

The Belle II prospects for charmonium and bottomonium studies

Pavel Krokovny Budker INP

- Experiment status
- Charmonia results
- Bottomonia results
- Summary

19-27 August

SuperKEKB collider

- Asymmetric e⁺e⁻ collider
- Energy limit 11.02 GeV (up to 11.24)
- Luminosity goal: 6×10³⁵ cm⁻²s⁻¹
- Belle II goal: collect 50 ab⁻¹

		KEKB		SuperKEKB		units	
	naramete			Зиреткско			
	parameters		LER	HER	LER	HER	anto
	Beam energy	Eb	3.5	8	4	7	GeV
	bg		0.425		0.28		
	Half crossing angle	φ	11 x 1200/5.9		20 41.5		mrad
	Beta functions at IP	β_x^*/β_y^*			60/0.3		mm
	Beam currents	lь	1.64	1.19 🗕	2.5	1.8	А
nt	Luminosity	L	2.1 x 10 ³⁴		6.5 x 10 ³⁵		cm ⁻² s ⁻¹
Lomonosov 2021 Mose							SCOW

Belle II detector

Data taking status

- New luminosity world record $3.1 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ (KEKB: $2.1 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$).
- Data taking efficiency is achieved almost 90%.
- Double available statistics up to 213 fb⁻¹ by 2021a/b physics run.

19-27 August

Lomonosov 2021

Charmonia

Observed States:

- Conventional Charmonium
- Unconventional neutral states
- Unconventional charged states
- Pentaquark candidates

Below kinematic threshold:

mostly bound states of mesons/baryons.

Above threshold:

zoo of complex XYZ states.

[Rev. Mod. Phys. 90 (2018) 15003]

19-27 August

Charmonia production at B factory

B decay: B $\rightarrow K X_{c\bar{c}}$ $J^{PC} = 0^{-+}, 1^{--}, 1^{++}$

Initial-state Radiation (ISR) $J^{PC} = 1^{--}$

Two-photon Process $J^{PC} = 0^{-+}, 0^{++}, 2^{++}, 2^{-+}$

Double charmonium e.g. e+e- $\rightarrow J/\psi X$ [PRL 98, 082001 (2007)]

19-27 August

X(3872)

Observed by Belle

Phys.Rev.Lett. 91 (2003) 262001

Studied by B-Factories, LHCb

Still many puzzles:

decays ratios?

lineshape?

real nature?

19-27 August

Lomonosov 2021

Data Sample: 62.8 fb⁻¹

Reconstruction of final states: $B^{\pm} \rightarrow \pi^{+}\pi^{-} J/\psi(l^{+}l^{-}) K^{\pm}$ and $B^{0} \rightarrow \pi^{+}\pi^{-} J/\psi(l^{+}l^{-}) K_{S}$

Selection: Continuum suppression, Particle Identification, Kinematics criteria: $M_{\pi\pi}$, $M_{bc} = \sqrt{(E^2_{beam} - p_B^2)}$, $|\Delta E| = E_B - E_{beam}$

19-27 August

Lomonosov 2021

X(3872) rediscovery at Belle II

19-27 August

Lomonosov 2021

Charmonium production by ISR

Lomonosov 2021

Reconstruction: $e^+e^- V_{ISR} \rightarrow \pi^+\pi^- J/\psi(l^+l^-)$

- Nominal PID requirements,
- $|M(l^+l^-) m_{J/\psi}| < 75 \text{ MeV/c}^2$,
- $|M^2_{recoil}(\pi^+\pi^-J/\psi)| < 2 \text{ GeV/c}^2$.

Clear observation of ISR $\psi(2S)$ signals.

Next step is Y(4260) rediscovery.

Expecting ~60 total events per 100 fb⁻¹.

19-27 August

How to produce $b\overline{b}$ at e^+e^- collider:

- Directly from e⁺e⁻ : J^{PC}=1⁻⁻ : Y(nS),
- ISR production : J^{PC}=1⁻⁻ : Y(nS),
- Hadronic transitions from Y(nS) through η , $\pi\pi$

 $J^{PC}=1^{--}, 0^{-+}, 1^{+-} \dots : Y(nS), h_b(nS), \eta_b(nS), \dots$

- Radiative transitions from Y(nS) $J^{PC} = 0^{++}, 1^{++}, 2^{++} : \chi_{b}$,
- Electric dipole transition (E1) $J^{PC} = 0^{-1} : \eta_{b}$,
- Hindered magnetic dipole (M1) transitions.

19-27 August

Lomonosov 2021

Bottomonia

Bottomonia

Search exotics by $\pi\pi$, γ , η transitions

19-27 August

Lomonosov 2021

Belle II progress in dipion transitions

- Early Belle II data, 72 fb⁻¹
- Verification of analysis chain for $\pi^+\pi^-l^+l^-$
- Future studies: $M(\pi^+\pi^-)$ in Y(4S) transitions

19-27 August

Lomonosov 2021

0.2 0.3

0.4 0.5

0.6 0.7 0.8 0.9

 $M(\pi^{+}\pi^{-}\mu^{+}\mu^{-}) - M(\mu^{+}\mu^{-}) [GeV/c^{2}]$

1.1 1.2

Belle II potential

- Run at Y(6S) and Y(5S) and high energy scan:
 - · Search for new, predicted, resonances such missing bottomonia, exotic states,
 - · Improve precision of already known process and states: e.g. Zb's,
 - · Measure the effect of the coupled channel contribution,
 - Study $B^{(*)}\overline{B}^{(**)}$ and $Bs^{(*)}\overline{B}s^{(**)}$ threshold regions (challenging for Super-KEKb).

- Run at Y(3S) and Y(2S):
 - · Search for missing $\pi\pi/\eta$ transitions to constrain further theoretical models,
 - Search for new physics: LFV, LFU, new scalars...

19-27 August

Future Plans

- Main focus to collect Y(4S) on-peak data.
- Upcoming non-Y(4S) plans (Nov 2021):
 - 10.751 GeV (10 fb⁻¹): to study $Y_b(10753)$ on-peak,
 - 10.657, 10.706, 10.810 (1+2+3 fb⁻¹): additional points for BB decomposition.
- Expected data: ~400 fb⁻¹ by end of 2021, ~750 fb⁻¹ by summer 2022.
- 9 month upgrade, then data taking till 2026, expected O(10 ab⁻¹).
- After upgrade: 11 GeV (30 fb⁻¹): to study Y(6S) on-peak.
- Future proposals: options for larger Y(6S), Y(3S), Y(5S) datasets.

19-27 August

Summary

- Belle II: next generation B-Factory.
- Charmonia / bottomonia / XYZ is a significant component of the physics program.
- Advantages with unique production, decay modes related to neutrals.
- Planning for non-Y(4S) energies.

- Analysis of early data.
- Rediscoveries of 1⁻⁻ bb states.
- Statistics soon comparable to BaBar/Belle.
- Input welcome from community on 10.75 GeV and other $b\overline{b}$ studies.

19-27 August

