Status and prospects for rare decays at Belle II

Abdul Basith

Tata Institute Of Fundamental Research, Mumbai (On behalf of the Belle II collaboration)

HQL2021 - The XV International Conference on Heavy Quarks and Leptons University of Warwick, UK Sep 13 - 17, 2021

Abdul Basith

Outline

- Introduction
- Measurement of $B \to K^* \gamma$ branching fraction
- Study of $B o X_s \gamma$
- Study of $B^+ \to K^+ \ell^+ \ell^-$
- Search for $B^+ \to K^+ \nu \bar{\nu}$
- Summary & outlook

SuperKEKB accelerator and Belle II experiment

Abdul Basith

Belle II status

- Collected $213~{\rm fb}^{-1}$ of data since 2019
- Today's results: 63 fb^{-1} at $\Upsilon(4S) + 9 \text{ fb}^{-1}$ off-resonance (60 MeV below the $\Upsilon(4S)$)

World record of luminosity:

$$\rightarrow L = 3.1 \times 10^{34} \text{cm}^{-2} \text{sec}^{-1}$$

 Despite the pandemic, data taking has been very successful:

 $\rightarrow 12 \text{ fb}^{-1}/\text{week}, 40.3 \text{ fb}^{-1}/\text{month}$

Tentative long-term operation plan

Radiative and electroweak penguin B decays

- *B*-decays with flavor changing neutral currents (FCNC), $b \rightarrow s(d)$ transitions
- Forbidden at tree level in the SM and can only proceed via suppressed loop or box-level amplitudes
- BSM model allowing FCNC at tree level or new particles appearing in loop can change branching fractions and/or other observables

Radiative and electroweak penguin decays in Potent SM

Analysis of radiative and electroweak penguin decays

Multivariate analyzer

• A boosted decision tree (BDT) to suppress background from light quark (u,d,s and c) pairs (denoted as $q\bar{q}$ events)

 \rightarrow Use event shape variables and vertex information as input

 \rightarrow A requirement on the BDT output removes most of the $q\bar{q}$ background

 $q\bar{q}$ background is $\sim 10^6$ times more abundant than signal events

Abdul Basith

Measurement of $B \rightarrow K^* \gamma$ branching fraction

- $b
 ightarrow s \gamma$ electroweak amplitude
- Sensitive to new physics particles that can enter the loop
- SM prediction of branching fraction suffers from large uncertainties owing to form factors

Other observables:

$$\begin{split} A_{CP} &= \frac{\Gamma(\bar{B} \to \bar{K}^* \gamma) - \Gamma(B \to K^* \gamma)}{\Gamma(\bar{B} \to \bar{K}^* \gamma) + \Gamma(B \to K^* \gamma)} \\ \Delta_{+0} &= \frac{\Gamma(B^0 \to K^* \gamma) - \Gamma(B^+ \to K^{*+} \gamma)}{\Gamma(B^0 \to K^{*0} \gamma) + \Gamma(B^+ \to K^{*+} \gamma)} \end{split}$$

- Reliably predicted due to form-factor cancellation
- The latest measurement by Belle reported evidence for isospin violation with a significance of 3.1 standard deviations:

$$\label{eq:delta_hole} \begin{split} \Delta_{+0} = [+6.2\pm1.5({\rm stat})\pm0.6({\rm syst})\pm1.2(f_{+-}\,/f_{00})]\% \\ (\mbox{Phys. Rev. Lett. } 119~(2017)~19,~191802) \end{split}$$

$B \rightarrow K^* \gamma$: Analysis overview

• All final states are explicitly reconstructed,

 $K^* \to K^+ \pi^-, \ K^0_S \pi^0, \ K^+ \pi^0, \ K^0_S \pi^+ \ (K^0_S \to \pi^+ \pi^-, \ \pi^0 \to \gamma \gamma)$

• Signal yield is obtained from an unbinned maximum likelihood (ML) fit to $\Delta E~(=E_B^*-\sqrt{s}/2)$ distribution

Dominant background:

- $qar{q}$ events with γ from π^{0} , η decay
- $\rightarrow \pi^0$, η veto using kinematic information by combining hard and soft-photons
- $ightarrow qar{q}$ suppression with BDT

Bkg rejection: 70 -90 % Signal loss: 10-21 %

Abdul Basith

$B \to K^* \gamma$: Fit results

BELLE2-CONF-PH-2021-014

• Studies ongoing for the measurement of *CP* and isospin asymmetries

Mode	B.F (×10 ⁻⁵)
$B^0 ightarrow K^{*0} [K^+ \pi^-] \gamma$	$4.5\pm0.3\pm0.2$
$B^0 ightarrow K^{*0} [K^0_S \pi^0] \gamma$	$4.4\pm0.9\pm0.6$
$B^+ ightarrow K^{*+} [ilde{K}^+ \pi^0] \gamma$	$5.0\pm0.5\pm0.4$
$B^+ ightarrow K^{*+} [K^0_S \pi^+] \gamma$	$5.4\pm0.6\pm0.4$

Abdul Basith

Study of $B \rightarrow X_s \gamma$ with untagged method

• Strong constraint on the Charged Higgs is obtained from $\mathcal{B} (B \to X_s \gamma)$: $M_{H^{\pm}} < 590 \text{ GeV}$

- Reconstruct only γ in the signal-side B meson
- Untagged method: No explicit reconstruction of recoil-side *B* meson
- \rightarrow Higher efficiency & lower purity
- \rightarrow Subtract expected background contributions

Abdul Basith

Study of $B \rightarrow X_s \gamma$ with untagged method

• Photon energy (E^*_{γ}) spectrum is used to extract signal after background suppression

- \rightarrow Monochromatic spectrum is expected for signal
- $ightarrow qar{q}$ is estimated from the off-resonance data
- $\rightarrow B\bar{B}$ background is obtained from simulation
- Background subtracted plot on the bottom

Excess clearly visible in the signal region

Abdul Basith	HQL2021
Status and prospects for rare decays at Belle II	11 / 18

Study of $B^+ \to K^+ \ell^+ \ell^-$

• Tension between the observed and SM-predicted ratio: $\mathcal{R}_{\mathcal{K}} \equiv \mathcal{B}(B^+ \to \mathcal{K}^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to \mathcal{K}^+ e^+ e^-)$, suggests a lepton universality violation arXiv:2103.11769

 \rightarrow Important to have independent measurement of $B^+ \rightarrow K^+ \ell^+ \ell^-$ (with $\ell = e, \mu$)

• $B^+ \to K^+ \ell^+ \ell^-$ is reconstructed from both electron and muon modes

 \rightarrow Similar electron and muon reconstruction performances, unlike LHCb

- Background suppression with BDT using event shape variables and vertex information
- Signal selection using two kinematic variables:

$$M_{bc} = \sqrt{E_{\mathrm{beam}}^{*2} - \vec{p}_B^{*2}}, \quad \Delta E = E_B^* - E_{\mathrm{beam}}^*$$

Study of $B^+ \to K^+ \ell^+ \ell^-$

BELLE2-NOTE-PL-2021-005

• 2D unbinned ML fit to $M_{\rm bc} - \Delta E$

Abdul Basith

Search for $B^+ \to K^+ \nu \bar{\nu}$ with a novel inclusive tagging

• $B^+ \rightarrow K^+ \nu \bar{\nu}$ decay is not observed yet:

SM prediction: $\mathcal{B}(B^+ \to K^+ \nu \bar{\nu}) = (4.6 \pm 0.5) \times 10^{-6}$ (Prog.Part.Nucl.Phys. **92** (2017) 50 - 91)

Upper limit on $\mathcal{B}(B^+ \to K^+ \nu \bar{\nu}) < (1.6 \pm 0.5) \times 10^{-5}$ (BaBar 429 fb⁻¹, Phys.Rev.D 87 (2013) 11, 112005)

• Complementary probe of BSM physics scenarios proposed to explain anomalies observed in $b \rightarrow s\ell\bar{\ell}$ transitions (arXiv : 2005.03734), including recent measurement of R_{K} by LHCb (arXiv : 2103.11769)

(PRD 98, 055003 (2018), PRD 102, 015023 (2020), PRD 101, 095006 (2020))

Abdul Basith

$B^+ \to K^+ \nu \bar{\nu}$: Analysis strategies

• All previous studies used an explicit reconstruction of the $B_{\rm tag}$ followed by the signal reconstruction

 \rightarrow Reconstruction efficiency suffers because of the low tagging efficiency:

- \rightarrow Hadronic tagging: $\varepsilon_{\rm sig}.\varepsilon_{\rm tag}\sim 0.04\%$
- \rightarrow Semileptonic tagging: $\varepsilon_{\rm sig}.\varepsilon_{\rm tag}\sim 0.2\%$
- Inclusive tagging:

 \rightarrow Exploit distinct topology and kinematics to achieve higher signal efficiency ($\sim 4\%)$

 \rightarrow Higher efficiency & lower purity

Technique used first time in this channel!

Abdul Basith

$B^+ \rightarrow K^+ \nu \bar{\nu}$: Analysis procedure

• Select highest p_T track as signal kaon candidate

• Use of nested statistical-learning discriminators: $BDT_1 \& BDT_2$ (topology, rest-of-event, missing energy, vertex separation,...)

• Validate the BDT using data of $B^+ \to K^+ J/\psi_{\to(\mu^+\mu^-)}$ decays where the muons are removed and the kaon momentum is reweighed to mimic the signal

• Signal strength is extracted by binned ML fit on the 2D ($p_T(K^+)$, BDT) histogram

• Use off-resonance data to constrain the yield from $q\bar{q}$ processes

$B^+ \rightarrow K^+ \overline{\nu \bar{\nu}}$: Results

• Measured branching fraction $\mathcal{B}(B^{\pm} \to K^{\pm} \nu \bar{\nu}) = [1.9^{+1.3}_{-1.3} (\text{stat})^{+0.8}_{-0.7} (\text{syst})] \times 10^{-5}$

 No significant signal observed; setting upper limit on branching fraction:

 $\mathcal{B}(B^{\pm} \to K^{\pm} \nu \bar{\nu}) < (4.1 \pm 0.5) \times 10^{-5}$ @ 90% CL arXiv:2104.12624 (Accepted to PRL!)

 This result based on the novel inclusive tagging approach already has an impact on the global picture of these decays

• Studies on additional channels $B^0 \to K^{*0} \nu \bar{\nu}$ and $B^0 \to K^0_S \nu \bar{\nu}$ etc. using more data are in preparation!

 $^{[1]}$ assuming the total uncertainty in the branching-fraction scales with $1/\sqrt{L}$

Abdul Basith

Summary and outlook

• First results from Belle II on radiative and electroweak penguin decays with (63 + 9) fb⁻¹ demonstrate the high capabilities of the experiment

- \rightarrow Measurement of $B \rightarrow {\cal K}^* \gamma$ branching fraction <code>BELLE2-CONF-PH-2021-014</code>
- ightarrow Study of $B
 ightarrow X_s \gamma$ BELLE2-NOTE-PL-2021-004
- ightarrow Study of $B^+
 ightarrow K^+ \ell^+ \ell^-$ BELLE2-NOTE-PL-2021-014
- → Search for $B^+ \rightarrow K^+ \nu \bar{\nu}$ with the inclusive tagging method arXiv:2104.12624 (Accepted to PRL!)

• The result on $B^+ \to K^+ \nu \bar{\nu}$ based on a novel inclusive tagging approach already has an impact on the global picture of these decays

• Belle II has recorded 213 ${
m fb}^{-1}$ of data by 2021 summer

• $3\times$ larger sample ready to be analysed while aiming for 400 ${\rm fb}^{-1}$ by 2022 summer (50 ${\rm ab}^{-1}$ over 10 years)

• Interesting results are coming in the near future with more and more channels and improved analysis techniques!

Stav tuned!

Extra Slides

Abdul Basit	h				
Status and	prospects	for rare	decays a	at Belle II	

Summary of the Sensitivities: $B \rightarrow K^* \gamma$

Observables	Belle $0.71 \mathrm{ab^{-1}} (0.12 \mathrm{ab^{-1}})$	Belle II $5 \mathrm{ab^{-1}}$	Belle II $50 \mathrm{ab^{-1}}$
$\Delta_{0+}(B \rightarrow K^* \gamma)$	2.0%	0.70%	0.53%
$A_{CP}(B^0 \to K^{*0}\gamma)$	1.7%	0.58%	0.21%
$A_{CP}(B^+ \to K^{*+}\gamma)$	2.4%	0.81%	0.29%
$\Delta A_{CP}(B \rightarrow K^* \gamma)$	2.9%	0.98%	0.36%
$S_{K^{*0}\gamma}$	0.29	0.090	0.030

Summary of the Sensitivities: $B \rightarrow X_s \gamma$

Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
$\operatorname{Br}(B \to X_s \gamma)_{\operatorname{inc}}^{\operatorname{lep-tag}}$	5.3%	3.9%	3.2%
$\operatorname{Br}(B \to X_s \gamma)_{\operatorname{inc}}^{\operatorname{had-tag}}$	13%	7.0%	4.2%
$\operatorname{Br}(B \to X_s \gamma)_{\text{sum-of-ex}}$	10.5%	7.3%	5.7%
$\Delta_{0+}(B \to X_s \gamma)_{\text{sum-of-ex}}$	2.1%	0.81%	0.63%
$\Delta_{0+}(B \to X_{s+d}\gamma)_{\rm inc}^{\rm had-tag}$	9.0%	2.6%	0.85%
$A_{CP}(B \to X_s \gamma)_{\text{sum-of-ex}}$	1.3%	0.52%	0.19%
$A_{CP}(B^0 \to X_s^0 \gamma)_{\text{sum-of-ex}}$	1.8%	0.72%	0.26%
$A_{CP}(B^+ \to X_s^+ \gamma)_{\text{sum-of-ex}}$	1.8%	0.69%	0.25%
$A_{CP}(B \to X_{s+d}\gamma)_{\rm inc}^{\rm lep-tag}$	4.0%	1.5%	0.48%
$A_{CP}(B \to X_{s+d}\gamma)_{\rm inc}^{\rm had-tag}$	8.0%	2.2%	0.70%
$\Delta A_{CP}(B \to X_s \gamma)_{\text{sum-of-ex}}$	2.5%	0.98%	0.30%
$\Delta A_{CP}(B \to X_{s+d}\gamma)_{\rm inc}^{\rm had-tag}$	16%	4.3%	1.3%

Summary of the Sensitivities: R_K

J. Phys. G: Nucl. Part. Phys. 46 (2019)023001

Summary of the Sensitivities: $B^+ \rightarrow K^+ \nu \bar{\nu}$

Observables	Belle $0.71 \mathrm{ab^{-1}} (0.12 \mathrm{ab^{-1}})$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab^{-1}}$
$Br(B^+ \to K^+ \nu \bar{\nu})$	< 450%	30%	11%
${ m Br}(B^0 o K^{*0} \nu \bar{\nu})$	< 180%	26%	9.6%
${\rm Br}(B^+ \to K^{*+} \nu \bar{\nu})$	< 420%	25%	9.3%
$F_L(B^0 \to K^{*0} \nu \bar{\nu})$	_	_	0.079
$F_L(B^+ \to K^{*+} \nu \bar{\nu})$	_	_	0.077
${\rm Br}(B^0\to\nu\bar\nu)\times 10^6$	< 14	< 5.0	< 1.5
$Br(B_s \to \nu \bar{\nu}) \times 10^5$	< 9.7	< 1.1	_