Results and Prospects of Radiative and Electroweak Penguin Decays at Belle II

Yo Sato on behalf of Belle II collaboration

KEK

SUSY 2021, 23-28 August 2021

Introduction

Radiative and Electroweak penguin decays are flavor-changing neutral current (FCNC), which proceeds via one-loop diagrams in the standard model (SM) and thus suppressed.

□ New physics (NP) can appear in the loop or mediate FCNC at tree level.

SuperKEKB and Belle II experiment

- **\square** Asymmetric e^{-} (7 GeV) e^{+} (4 GeV) collider.
- **C**M-energy is at $\Upsilon(4S)$ resonance, 10.58 GeV \rightarrow Produce $B\overline{B}$ -pair efficiently.
- **D** Precise study of b, c, τ to search NP in the clean experimental environment.

Status of SuperKEKB and Belle II

□ New world record of luminosity :

- $L = 3.1 \times 10^{34} \text{ cm}^{-2} \text{ sec}^{-1}$
- 12 fb⁻¹/week, 40.3 fb⁻¹/month

(KEKB : 2.1x10³⁴ cm⁻² sec⁻¹, 8 fb⁻¹/week, 29.4fb⁻¹/month)

- □ Total integrated luminosity : 213 fb⁻¹
 - >120 fb⁻¹ in Feb-June 2021
 - Today's results :
 62.8 fb⁻¹ at Υ(4S) + 9 fb⁻¹ at off-resonance
 (off-resonance = 60 MeV below the Υ(4S))

Radiative Penguin Decays $b \rightarrow s\gamma$

\square Relatively large branching fraction, $O(10^{-5})$

- Great sensitivity to new heavy particle which can enter the loop.
 - Strong constraint on the Charged Higgs is obtained from $Br(B \rightarrow X_s \gamma)$: $M_{H^{\pm}} < 590 \text{ GeV}$ (Type II, 2HDM) Eur.Phys.J.C 78 (2018) 8, 675

Contents

- □ Measurement of branching fractions of $B \rightarrow K^* \gamma$ BELLE2-CONF-PH-2021-014
- □ Observation of $B \rightarrow X_s \gamma$ BELLE2-NOTE-PL-2021-004

Measurement of branching fractions of $B \rightarrow K^* \gamma$

\Box The cleanest exclusive mode in $b \rightarrow s\gamma$ modes.

□ All final states are explicitly reconstructed,

- $K^*: K^+\pi^-, K^0_S\pi^0, K^+\pi^0, K^0_S\pi^+ (K^0_S \to \pi^+\pi^-, \pi^0 \to \gamma\gamma), 0.817 < M_{K^*} < 0.967 \text{ GeV} (\sim 3\sigma)$
- γ : Cluster of the electromagnetic calorimeter (ECL), 2.25 < $E_{\gamma}^{\text{CM-frame}}$ < 2.85 GeV

Dominant background

 $\Box q\bar{q} (q = u, d, s, c)$ events with γ from π^0, η decay

- π^0 , η veto using kinematic information of combination of hard-/soft-photon.
- Suppressed with MVA using event-shape variables.

$B \rightarrow K^* \gamma$: Fit to ΔE distributions

- □ Signal yield is obtained from unbinned maximum likelihood (ML) fit to Δ*E* distribution : $\Delta E = E_B^{\text{CM-frame}} - \sqrt{s}/2$
 - Signal : Cruijff function + Gaussian.
 - Self-cross-feed (SCF) : Cruijff function.
 - Background (Bkg) has two components
 - $q\bar{q}$: Chebyshev polynomial.
 - Shifted peaking $B\overline{B}$ (e.g. $B \to K\pi\pi\gamma$): Gaussian
- □ The measured values are consistent with the world average values within 1σ (2σ) for neutral (charged) modes.
- Plan to upgrade for the measurement of CPand Isospin- asymmetry.

Mode	Br (fit) x10 ⁻⁵	Br (PDG) x10 ⁻⁵
$B^0 \to K^{*0}[K^+\pi^-]\gamma$	$4.5 \pm 0.3(\text{stat}) \pm 0.2(\text{syst})$	4 10 1 0 25
$B^0 \to K^{*0} \big[K^0_S \pi^0 \big] \gamma$	$4.4 \pm 0.9(\text{stat}) \pm 0.6(\text{syst})$	4.18 <u>+</u> 0.25
$B^+ \to K^{*+} [K^+ \pi^0] \gamma$	5.0 ± 0.5 (stat) ± 0.4 (syst)	
$B^+ \to K^{*+} \left[K_S^0 \pi^+ \right] \gamma$	5.4 ± 0.6 (stat) ± 0.4 (syst)	3.92 <u>+</u> 0.22

Observation of $B \rightarrow X_s \gamma$ with untagged method

- **\square** Reconstruct only γ in the signal side B-meson.
- Untagged method : No explicit reconstruction of other side B-meson.
 - Higher efficiency & lower purity than tagging method.
 - Subtract expected background contributions.
- Photon energy spectrum is used to extract signal component after the background suppression.
 - Monochromatic spectrum is expected for signal.
 - Continuum $(q\bar{q})$ is estimated from data of off-resonance.
 - $B\overline{B}$ is estimated from simulation.
- **D** Excess is clearly visible in the expected region.

Yo Sato (KEK)

Electroweak Penguin Decays $b \rightarrow s\ell^+\ell^-$, $b \rightarrow sv\bar{v}$

- □ Lepton Flavor Universality (LFU) violation in $b \rightarrow s\ell^+\ell^-$ is drawing attention recently.
 - Evidence of LFU violation on $B^+ \rightarrow K^+ \ell^+ \ell^$ from LHCb. **arXiv:2103.11769**
- □ Shed further light on the anomalies by independent measurements on $b \rightarrow s\ell^+\ell^-$ and search for $b \rightarrow s\nu\bar{\nu}$.
 - $b \rightarrow sv\bar{v}$ provide complementary prove of NP that explain $b \rightarrow s\ell^+\ell^-$ anomalies. arXiv:2103.16558

Contents

- □ Study of $B^+ \rightarrow K^+ \ell^+ \ell^-$ BELLE2-NOTE-PL-2021-014
- □ Search for $B^+ \rightarrow K^+ \nu \bar{\nu}$ using an inclusive tagging arXiv:2104.12624

9

 $\square B^+ \rightarrow K^+ \ell^+ \ell^-$ is reconstructed from both electron and muon modes.

- Electron can be reconstructed at similar level of muon at Belle II.
- □ Background is suppressed with MVA using event shape, vertex information...

Measurement of important observables is planed using more upcoming data!

Search for $B^+ \to K^+ \nu \bar{\nu}$ with an inclusive tagging

□ Two undetectable neutrinos in the final state.

 $\square b \rightarrow s \nu \bar{\nu} \text{ decays are not observed yet.}$

- SM : $Br(B^+ \to K^+ \nu \bar{\nu}) = (4.6 \pm 0.5) \times 10^{-6}$ Prog.Part.Nucl.Phys. 92 (2017) 50-91
- Upper limit on $Br(B^+ \to K^+ \nu \bar{\nu})$: <1.6×10⁻⁵ (BaBar 429 fb⁻¹, Phys.Rev.D 87 (2013) 11, 112005)
 - Previous measurements are performed by reconstructing the other side B-meson.
- □ Inclusive tagging method :

No explicit reconstruction of other side B-meson

- Higher efficiency & lower purity.
- Exploit distinct kinematics of signal event.

This method has not been used for this process!

$B^+ \rightarrow K^+ \nu \overline{\nu}$: Analysis procedure

D Select highest p_T track as signal Kaon, K^{\pm}

- **\Box** Train MVA (BDT) to suppress backgrounds using event shape, missing energy, ΔE of the other side B-meson...
 - Two BDT-classifiers are trained, BDT_1 and BDT_2 .
 - Select events with $BDT_1 > 0.9$ and then train BDT_2 .
- BDT performance is validated using data of control mode $B^+ \rightarrow K^+ J/\psi(\rightarrow \mu^+ \mu^-)$.
- □ Signal strength is extracted by binned ML fit on the 2D $(p_T(K^+), BDT_2)$ histogram.
 - Continuum components are constrained using offresonance data.

$B^+ \rightarrow K^+ \nu \overline{\nu}$: Results with the inclusive tagging

- Result of branching fraction is $Br(B^+ \rightarrow K^+ \nu \bar{\nu}) = [1.9^{+1.3}_{-1.3}(\text{stat})^{+0.8}_{-0.7}(\text{syst})] \times 10^{-5}$
 - Competitive with previous results taking into account the difference in the integrated luminosity.
- No significant signal is observed and an upper limit is set on the branching fraction.

 $Br(B^+ \to K^+ \nu \bar{\nu}) = 4.1 \times 10^{-5} \text{ (90\% CL)}$

- The capability of the inclusive tagging approach is demonstrated from the measurement.
 - Study on additional channels $(B^0 \to K^{*0} \nu \bar{\nu}, B^0 \to K_S^0 \nu \bar{\nu})$ using more data is in preparation!

□ Belle II has recorded 213 fb⁻¹ of data by 2021 summer.

First results on radiative and electroweak penguin decays with (63+9) fb⁻¹ demonstrate the high capabilities of the Belle II.

- Measurement of branching fractions of $B \rightarrow K^* \gamma$. BELLE2-CONF-PH-2021-014
- Observation of $B \rightarrow X_s \gamma$. BELLE2-NOTE-PL-2021-004
- Study of $B^+ \rightarrow K^+ \ell^+ \ell^-$. BELLE2-NOTE-PL-2021-014
- Search for $B^+ \rightarrow K^+ \nu \bar{\nu}$ with the inclusive tagging method. arXiv:2104.12624

□ Interesting results are upcoming in near future using more data.

- >3 times more on tape!
- Aiming for ~400 fb⁻¹ by 2022 summer (BaBar : 424 fb⁻¹ at $\Upsilon(4S)$) and 50 ab⁻¹ over ~10 years.

SUSY 2021, 23-28 August 2021