b → cτν overview and Belle II prospects

Luka Šantelj,
Jozef Stefan Institute and University of Ljubljana
On behalf of the Belle II collaboration

Anomalies and Precision in the Belle II era
Vienna, 6-8.9. 2021
Introduction

- semi-tauonic $b \rightarrow c\tau\nu$ decays provide powerful probes of the Standard Model (SM)

→ NP contributions typically less constrained than in $b \rightarrow c\ell\nu$ ($\ell = e, \mu$)

→ rich spectrum of kinematic observables accessible

→ complementary sensitivities of different modes to various SM extensions

→ far from fully explored, experimentally very challenging

→ in the last decade several measurements indicating enhanced rates of $b \rightarrow c\tau\nu$
compared with the SM predictions.
Observables

Lepton flavor universality tests: \[
\mathcal{R}(H_c) = \frac{\mathcal{B}(B \rightarrow H_c \tau \bar{\nu}_\tau)}{\mathcal{B}(B \rightarrow H_c \ell \bar{\nu}_\ell)} \quad H_C = D^{(*)}, J/\psi \\
\text{normalization}
\]

→ experimentally and theoretically convenient due to cancellation of several uncertainties in the ratio

Kinematic variables: e.g. \[q^2 = (p_B - p_{D^*})^2\] distributions

Polarization fractions: \(\tau\) polarization, \(D^{*-}\) longitudinal polarization

Uncertainties of the SM predictions for \(\mathcal{R}(H_c)\) range from 1% to 3%

→ sensitivity to NP contributions
Measurement basics

- relatively large branching fractions

- but multiple neutrinos in the final state → challenging decay reconstruction

→ determination of initial B momentum allows for evaluation of

\[q^2 = (p_B - p_{D^*})^2 \]
(momentum transfer to leptons)

\[m_{\text{miss}}^2 = (p_B - p_{D^*(\ast)} - p_\ell)^2 \]
(missing mass)

\[E_l^* = (p_\ell \cdot p_B)/m_B \]
(charged lepton energy in B frame)

→ basis for signal / normalization mode separation

- accessible to B factories and LHCb
Measurement basics - B factories

- $e^+ e^- \rightarrow \Upsilon(4S) \rightarrow B \bar{B}$

- fully known initial state + hermetic detector (4π) → tagging techniques

→ in signal/normalization events all particles in an event assigned (to B_{sig} or B_{tag})

background events: larger E_{ECL}
signal vs. normalization: $m_{\text{miss}}^2 + \text{kinematics}$
Measurement basics - LHCb

- tagging not available

- but very large sample of b-hadrons +
 large Lorentz boost +
 excellent vertexing

 → well separated vertices in the decay chain

- if \(\tau \) decay vertex can be reconstructed (e.g. \(\tau \rightarrow (3\pi)\nu \))

 → \(B \) momentum determined up to discrete ambiguity

- for \(\tau \rightarrow \mu\nu\bar{\nu} \) vertex not available

 → rest frame approximation:

\[
(p_B)_z = \frac{m_B}{m_{reco}} (p_{reco})_z
\]
Summary of existing B-factory measurements

<table>
<thead>
<tr>
<th>Hadronic tag with $\tau \rightarrow \ell \nu \bar{\nu}$</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Semi-leptonic tag with $\tau \rightarrow \ell \nu \bar{\nu}$</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Hadronic tag with $\tau \rightarrow \pi \nu$, $\tau \rightarrow \rho \nu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belle τ polarization measurement</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inclusive tag with $\tau \rightarrow \pi \nu$, $\tau \rightarrow \ell \nu \bar{\nu}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belle D^{*-} polarization measurement</td>
</tr>
<tr>
<td>arXiv:1903.03102</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result</th>
<th>BABAR</th>
<th>Belle</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R(D)$</td>
<td>$0.440 \pm 0.058 \pm 0.042$</td>
<td>$0.375 \pm 0.064 \pm 0.026$</td>
</tr>
<tr>
<td>$R(D^*)$</td>
<td>$0.332 \pm 0.024 \pm 0.018$</td>
<td>$0.293 \pm 0.038 \pm 0.015$</td>
</tr>
</tbody>
</table>

| $R(D^*)$ | $0.307 \pm 0.037 \text{(stat)} \pm 0.016 \text{(syst)}$ |
| $P_{\tau}(D^*)$ | $-0.38 \pm 0.51 \text{(stat)}^{+0.21}_{-0.16} \text{(syst)}$ |

| $F_{L,\tau}(D^*)$ | $0.60 \pm 0.08 \text{(stat)} \pm 0.04 \text{(sys)}$ |
Example: Latest $\mathcal{R}(D^{(*)})$ from Belle – Semi-leptonic tag

- using FEI (full event interpretation) for the tag-side $B \to D^{(*)} l \bar{\nu}_l$ reconstruction
- reconstructed signal modes: $D^+ \ell^-, D^0 \ell^-, D^{*+} \ell^-, D^{*0} \ell^- \quad (\ell = e, \mu)$
- combine kinematic variables using BDT: $(\cos \theta_{B,D^{(*)}l}, m^2_{\text{miss}}, E_{\text{vis}}) \to \mathcal{O}_{\text{sig}}$
- $E_{\text{ECL}} - \mathcal{O}_{\text{sig}}$ distributions of all samples are fit simultaneously, constraining $\mathcal{R}(D(\ast)^0) = \mathcal{R}(D(\ast)^+)$.

- Free parameters: signal yields, normalization yields, $B \rightarrow D^{**} l\nu$ yield, feed-down $D(\ast)$.

$$\mathcal{R}(D) = 0.307 \pm 0.037 \text{ (stat)} \pm 0.016 \text{ (syst)}$$

$$\mathcal{R}(D^{\ast}) = 0.283 \pm 0.018 \text{ (stat)} \pm 0.014 \text{ (syst)}$$

Most precise values to date!

Main systematic uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>$\Delta \mathcal{R}(D)$ (%)</th>
<th>$\Delta \mathcal{R}(D^{\ast})$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D^{**} composition</td>
<td>0.76</td>
<td>1.41</td>
</tr>
<tr>
<td>PDF shapes</td>
<td>4.39</td>
<td>2.25</td>
</tr>
<tr>
<td>Feed-down factors</td>
<td>1.69</td>
<td>0.44</td>
</tr>
<tr>
<td>Efficiency factors</td>
<td>1.93</td>
<td>4.12</td>
</tr>
</tbody>
</table>
Summary of existing LHCb measurements

\[\mathcal{R}(D^{*-}) \text{ with } \tau \rightarrow \mu \nu \bar{\nu} \]

\[\mathcal{R}(D^{*-}) = 0.336 \pm 0.027 \text{ (stat)} \pm 0.030 \text{ (syst)} \]

\[\mathcal{R}(D^{*-}) \text{ with } \tau \rightarrow \pi^- \pi^+ \pi^- \nu \]

\[\mathcal{R}(D^{*-}) = 0.291 \pm 0.019 \pm 0.026 \pm 0.013 \]

\[\mathcal{R}(J/\psi) = \frac{\mathcal{B}(B_c \rightarrow J/\psi \tau \bar{\nu}_\tau)}{\mathcal{B}(B_c \rightarrow J/\psi l \bar{\nu}_l)} \]

\[\mathcal{R}(J/\psi) = 0.71 \pm 0.17 \text{ (stat)} \pm 0.18 \text{ (syst)} \]

\[\mathcal{R}(J/\psi)^{SM} = 0.2582 \pm 0.0038 \quad \sim 2\sigma \text{ deviation} \]

- so far \[\mathcal{R}(D) \] not measured: lower \(B \), no \(D^* \) mass constraint, significant \(D^* \) feed-down
Consistency with the SM predictions

\[R(D) - R(D^*) \]

\[\Delta \chi^2 = 1.0 \text{ contours} \]

– present world average of \(R(D) - R(D^*) \) deviates from the SM with significance of \(\sim 3.1\sigma \)
Belle τ polarization measurement

$$P_\tau(D^{(*)}) = \frac{\Gamma^+ - \Gamma^-}{\Gamma^+ + \Gamma^-} \quad \Gamma^\pm - \tau \text{ helicity}$$

SM expectation

Belle D^\ast longitudinal polarization fraction

arXiv:1903.03102

consistent with the SM at 1.6σ
Prospects @ Belle II

- uncertainty in existing B-factory measurements largely statistically dominated

- but increased luminosity at Belle II with higher beam background levels will provide very challenging environment → novel methods

- relevant input to $\mathcal{R}(D^{(*)})$ anomaly already with $\sim 0.5 \text{ ab}^{-1}$ (summer 2022)

fight beam backgrounds with ML methods

expected sensitivity $(\pm \text{stat} \pm \text{syst})$

\[
\begin{array}{ccc}
5 \text{ ab}^{-1} & 50 \text{ ab}^{-1} \\
R_D & (\pm 6.0 \pm 3.9)\% & (\pm 2.0 \pm 2.5)\% \\
R_D^{-} & (\pm 3.0 \pm 2.5)\% & (\pm 1.0 \pm 2.0)\%
\end{array}
\]

PTEP 2019 (12), 123C01, arXiv:1808.10567
Systematic Uncertainty Considerations

Main Systematics in Existing Belle Measurements

<table>
<thead>
<tr>
<th>Source</th>
<th>Belle (Had, ℓ^-) R_D</th>
<th>Belle (Had, ℓ^-) R_{D^*}</th>
<th>Belle (SL, ℓ^-) R_{D^*}</th>
<th>Belle (Had, h^-) R_{D^-}</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC statistics</td>
<td>4.4%</td>
<td>3.6%</td>
<td>2.5%</td>
<td>+4.0%</td>
</tr>
<tr>
<td>$B \rightarrow D^{**} \ell \bar{\nu}_\ell$</td>
<td>4.4%</td>
<td>3.4%</td>
<td>+1.0%</td>
<td>2.3%</td>
</tr>
<tr>
<td>Hadronic B</td>
<td>0.1%</td>
<td>0.1%</td>
<td>1.1%</td>
<td>+7.3%</td>
</tr>
<tr>
<td>Other sources</td>
<td>3.4%</td>
<td>1.6%</td>
<td>+1.8%</td>
<td>5.0%</td>
</tr>
<tr>
<td>Total</td>
<td>7.1%</td>
<td>5.2%</td>
<td>+3.4%</td>
<td>+10.0%</td>
</tr>
</tbody>
</table>

- PDF templates, efficiencies → reducible with larger MC samples
- Dedicated measurements of $B \rightarrow D^{**} \ell \bar{\nu}_\ell$ and exclusive hadronic B decays (e.g. $B \rightarrow D^{*+} \pi^+ X$)
- Improved modeling of $B \rightarrow D^{(*)} \ell/\tau \nu$ form factors, lepton id. efficiencies, etc.
- with hadronic tagging Belle II will also have access to $\mathcal{R}(X_c)$
 → hadronic model independent test of LFU

- with more data other observables will become increasingly important
 → angular correlations, polarizations, asymmetries
 → many of these much easier accessible at Belle II w.r.t LHCb
Prospects @ LHCb

- all existing LHCb measurements use Run 1 data only (3 fb-1)
- statistical uncertainties already at the level of systematic uncertainties
 → many contributions will get reduced with larger data samples
- many updates (+ 6 fb-1 of Run 2 data) + new analyses in progress

- $\mathcal{R}(D^+)$
- $\mathcal{R}(D^*)$ - (electron - muon)
- Combined measurement $\mathcal{R}(D^*) - \mathcal{R}(D^0)$
- $\mathcal{R}(D^{**})$
- $\mathcal{R}(D_s^*)$
- $\mathcal{R}(J/\Psi)$
- $\mathcal{R}(\Lambda^*_c)$
Summary

- semi-tauonic $b \rightarrow c\tau\nu$ decays provide powerful probes of the Standard Model (SM)

- many possible observables → but experimentally challenging

- in the last decade several measurements indicating enhanced rates of $b \rightarrow c\tau\nu$ compared with the SM predictions.

- complementary contributions from B factories and LHCb

- Belle II will provide important contributions to resolution of present anomalies already with $\sim 0.5 \text{ ab}^{-1}$ of collected data (summer 2022)