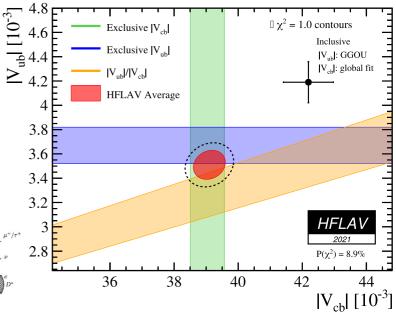



MPPC: multi-pixel photon counter-

Institute for Experimental Particle Physics

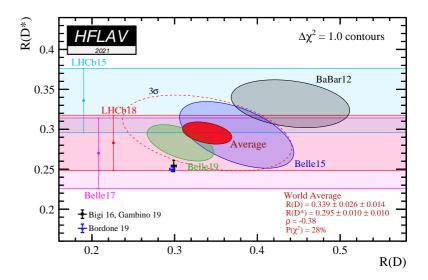
Semileptonic decays


- Tension (\approx 3.3 σ) between
 - incl. (all $B \to X \ell \bar{\nu_{\ell}}$) and
 - excl. (one b \rightarrow x process)
 - measurements of $|V_{ub}|/|V_{cb}|$.
- |V_{cb}| sensitive to charged Higgs in 2HD models or leptoquarks.



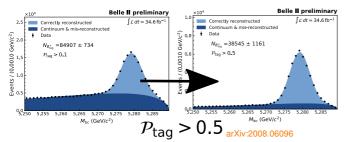
Semileptonic decays

- Tension (\approx 3.3 σ) between
 - incl. (all $\mathsf{B} o \mathsf{X} \ell \bar{\nu}_\ell$) and
 - excl. (one b \rightarrow x process)
 - measurements of $|V_{ub}|/|V_{cb}|$.
- |V_{cb}| sensitive to charged Higgs in 2HD models or leptoquarks.



Semileptonic decays

- Tension (\approx 3.3 σ) between
 - incl. (all $\mathsf{B} o \mathsf{X} \ell \bar{\nu}_\ell$) and
 - excl. (one b \rightarrow x process)


measurements of $|V_{ub}|/|V_{cb}|$.

- |V_{cb}| sensitive to charged Higgs in 2HD models or leptoquarks.
- Similar situation (combined $\approx 3.1\sigma$) for ratios $R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu_{\tau})}{\mathcal{B}(B \to D^{(*)}\ell\nu_{\ell})}$

Experimental techniques

- e^-e^+ collisions "clean" compared to pp.
- Tagging: Use 2nd B (B_{tag}) e.g. with Full Event Interpretation (FEI). Keck, T. et al. Comput Softw Big Sci 3, 6

Alternative: Untagged with potentially all events.

7

- Exclusive analyses can combine all non-signal events into "inclusive tag".
- Smaller systematic uncertainties can compete already (see B⁺ → K⁺νν̄; arXiv:2104:04754).

 π

Tracks

 J/ψ

e⁺

 $B_{
m tag}^-$

K

 K^0_{\circ}

Displaced Vertices

 $B_{\rm sig}^+$

 K_L^0

 $D^0 D^+ D$

 $B^0 B^+$

 \overline{D}

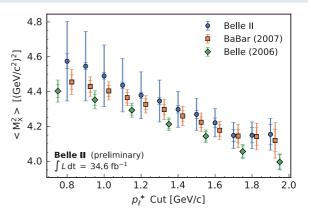
Neutral Clusters

0

 π

VO

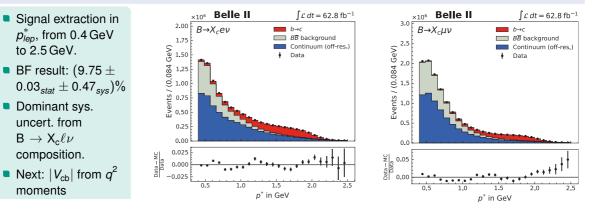
 $D^{*0} D^{*+}$


Tagged inclusive $B \rightarrow X_c \ell \nu$

arXiv:2009.04493

- Measurement of first six mass moments $\langle M_x^n \rangle$ of the hadronic system.
- Background is subtracted with weight $\omega_i(M_X).$
- To avoid unfolding, calibration between true and reconstructed mass is needed.
- Main systematic uncertainty from X_c composition.
- Next: $|V_{cb}|$ from q^2 moments (novel approach!).

Momentum transfer squared: $q^2 = (p_B - p_X)^2$

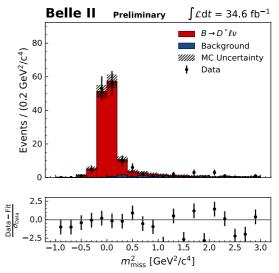


8

Untagged inclusive B ightarrow X_c ℓu

- Only signature: single (well identified) lepton.
 - Use missing mass/momentum and event charge to reject events with >1 neutrino.

Tagged exclusive $\overline{\mathtt{B}}^{0} ightarrow \mathtt{D}^{*+} (ightarrow \mathtt{D}^{0} \pi_{\mathtt{s}}) \ell u$

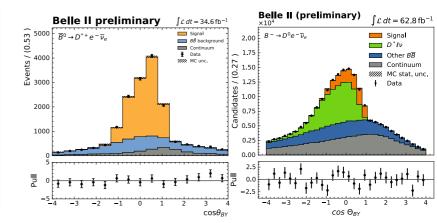

arXiv:2008.10299

- Little background with m_D*, m_D, p_l* > 1 GeV and extra track cuts.
- Signal extraction in M_{miss}^2 .

 $M_{miss}^2 = (p_{e^+e^-}^{} - p_{B_{tag}}^{} - p_{D^*}^{} - p_{\ell}^{})^2$

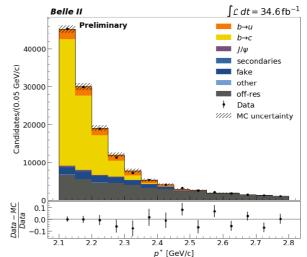
BF:
$$(4.51 \pm 0.41_{stat} \pm 0.27_{syst} \pm 0.45_{\pi_s})\%$$

- In agreement with world average but not competitive yet.
- Main systematic: "slow" pion from D* and MC modelling.



Untagged exclusive B ightarrow D $^{(*)}\ell u$

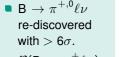
arXiv:2008.07198


- Signal extraction in cos(θ_{BY}), the angle between D⁰ℓ system and B meson from beam 4-momentum.
- BF (D): (2.29±0.05_{stat}±0.08_{sys})%
 - Consistent (and competitive!) with world average.
 - Next: $|V_{cb}|$ from partial BF in bins of q^2 .

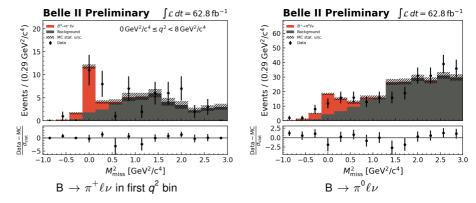
Untagged inclusive B ightarrow X_u ℓu

arXiv:2103.02629

- Signal extraction in electron momentum in center-of-mass frame p*.
- Signature also only a single well identified lepton (like
 B → X_cℓν).
 - \rightarrow go to p^* endpoint (2.1 GeV to 2.8 GeV).
- B \rightarrow X_u $\ell \nu$ observed with \approx 3 σ .



Tagged exclusive B \rightarrow X_u $\ell \nu$, X_u = { $\pi^+, \pi^0, \rho^+, \rho^0$ }

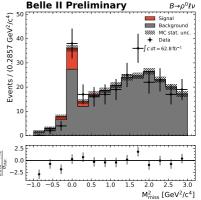


• $\mathcal{B}(B \to \pi^0 \ell \nu) = (8.29 \pm 1.99_{stat} \pm 0.46_{sys}) \times 10^{-5}$

- $\mathcal{B}(\mathsf{B} \to \pi^+ \ell \nu)$ in bins of q^2 .
- Next: |V_{ub}|.

• Also first (stat. limited) results for $B \rightarrow \rho \ell \nu$.

Tagged exclusive B \rightarrow X_u $\ell \nu$, X_u = { $\pi^+, \pi^0, \rho^+, \rho^0$ }

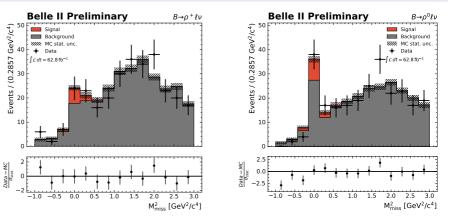

• $\mathcal{B}(B \to \pi^0 \ell \nu) = (8.29 \pm 1.99_{stat} \pm 0.46_{sys}) \times 10^{-5}$

• $B \to \pi^{+,0} \ell \nu$ re-discovered with > 6σ .

- $\mathcal{B}(\mathsf{B} \to \pi^+ \ell \nu)$ in bins of q^2 .
- Next: |V_{ub}|.

• Also first (stat. limited) results for $B \rightarrow \rho \ell \nu$.

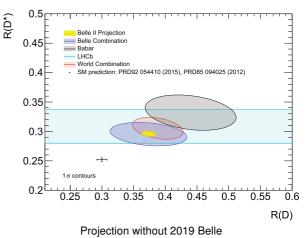
Belle II Preliminary $B \rightarrow 0^{+} l v$ Events / (0.2857 GeV²/c⁴) Events / (0.2857 GeV²/c⁴) Background WWW. MC stat. unc. 40 + Data $\int \mathcal{L} dt = 62.8 \, \text{fb}^{-1}$ 30 30 20 20 10 10 2.5 ata – MC Ø_{stat} Data – MC ⁰stat. 0.1 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 M²_{miss} [GeV²/c⁴]



Tagged exclusive B \rightarrow X_u $\ell \nu$, X_u = { $\pi^+, \pi^0, \rho^+, \rho^0$ }

• $\mathcal{B}(B \to \pi^0 \ell \nu) = (8.29 \pm 1.99_{stat} \pm 0.46_{sys}) \times 10^{-5}$

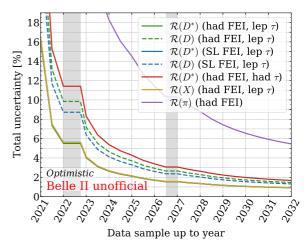
- $B \to \pi^{+,0} \ell \nu$ re-discovered with > 6σ .
- $\mathcal{B}(\mathsf{B} \to \pi^+ \ell \nu)$ in bins of q^2 .
- Next: |V_{ub}|.
- Also first (stat. limited) results for $B \rightarrow \rho \ell \nu$.
- Untagged excl. measurement of |V_{ub}| in progress.


Prospects for R(D) and R(D*)

$$R(\mathsf{D}^{(*)}) = \frac{\mathcal{B}(\mathsf{B} \to \mathsf{D}^{(*)}\tau\nu_{\tau})}{\mathcal{B}(\mathsf{B} \to \mathsf{D}^{(*)}\ell\nu_{\ell})}$$

- Theory-wise interesting because |V_{cb}| & FFs partially cancel here but τ's experimentally challenging.
- Belle II can conduct multiple indep. (un-)tagged measurements here.
 - Hadronic/SL tagged, untagged
 - Hadronic and leptonic τ decay
- Complementary to LHCb in many channels.

From Belle II physics book: Prog Theor Exp Phys 12 (2019)

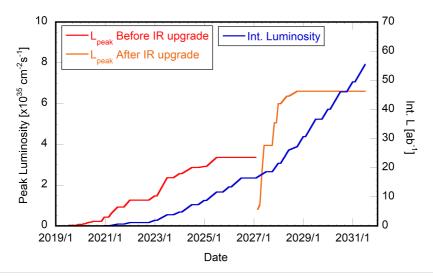

Prospects for R(D) and R(D*)

$$R(\mathsf{D}^{(*)}) = rac{\mathcal{B}(\mathsf{B} o \mathsf{D}^{(*)} au
u_{ au})}{\mathcal{B}(\mathsf{B} o \mathsf{D}^{(*)} \ell
u_{ au})}$$

- Theory-wise interesting because |V_{cb}| & FFs partially cancel here but τ's experimentally challenging.
- Belle II can conduct multiple indep. (un-)tagged measurements here.
 - Hadronic/SL tagged, untagged
 - Hadronic and leptonic τ decay
- Complementary to LHCb in many channels.

Not Belle II official! Adapted from arXiv:2101.08326

Summary

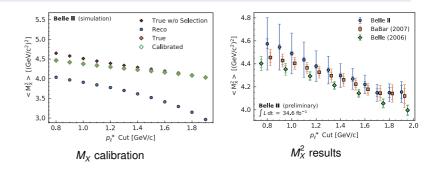

- Shown today: 6 measurements
 - Using up to 1/4 of currently recorded dataset.
 - Untagged BF measurements already competitive thanks to new techniques.
 - Tagged measurements need some more data but more competitive thanks to FEI.
- Soon, Belle II should be able to address the tension in $|V_{cb}|$ and $|V_{ub}|$ measurements.
- Results for R(D^(*)) are approaching and Belle II is aiming for wide coverage.

.....

Backup

Luminosity projection

Institute for Experimental Particle Physics


Tagged inclusive B ightarrow X_c ℓu in detail

• Measurement of first six mass moments $\langle M_X^n \rangle$ of the hadronic system arXiv:2009.04493

$$\langle M_X^n \rangle = rac{\sum_i \omega_i(M_X) M_{X, calibi}^n}{\sum_i \omega_i(M_X)} imes \mathcal{C}_{calib} imes \mathcal{C}_{true}$$

- Background is subtracted with weight ω_i(M_X).
- To avoid unfolding, calibration between true and reconstructed mass is needed.
- Main systematic uncertainty from bias correction C_{true}.
- |V_{cb}| from q² moments (novel approach!) ongoing.

