

Prospects for long-lived particle searches at Belle II.

Torben Ferber (torben.ferber@desy.de) on behalf of the Belle II collaboration

European Physical Society Conference on High Energy Physics (EPS-HEP) 30.07.2021

Super B-factory accelerator: SuperKEKB

- Asymmetric beam energies:
 e.g. 7.0 GeV (e⁻) / 4.0 GeV (e⁺)
- Large crossing angle of 83
- Major upgrade to the acce the KEKB design luminosit^{*} 50 ab⁻¹ (50× Belle))

- 1.5× higher beam currents, 20× smal beam spot (σ_y =50 nm)
- Record: 3.12×10³⁴ cm⁻²s⁻¹ (June 22 2021)
- Total dataset up to now: 213 fb⁻¹

Super B-factory detector: Belle II

Electromagnetic calorimeter (ECL):

Csl(Tl) crystals waveform sampling (energy, time, pulse-shape)

Vertex detectors (VXD):

2 layer DEPFET pixel detectors (PXD) 4 layer double-sided silicon strip detectors (SVD)

Central drift chamber (CDC):

 $He(50\%):C_2H_6$ (50%), small cells, fast electronics

electrons e-

WLSF: wavelength-shifting fiber MPPC: multi-pixel photon counter

Long-lived particle (LLP) signatures

- LLPs from B meson decays:
 - Mediator mass limited by meson mass (~5 GeV)
 - Couplings to top quarks or W bosons (dark Higgs, ALPs)

- LLPs in e⁺e⁻ collisions:
 - Mediator mass limited to collision energy (~10 GeV)
 - Coupling to photons or leptons (dark photons, ALPs)

Long-lived particle performance

- Tracking:
 - Vertex efficiency >30% out to ~60 cm
 - Vertex resolution <100 μ m
- Calorimeter (ECL):
 - Timing resolution ~2ns @ 2GeV
 - No longitudinal segmentation, coarse lateral segmentation \rightarrow no pointing resolution
- Trigger
 - No dedicated displaced vertex track trigger, but can exploit the other B for searches in B decays (at Belle II, B's come from $\Upsilon(4S) \rightarrow B\overline{B}$)
 - Calorimeter triggers are efficient if there are electrons or photons in the final state

B→Kh'

- h' is long-lived
- m_{xx} peak hunt on small smooth background (x = (e), μ , π , K)
- LHCb and Belle II complementary due to very different B momenta, BaBar search is inclusive and recast is not competitive
- Reach towards even smaller mixing angle θ by searching for B \rightarrow K+invisible
 - Recasting existing $B \rightarrow Kvv SM$ limits untrivial (3-body vs 2-body final state)

Belle II collaboration, "Search for $B+\rightarrow K+vv$ decays using an inclusive tagging method at Belle II" (arXiv:2104.1262)

Filimonova, Schäfer, Westhoff, Phys. Rev. D 101, 095006 (2020), arXiv:1911.03490

- not quite at zero background
- resolution and mass asymmetries

B→Ka

- electroweak gauge bosons

$$\Gamma(a \to \gamma \gamma) = \frac{g_{aW}^2 \sin^4 \theta_W M_a^3}{64\pi}$$

general model-dependent

$B \rightarrow Ka at BaBar$

LIMITS ON ALP COUPLING

- The coupling g_{aW} predicts both ALP BF and lifetime
- Use limit on BF as function of lifetime to set limit on q_{aW}

LIVIIS ON ALP COU

 g_{aW}

'e, ICHEP 2020, https://indico.cern.ch/event/868940/contributions/3814877/

Inelastic Dark Matter

five free parameters:

- dark photon mass $m_{A'}$ (fixed relative to $m_{\chi 1}$)
- χ₁ mass (stable dark matter candidate) (scan)
- mass difference $\Delta = m\chi_2 m\chi_1$ (categorical)
- dark coupling α_D (fixed to benchmarks)
- kinetic mixing parameter ε (limit)

Inelastic Dark Matter

GAZELLE

 Study "realistic" dedicated LLP detector near Belle II: GAZELLE*

*GAZELLE is the Approximately Zero-background Experiment for Long-Lived Exotics

- Three benchmarks studied (HNL, iDM, ALPs)
- No significant gain compared to Belle II due to moderate boost, and excellent solid angle coverage and low backgrounds for missing energy searches at Belle II

Summary

- track trigger development has started
- sensitivity for Belle II itself
- Belle II dataset: $B \rightarrow Kh'$, $B \rightarrow Ka$, inelastic DM, dark Higgs, ...

Existing LLP triggers at Belle II rely on calorimeter information, dedicated LLP

Study of a possible dedicated LLP detector GAZELLE revealed excellent LLP

• Multiple searches with LLPs in the final state started using the existing 200 fb⁻¹

Backup

Inelastic Dark Matter and Dark Higgs

Duerr, **TF**, Garcia-Cely, Hearty, Schmidt-Hoberg, J. High Energ. Phys. **2021**, 146 (2021), arXiv:2012.08595

