Measurements of Hadronic D and B decays at Belle and Belle II

Yi Zhang on behalf of Belle II collaboration
Fudan University, Shanghai and IJCLab, Orsay
8th September 2021
Current Status of Hadronic D and B decays at **Belle** and **Belle II**

Hadronic D decays
- **BFs and A_{CP} in $D^0 \rightarrow \pi^+\pi^-\eta$, $K^+K^-\eta$ and $\eta\phi$** [Belle]
- **BFs and A_{CP} in $D_S^\pm \rightarrow K^+(\pi^0,\eta)$ and $\pi^+(\pi^0,\eta)$** [Belle]
- **Mixing parameter y_{CP} in $D^0 \rightarrow K_S^0\omega$** [Belle]
- **Dalitz-plot analysis of $D^0 \rightarrow K^-\pi^+\eta$** [Belle]
- **CP violation in $D^0 \rightarrow K^-K^+\pi^-\pi^+$** [Belle]
- **Measurement of D^0 and D^+ lifetimes** [Belle II]

Hadronic B decays
- **$b \rightarrow c$ transition**
 - **Study of $B \rightarrow D^\ast h$ at Belle II** [Belle II]
 - **Measurement of Ratio and BFs in $B^0 \rightarrow D^-h^+$ decay** [Belle]
- **$b \rightarrow s,u$ transitions**
 - **Measurement of time-dependent CP violation parameters in $B^0 \rightarrow K_S^0K_S^0K_S^0$** [Belle]
 - **Measurement of branching fraction and Search for CP Violation in $B \rightarrow \phi\phi K$** [Belle]
 - **Measurement of the BFs of $B \rightarrow \eta'K$ decay** [Belle II]
 - **Search for direct CP-violating asymmetry in $B^0 \rightarrow K^0\pi^0$ decays at Belle II** [Belle II]
 - **Measurement of the BFs of $B^0 \rightarrow \pi^0\pi^0$ decay** [Belle II]
 - **Study of the $B^+ \rightarrow \rho^+\rho^0$ decays** [Belle II]

Topics in red are covered in this talk
BFs and A_{CP} in $D^0 \rightarrow \pi^+\pi^-\eta$, $K^+K^-\eta$ and $\phi\eta$ at Belle

- CP violation in charm physics is observed at LHCb in $D^0 \rightarrow \pi^+\pi^-, K^+K^-$
- Measure CP asymmetries and BFs with an additional η meson

- Fitting the Q-values distributions $Q = M(K^+K^-\eta\pi^+_S) - M(K^+K^-\eta) - m_{\pi^+}$
- The reference mode $B(D^0 \rightarrow K^-\pi^+\eta) = (1.88 \pm 0.05)$%
- 2D fit of M_{KK} -Q for $D^0 \rightarrow \phi\eta$

Branching Fractions results:

$B(D^0 \rightarrow \pi^+\pi^-\eta) = [1.22 \pm 0.02 \text{ (stat.)} \pm 0.02 \text{(syst.)} \pm 0.03(B_{\text{ref}})] \times 10^{-3}$

$B(D^0 \rightarrow K^+K^-\eta) = [1.80^{+0.07}_{-0.06} \text{ (stat.)} \pm 0.04 \text{(syst.)} \pm 0.05(B_{\text{ref}})] \times 10^{-4}$

$B(D^0 \rightarrow \phi\eta) = [1.84 \pm 0.09 \text{(stat.)} \pm 0.06 \text{(syst.)} \pm 0.05(B_{\text{ref}})] \times 10^{-4}$

First observation of color-suppressed decay $D^0 \rightarrow \phi\eta$

- Asymmetries results:

$A_{CP}(D^0 \rightarrow \pi^+\pi^-\eta) = [0.9 \pm 1.2 \text{ (stat.)} \pm 0.4 \text{(syst.)}]\%$

$A_{CP}(D^0 \rightarrow K^+K^-\eta) = [-1.4 \pm 3.3 \text{ (stat.)} \pm 1.0 \text{(syst.)}]\%$

$A_{CP}(D^0 \rightarrow \phi\eta) = [-1.9 \pm 4.4 \text{ (stat.)} \pm 0.6 \text{(syst.)}]\%$

No evidence of CPV found in these decays
BFs and A_{CP} in $D_s^+ \to K^+(\pi^0, \eta)$ and $\pi^+(\pi^0, \eta)$ at Belle

- Measure CP asymmetries in charm physics with higher precision to help improve the theoretical predictions
- Neural network (NN) based on input variables $p(D_s^+)$, $|d_{xy}|$ or dr, $\theta_{heli}(h^+)$, $N(K)$, θ^{thrust} and $\theta(p(D_s^+), \vec{r}_{vtx})$.
- Simultaneously fit for $M_{D_s^+}$ with D_s^{*-}-tagged and untagged D_s^+ samples from 921 fb$^{-1}$ Belle data
- BF of reference mode $B(D_s^+ \to \phi[\to K^+K^-]\pi^+)= (2.24 \pm 0.08)\%$

Asymmetries results:

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>A_{CP}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_s^+ \to K^+\pi^0$</td>
<td>$0.064 \pm 0.044 \pm 0.011$</td>
</tr>
<tr>
<td>$D_s^+ \to K^+\eta\gamma$</td>
<td>$0.040 \pm 0.027 \pm 0.005$</td>
</tr>
<tr>
<td>$D_s^+ \to K^+\eta\gamma_1$</td>
<td>$-0.008 \pm 0.034 \pm 0.008$</td>
</tr>
<tr>
<td>$D_s^+ \to K^+\eta\gamma_2$</td>
<td>$0.021 \pm 0.021 \pm 0.004$</td>
</tr>
<tr>
<td>$D_s^+ \to \pi^+\eta\gamma$</td>
<td>$0.002 \pm 0.004 \pm 0.003$</td>
</tr>
<tr>
<td>$D_s^+ \to \pi^+\eta\gamma_1$</td>
<td>$0.002 \pm 0.006 \pm 0.003$</td>
</tr>
<tr>
<td>$D_s^+ \to \pi^+\eta\gamma_2$</td>
<td>$0.002 \pm 0.003 \pm 0.003$</td>
</tr>
<tr>
<td>$D_s^+ \to \phi\pi^+$</td>
<td>$-$</td>
</tr>
</tbody>
</table>

These results show no evidence of CP violation.

Branching Fractions

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>B/B_{π^+} (%)</th>
<th>B (10$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_s^+ \to K^+\pi^0$</td>
<td>$3.28 \pm 0.23 \pm 0.13$</td>
<td>$0.735 \pm 0.052 \pm 0.030 \pm 0.026$</td>
</tr>
<tr>
<td>$D_s^+ \to K^+\eta\gamma$</td>
<td>$8.04 \pm 0.32 \pm 0.35$</td>
<td>$1.80 \pm 0.07 \pm 0.08 \pm 0.06$</td>
</tr>
<tr>
<td>$D_s^+ \to K^+\eta\gamma_1$</td>
<td>$7.62 \pm 0.29 \pm 0.33$</td>
<td>$1.71 \pm 0.07 \pm 0.08 \pm 0.06$</td>
</tr>
<tr>
<td>$D_s^+ \to K^+\eta\gamma_2$</td>
<td>$7.81 \pm 0.22 \pm 0.24$</td>
<td>$1.75 \pm 0.05 \pm 0.05 \pm 0.06$</td>
</tr>
<tr>
<td>$D_s^+ \to \pi^+\pi^0$</td>
<td>$0.16 \pm 0.26 \pm 0.09$</td>
<td>$0.037 \pm 0.055 \pm 0.021 \pm 0.001$</td>
</tr>
<tr>
<td>$D_s^+ \to \pi^+\eta\gamma$</td>
<td>$85.54 \pm 0.64 \pm 3.32$</td>
<td>$19.16 \pm 0.14 \pm 0.74 \pm 0.68$</td>
</tr>
<tr>
<td>$D_s^+ \to \pi^+\eta\gamma_1$</td>
<td>$83.55 \pm 0.64 \pm 4.37$</td>
<td>$18.72 \pm 0.14 \pm 0.98 \pm 0.67$</td>
</tr>
<tr>
<td>$D_s^+ \to \pi^+\eta\gamma_2$</td>
<td>$84.80 \pm 0.47 \pm 2.64$</td>
<td>$19.00 \pm 0.10 \pm 0.59 \pm 0.68$</td>
</tr>
</tbody>
</table>

No significant signal of $D_s^+ \to \pi^+\pi^0$ is observed and an upper limit is set to be $B(D_s^+ \to \pi^+\pi^0) < 1.2 \times 10^{-4}$.
The CKM angle ϕ_3

- Very precise theoretical prediction $\frac{\delta \phi_3}{\phi_3} \sim 10^{-7}$ \[\text{arxiv:1308.5663}\]
- Test physics beyond SM
- The interference between color-favored and color-suppressed processes can be related:
 \[
 A^{\text{suppr.}}_{B^- \rightarrow D^0 K^-} \frac{A^{\text{favor.}}_{B^- \rightarrow D^0 K^-}}{A^{\text{favor.}}_{B^- \rightarrow D^0 K^-}} = r_B e^{i(\delta_B - \phi_3)}
 \]
 r_B - the magnitude of the ratio of amplitudes; δ_B - strong-phase difference

- 3 main methods to extract ϕ_3:
 - GLW method: CP eigenstates: $K^- K^+, \pi^- \pi^+, K_S^0 \pi^0$
 - ADS method: DCS modes: $K^+ \pi^-, K^+ \pi^- \pi^0$
 - BPGGSZ method: self-conjugate multibody final states: $K_S^0 \pi^+ \pi^-, K_S^0 K^+ K^-, K_S^0 \pi^+ \pi^- \pi^0$

- Foreseen precision of ϕ_3 is expected to be $O(1^\circ)$ (current world-average $\delta \phi \sim 4^\circ$) with the full Belle II dataset of 50 ab^{-1} \[\text{Belle II Physics book: arXiv:1808.10567}\]

First Belle+Belle II combined results for the ϕ_3 in $B^- \rightarrow D^0 (K_S^0 \pi^+ \pi^-) K^-$ will come soon!!!
Study of $B \to D^{(*)} h$ at Belle II

$h = \pi, K$

- The improved measurement of the color-favored hadronic two body decay of B meson helps to a better understanding of QCD effects

- Decay ratio to be extracted:
 \[
 R^{D(*)} = \frac{\Gamma[B\to D^{(*)}K]}{\Gamma[B\to D^{(*)}\pi]} \simeq \tan^2 \theta_C \left(\frac{f_K}{f_\pi} \right)^2
 \]
 which will eliminate some systematic uncertainties

- Unbinned 2D simultaneous fit of ΔE versus C' (right plot) for $B^- \to D^0(K_S^0\pi^+\pi^-)K^-$

 \[
 N_{kaonID<0.6}^{D^{(*)}\pi} = (1 - \kappa_{kaonID>0.6}) N_{Total}^{D^{(*)}\pi}
 \]
 \[
 N_{kaonID>0.6}^{D^{(*)}\pi} = \kappa_{kaonID<0.6} N_{Total}^{D^{(*)}\pi}
 \]
 \[
 N_{kaonID<0.6}^{D^{(*)}K} = (1 - \epsilon_{kaonID>0.6}) R^{D(*)} N_{Total}^{D^{(*)}\pi}
 \]
 \[
 N_{kaonID>0.6}^{D^{(*)}K} = \epsilon_{kaonID>0.6} R^{D(*)} N_{Total}^{D^{(*)}\pi}
 \]

 \(\kappa\)- pion fake rate ; \(\epsilon\)-kaon efficiency

- Results of 62.8 fb$^{-1}$:

 \[
 R^D(B^- \to D^0(K^-\pi^+)h^-) = [7.66 \pm 0.55 \text{(stat.)} + 0.11^{+0.08}_{-0.08} \text{(syst.)}] \times 10^{-2}
 \]
 \[
 R^D(B^- \to D^0(K_S^0\pi^+\pi^-)h^-) = [6.32 \pm 0.81 \text{(stat.)} + 0.09^{+0.11}_{-0.11} \text{(syst.)}] \times 10^{-2}
 \]
 \[
 R^{D*}(B^- \to D^{*0}h^-) = [6.80 \pm 1.01 \text{(stat.)} \pm 0.07 \text{(syst.)}] \times 10^{-2}
 \]
 \[
 R^D(B^0 \to D^- h^+) = [9.22 \pm 0.58 \text{(stat.)} \pm 0.09 \text{(syst.)}] \times 10^{-2}
 \]
 \[
 R^{D*}(B^0 \to D^{*-}K^+) = [5.99 \pm 0.82 \text{(stat.)} + 0.17^{+0.08}_{-0.08} \text{(syst.)}] \times 10^{-2}
 \]
Measurement of Ratio and BFs in $B^0 \to D^- h^+$ decay at Belle $h = \pi, K$

- Similar method refers to Belle II for extracting the signal

- Preliminary Results:

 \[
 R^D = \frac{\Gamma[B^0 \to D^- K^+]}{\Gamma[B^0 \to D^- \pi^+]} = [8.20 \pm 0.20\text{(stat.)} \pm 0.20\text{(syst.)}] \times 10^{-2}
 \]

 \[
 \mathcal{B}(B^0 \to D^- (\to K^+ \pi^- \pi^-) \pi^+) = [2.50 \pm 0.01\text{(stat.)} \pm 0.10\text{(syst.)} \pm 0.04(\mathcal{B}(D \to K^+ \pi^- \pi^-))] \times 10^{-3}
 \]

 \[
 \mathcal{B}(B^0 \to D^- (\to K^+ \pi^- \pi^-) K^+) = [2.05 \pm 0.05\text{(stat.)} \pm 0.08\text{(syst.)} \pm 0.04(\mathcal{B}(D \to K^+ \pi^- \pi^-))] \times 10^{-4}
 \]

 These results are consistent with the previous measurement results.

 Full Belle dataset result (711 fb$^{-1}$)!!

- Previous Results:

 \[
 R^D = \frac{\Gamma[B^0 \to D^- K^+]}{\Gamma[B^0 \to D^- \pi^+]} = [8.22 \pm 0.11\text{(stat.)} \pm 0.25\text{(syst.)}] \times 10^{-2}
 \]

 \[
 \mathcal{B}(B^0 \to D^- \pi^+) = [2.55 \pm 0.05\text{(stat.)} \pm 0.16\text{(syst.)}] \times 10^{-3}
 \]

 \[
 \mathcal{B}(B^0 \to D^- K^+) = [1.89 \pm 0.19\text{(stat.)} \pm 0.10\text{(syst.)}] \times 10^{-4}
 \]

 - LHCb result in JHEP 2013.1(2013)
 - BaBar result in PRD 75(2007) 031101
 - LHCb result in PRL 107(2011) 211801
Measurement of TDCP violation parameters in $B^0 \rightarrow K_S^0 K_S^0 K_S^0$ at Belle

- Pure $b \rightarrow sq\bar{q}$ penguin transition is sensitive to new physics and provide an opportunity of measurement of $\sin 2\phi_1$
- In the previous measurement of $\sin 2\phi_1$, there is 1.6 σ difference between Belle and BaBar result
- Unbinned 3D fit of $\Delta E - M_{bc} - T$(Transformed NN) to extract signal with full Belle dataset(711 fb^{-1})
 \[M_{bc} = \sqrt{E_{beam}^2 - (\Sigma p_i)^2} \quad T = \log\left(\frac{NN - NN_{low}}{NN_{high} - NN}\right) \]
- Time-dependent CP(TDCP) Violation:
 \[\mathcal{A}_{CP} = \frac{P(B^0(\Delta t) \rightarrow f_{CP}) - P(B^0(\Delta t) \rightarrow f_{CP})}{P(B^0(\Delta t) \rightarrow f_{CP}) + P(B^0(\Delta t) \rightarrow f_{CP})} = S\sin(\Delta m\Delta t) + A\cos(\Delta m\Delta t) \]
- Results:
 \[S = -0.71 \pm 0.23 \text{ (stat.)} \pm 0.05 \text{ (syst.)} \]
 \[A = 0.12 \pm 0.16 \text{ (stat.)} \pm 0.05 \text{ (syst.)} \]
 Result improved and 2.5 σ significance of CP violation away from (0,0)
Measurement of the BFs of $B \to \eta'K$ decays at Belle II

- $B \to \eta'K$ decays is dominated by penguin transition, measurement of CP violation is sensitive to new physics in the penguin loop
- Belle II detector well suited for neutral final states
- Aimed for early reconstruction and branching fraction measurement
 1. $B^\pm \to \eta'K^\pm$, with $\eta' \to \eta \pi^+\pi^-$ or $\eta' \to \rho\gamma$
 2. $B^0 \to \eta'K^0$, with $\eta' \to \eta \pi^+\pi^-$ or $\eta' \to \rho\gamma$
- 3D fit of $\Delta E - M_{bc} - C_{S_{\text{var}}}$ (continuum suppression discriminator)
 \[C_{S_{\text{var}}} = \log\left(\frac{FBDT - FBDT_{\text{low}}}{FBDT_{\text{high}} - FBDT}\right) \]
- Results with 62.8 fb$^{-1}$
 \[B(B^\pm \to \eta'K^\pm) = [63.4^{+3.4}_{-3.3} \text{(stat.)} \pm 3.2 \text{(syst.)}] \times 10^{-6} \]
 \[B(B^0 \to \eta'K^0) = [59.9^{+5.8}_{-5.5} \text{(stat.)} \pm 2.9 \text{(syst.)}] \times 10^{-6} \]

The first measurement of branching fractions at Belle II
First search for direct CP-violating asymmetry in $B^0 \rightarrow K^0 \pi^0$ decays at Belle II

- Isospin sum rule

$$I_{K\pi} = A_{K^+\pi^-} + A_{K^0\pi^0} \frac{B(K^0\pi^0)}{B(K^+\pi^-)} \frac{\tau_{B^0}}{\tau_{B^+}} - 2A_{K^+\pi^-} \frac{B(K^+\pi^0)}{B(K^+\pi^-)} \frac{\tau_{B^0}}{\tau_{B^+}} - 2A_{K^0\pi^0} \frac{B(K^0\pi^0)}{B(K^+\pi^-)} \frac{\tau_{B^0}}{\tau_{B^+}}$$

 - Stringent null test of standard model (SM)
 - Sensitive to the presence of non-SM physics

- The reconstruction of K_S^0 and π^0 is challenging in this analysis

- Belle II unique access, major limitation in $I_{K\pi}$ determination

- Flavor tagging is required, fit of $\Delta E - M_{bc}$

- Results with 62.8 fb$^{-1}$:

 $${\cal B}(B^0 \rightarrow K^0\pi^0) = [8.5^{+1.7}_{-1.6} \text{(stat.)} \pm 1.2 \text{(syst.)}] \times 10^{-6}$$

 $${\cal A}(B^0 \rightarrow K^0\pi^0) = -0.40^{+0.46}_{-0.44} \text{(stat.)} \pm 0.04 \text{(syst.)}$$

 First Belle II measurement of the $B^0 \rightarrow K^0\pi^0$ decay
Isospin sum rule Uncertainty projection

- Extrapolate the uncertainty on $I_{K\pi}$ in the next decade
- Future projections with Belle II and LHCb expected luminosities
- Dominant uncertainty coming from $A_{K^0\pi^0}$
- Belle II will play a crucial role in pinning down the $I_{K\pi}$

Grey dashed curve is the case if only $A_{K^+\pi^-}$, $A_{K^+\pi^0}$ and $A_{K^0\pi^+}$ are updated

Red curve is the projection when updates on $I_{K\pi}$ measurements including $A_{K^0\pi^0}$
Measurement of the BFs of $B^0 \rightarrow \pi^0\pi^0$ decay at Belle II

- Unique Belle II capability to this kind of final states to extract CKM angle ϕ_2
- Very challenging:
 - Only neutral final states of two π^0s (only photons to reconstruct)
 - Branching fraction is of $\mathcal{O}(10^{-6})$
- A fast boosted decision-tree (FBDT) training of 20 combined ECL variables is performed to suppress the background photons
- 3D fit of $(\Delta E, M_{bc}, T_c)$ to extract signal

 T_c with 28 input training variables associated with event topology
- Right plots are the signal enhanced projections

Results with 62.8 fb$^{-1}$:

\[N(B^0 \rightarrow \pi^0\pi^0) = (14^{+6.8}_{-5.6}) \]

Signal significance of 3.4 σ

\[B(B^0 \rightarrow \pi^0\pi^0) = (0.98^{+0.48}_{-0.39}(\text{stat.}) \pm 0.27(\text{syst.})) \times 10^{-6} \]

First measurement in Belle II data.

Much improved than Belle report of evidence of 3.4 σ using 140 fb$^{-1}$
Study of the $B^+ \rightarrow \rho^+ \rho^0$ decay at Belle II

- $B \rightarrow \rho\rho$ decays to determine the ϕ_2

- Pion-only final state and broad ρ peak leads to large background

- Spin-0 decays to spin +1 and spin -1, requires angular analysis

- 6D fit including ΔE, T_c and ρ mass to extract the signal; helicity angles to measure fraction f_L of decays with longitudinal polarization

- Results with 62.8 fb$^{-1}$:
 \[
 N(B^+ \rightarrow \rho^+ \rho^0) = 104 \pm 16 \\
 \mathcal{B}(B^+ \rightarrow \rho^+ \rho^0) = (20.6 \pm 3.2 \text{ (stat.)} \pm 4.0 \text{ (syst.)}) \times 10^{-6} \\
 f_L = 0.936^{+0.049}_{-0.041} \text{ (stat.)} \pm 0.021 \text{ (syst.)}
 \]

 First measurement in Belle II data.
 20% better precision than Belle on 78 fb$^{-1}$
 PRL 91, 221801 (2003)
Summary

- First observation of color suppressed $D^0 \rightarrow \eta \phi$ with high statistical significance with Belle data is reported.

- Studies of precise determination of ϕ_3 are ongoing with the brand new Belle II data. Especially the combined result of Belle + Belle II of $B^- \rightarrow D^0(K_S^0\pi^+\pi^-)K^-$ will come soon.

- Belle updated the measurement result of the CPV parameters in $B^0 \rightarrow K_S^0K_S^0K_S^0$ analysis.

- We measure the decay of $B \rightarrow \eta'K$ at Belle II.

- The measurements of isospin sum rule related ingredients are measured with Belle II data.

- Belle II is preparing for a leading role in ϕ_2 measurement.

All the measurements done with Belle II data agree with the known results within uncertainties. With the data-taking carried on, Belle II will lead to more interesting results.

Meanwhile, Belle is still providing fruitful studies and result as well.
Thank you for listening！
感谢聆听！
More info. of $D^0 \to \pi^+ \pi^- \eta, K^+ K^- \eta$ and $\eta \phi$

- **Detail of A_{raw}**
 \[
 A_{raw} = A_{CP}^{D^0 \to f} + A_{FB}^{D^+} + A_{\pi^+}^{\pi^-}
 \]
 The first term is what we want; the second term is the forward-backward asymmetry due to $\gamma - Z^0$ interference and higher-order QED effects in $e^+ e^- \to c\bar{c}$ collision; the third term is asymmetry resulting from a difference in reconstruction efficiencies between π^-_S and π^+_S.

- **The corrected asymmetry is**:
 \[
 A_{corr}(\cos \theta) = A_{CP}^{D^0 \to f} + A_{FB}^{D^+}(\cos \theta)
 \]
 The third term cancel with the weights for $\pi_{soft}(p_T, \cos \theta)$

- **The observable to extract**:
 \[
 A_{CP}(\cos \theta) = \frac{A_{corr}(\cos \theta) + A_{corr}(-\cos \theta)}{2}
 \]
 \[
 A_{FB}(\cos \theta) = \frac{A_{corr}(\cos \theta) - A_{corr}(-\cos \theta)}{2}
 \]

- **Systematic uncertainties**

<table>
<thead>
<tr>
<th>Systematic sources</th>
<th>$B(D^0 \to \pi^+ \pi^- \eta)$</th>
<th>$B(D^0 \to K^+ \pi^- \eta)$</th>
<th>$B(D^0 \to K^+ K^- \eta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID efficiency correction</td>
<td>1.8%</td>
<td>1.9%</td>
<td>1.9%</td>
</tr>
<tr>
<td>Signal PDF</td>
<td>0.3%</td>
<td>0.5%</td>
<td>0.9%</td>
</tr>
<tr>
<td>Background PDF</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Mass resolution calibration</td>
<td>0.1%</td>
<td>0.3%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Yield correction with efficiency map</td>
<td>0.3%</td>
<td>0.7%</td>
<td>–</td>
</tr>
<tr>
<td>MC statistics</td>
<td>0.3%</td>
<td>0.4%</td>
<td>0.4%</td>
</tr>
<tr>
<td>K_S^0 veto</td>
<td>0.1%</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Interference in M_{KK}</td>
<td>–</td>
<td>–</td>
<td>2.5%</td>
</tr>
<tr>
<td>Total syst. error</td>
<td>1.9%</td>
<td>2.1%</td>
<td>3.3%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sources</th>
<th>$\sigma_{ACP}(D^0 \to \pi^+ \pi^- \eta)$</th>
<th>$\sigma_{ACP}(D^0 \to K^+ \pi^- \eta)$</th>
<th>$\sigma_{ACP}(D^0 \to \phi \eta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal and bkg</td>
<td>0.004</td>
<td>0.010</td>
<td>0.006</td>
</tr>
<tr>
<td>cos θ^* binning</td>
<td>0.002</td>
<td>0.004</td>
<td>0.002</td>
</tr>
<tr>
<td>$A_{CP}(\pi_S)$ map</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Total syst. error</td>
<td>0.005</td>
<td>0.011</td>
<td>0.006</td>
</tr>
</tbody>
</table>
More info. Of Ratio and branching fraction in \(B^0 \rightarrow D^- h^+ \) decay

- Most of the systematic effects cancel in the ratio of the BF due to the kinematical similarity of the two decay modes \(B^0 \rightarrow D^- K^+ \) and \(B^0 \rightarrow D^- \pi^+ \)

- The main source of systematic uncertainty is from the \(K/\pi \) identification.

- We assumed all the systematic uncertainties to be independent.

- Total uncertainty is the sum in quadrature of the contribution from individual sources.

<table>
<thead>
<tr>
<th>Source</th>
<th>(R^D)</th>
<th>(B(B^0 \rightarrow D^+ \pi^-))</th>
<th>(B(\bar{B}^0 \rightarrow D^+ K^-))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B(D^+ \rightarrow K^- \pi^+ \pi^+))</td>
<td>-</td>
<td>1.71%</td>
<td>1.71%</td>
</tr>
<tr>
<td>Multiplicative uncertainties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tracking</td>
<td>-</td>
<td>1.40%</td>
<td>1.40%</td>
</tr>
<tr>
<td>MC statistics</td>
<td>-</td>
<td>0.04%</td>
<td>0.04%</td>
</tr>
<tr>
<td>(\Delta N_{BB})</td>
<td>-</td>
<td>1.37%</td>
<td>1.37%</td>
</tr>
<tr>
<td>(f_{00})</td>
<td>-</td>
<td>1.23%</td>
<td>1.23%</td>
</tr>
<tr>
<td>PID efficiency of (K/\pi) (stat.)</td>
<td>0.01%</td>
<td>0.00%</td>
<td>0.31%</td>
</tr>
<tr>
<td>PID efficiency of (K/\pi) (syst.)</td>
<td>0.01%</td>
<td>0.04%</td>
<td>0.64%</td>
</tr>
<tr>
<td>Total multiplicative</td>
<td>0.01%</td>
<td>2.31%</td>
<td>2.42%</td>
</tr>
<tr>
<td>Additive uncertainties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDF parameterisation</td>
<td>(0.199 \times 10^{-2})</td>
<td>(0.040 \times 10^{-3})</td>
<td>(0.028 \times 10^{-4})</td>
</tr>
<tr>
<td>(D^+) mass selection window</td>
<td>(0.002 \times 10^{-2})</td>
<td>(0.058 \times 10^{-3})</td>
<td>(0.047 \times 10^{-4})</td>
</tr>
<tr>
<td>(J/\psi) veto selection</td>
<td>(0.003 \times 10^{-2})</td>
<td>(0.001 \times 10^{-3})</td>
<td>(0.000 \times 10^{-4})</td>
</tr>
<tr>
<td>Fit bias</td>
<td>-</td>
<td>(0.030 \times 10^{-3})</td>
<td>(0.020 \times 10^{-4})</td>
</tr>
<tr>
<td>Total additive</td>
<td>(0.199 \times 10^{-2})</td>
<td>(0.077 \times 10^{-3})</td>
<td>(0.058 \times 10^{-4})</td>
</tr>
</tbody>
</table>
More info. of isospin sum rule

- **Uncertainty projection**

 ![Graph](image)

 \[I_{K\pi} = -0.11 \pm 0.13 \text{ Belle+BaBar+LHCb+Belle II Winter 2021} \]

 - Red curve is the projection when updates on the complete set of \(K\pi \) measurements
 - Grey dashed curve is the case if only \(A_{K^+\pi^-} \), \(A_{K^+\pi^0} \), and \(A_{K^0\pi^+} \) are updated
 - Belle II will play a crucial role in pinning down the \(I_{K\pi} \)

- **Systematic uncertainties of \(B^0 \to K^0\pi^0 \) measurement**

<table>
<thead>
<tr>
<th>Source</th>
<th>(\delta B(%))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracking efficiency</td>
<td>1.8</td>
</tr>
<tr>
<td>(K_S^0) reconstruction efficiency</td>
<td>3.8</td>
</tr>
<tr>
<td>(\pi^0) reconstruction efficiency</td>
<td>13.0</td>
</tr>
<tr>
<td>Continuum-suppression efficiency</td>
<td>2.4</td>
</tr>
<tr>
<td>(N(B\bar{B})) (as written in Eq. 3)</td>
<td>1.4</td>
</tr>
<tr>
<td>Signal model</td>
<td><0.1</td>
</tr>
<tr>
<td>Continuum background model</td>
<td>1.4</td>
</tr>
<tr>
<td>Total</td>
<td>14.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>(\delta A_{K^0\pi^0})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flavor tagging modelling</td>
<td>0.03</td>
</tr>
<tr>
<td>(B^0) mixing parameter (\chi_d)</td>
<td><0.01</td>
</tr>
<tr>
<td>(B)-decay background asymmetry</td>
<td>0.03</td>
</tr>
<tr>
<td>Continuum background asymmetry</td>
<td>0.01</td>
</tr>
<tr>
<td>Total</td>
<td>0.04</td>
</tr>
</tbody>
</table>
BF and direct CP-violation in $B^+ \to K^+\pi^0$ and $\pi^+\pi^0$ decays @Belle II

- Isospin sum rule

$$I_{K\pi} = A_{K^+\pi^-} + A_{K^0\pi^+} \frac{B(K^0\pi^+)}{B(K^0\pi^-)} \tau_{B^+}^T - 2A_{K^+\pi^0} \frac{B(K^0\pi^0)}{B(K^0\pi^-)} \tau_{B^+}^T - 2A_{K^0\pi^0} \frac{B(K^0\pi^0)}{B(K^0\pi^-)} \tau_{B^+}^T$$

I. Stringent null test of standard model (SM)
II. Sensitive to the presence of non-SM physics

- $B(B^+ \to \pi^+\pi^0)$ is an ingredient for an isospin-based determination of ϕ_2 based on $B \to \pi\pi$
- One track + one π^0 can probe π^0 reconstruction and PID separation
- 2D fit of $(\Delta E, M_{bc})$
- Results:

$$B(B^+ \to K^+\pi^0) = [11.9^{+1.1}_{-1.0}(\text{stat.}) \pm 1.6(\text{syst.})] \times 10^{-6}$$
$$B(B^+ \to \pi^+\pi^0) = [5.5^{+1.0}_{-0.9}(\text{stat.}) \pm 0.7(\text{syst.})] \times 10^{-6}$$

$$A(B^0 \to K^+\pi^0) = -0.09 \pm 0.09 \text{ (stat.)} \pm 0.03(\text{syst.})$$
$$A(B^0 \to \pi^+\pi^0) = -0.04 \pm 0.17 \text{ (stat.)} \pm 0.06(\text{syst.})$$
BF and direct CP-violation in $B^0 \rightarrow K^+ \pi^-$, $B^+ \rightarrow K_S^0 \pi^+, \pi^+\pi^-$ decays @Belle II

- Isospin sum rule

$$I_{K\pi} = \left[A_{K^+\pi^-} + A_{K^0\pi^0} \right]/\left[B(K^0\pi^0) \right] = -2A_{K^+\pi^0} B(K^0\pi^0) \tau_B^0 - 2A_{K^0\pi^+} B(K^0\pi^0) \tau_B^+$$

I. Stringent null test of standard model (SM)
II. Sensitive to the presence of non-SM physics

- Two tracks final states can probe PID separation
- One K_S^0 and one track final state can validate the reconstruction of K_S^0
- 2D fit of ($\Delta E, M_{bc}$)

- Results:

$$B(B^0 \rightarrow K^+\pi^-) = [18.0 \pm 0.9 \ (stat.) \pm 0.9 \ (syst.)] \times 10^{-6}$$
$$B(B^+ \rightarrow K^0\pi^+) = [21.4^{+2.3}_{-2.2} \ (stat.) \pm 1.6 \ (syst.)] \times 10^{-6}$$
$$B(B^0 \rightarrow \pi^+\pi^-) = [5.8 \pm 0.7 \ (stat.) \pm 0.3 \ (syst.)] \times 10^{-6}$$

$$A(B^0 \rightarrow K^+\pi^-) = -0.16 \pm 0.05 \ (stat.) \pm 0.01 \ (syst.)$$
$$A(B^0 \rightarrow K^0\pi^+) = -0.01 \pm 0.08 \ (stat.) \pm 0.05 \ (syst.)$$

First Belle II measurement of the $B^- \rightarrow K^0\pi^0$