Prospects for long-lived particle searches at Belle II.

Torben Ferber (torben.ferber@desy.de) on behalf of the Belle II collaboration

European Physical Society Conference on High Energy Physics (EPS-HEP)
30.07.2021
Super B-factory accelerator: SuperKEKB

- Asymmetric beam energies: e.g. 7.0 GeV (e⁻) / 4.0 GeV (e⁺)
- Large crossing angle of 83 mrad
- Major upgrade to the accelerator with 30× the KEKB design luminosity (6×10^{35} cm⁻²s⁻¹, 50 ab⁻¹ (50× Belle))
 - 1.5× higher beam currents, 20× smaller beam spot (σ_y=50 nm)
- Record: 3.12×10^{34} cm⁻²s⁻¹ (June 22 2021)
- Total dataset up to now: 213 fb⁻¹
Super B-factory detector: Belle II

Electromagnetic calorimeter (ECL):
CsI(Tl) crystals
waveform sampling (energy, time, pulse-shape)

Particle Identification (PID):
Time-Of-Propagation counter (TOP) (barrel)
Aerogel Ring-Imaging Cherenkov Counter (ARICH) (FWD)

Vertex detectors (VXD):
2 layer DEPFET pixel detectors (PXD)
4 layer double-sided silicon strip detectors (SVD)

Central drift chamber (CDC):
He(50%):C2H6 (50%), small cells,
fast electronics

K_L and muon detector (KLM):
Resistive Plate Counters (RPC) (outer barrel)
Scintillator + WLSF + MPPC (endcaps, inner barrel)

Magnet:
1.5 T superconducting

Trigger:
Hardware: < 30 kHz
Software: < 10 kHz

DEPFET: depleted p-channel field-effect transistor
WLSF: wavelength-shifting fiber
MPPC: multi-pixel photon counter
Long-lived particle (LLP) signatures

• LLPs from B meson decays:
 • Mediator mass limited by meson mass (~ 5 GeV)
 • Couplings to top quarks or W bosons (dark Higgs, ALPs)

• LLPs in e^+e^- collisions:
 • Mediator mass limited to collision energy (~ 10 GeV)
 • Coupling to photons or leptons (dark photons, ALPs)
Long-lived particle performance

- **Tracking:**
 - Vertex efficiency >30% out to ~60 cm
 - Vertex resolution <100μm

- **Calorimeter (ECL):**
 - Timing resolution ~2ns @ 2GeV
 - No longitudinal segmentation, coarse lateral segmentation → no pointing resolution

- **Trigger**
 - No dedicated displaced vertex track trigger, but can exploit the other B for searches in B decays (at Belle II, B’s come from \(\Upsilon(4S) \rightarrow B\bar{B} \))
 - Calorimeter triggers are efficient if there are electrons or photons in the final state
Prospects for long-lived particle searches at Belle II (Torben Ferber)

B → Kh’

- h' is long-lived
- m_{xx} peak hunt on small smooth background ($x = (e), \mu, \pi, K$)
- LHCb and Belle II complementary due to very different B momenta, BaBar search is inclusive and recast is not competitive
- Reach towards even smaller mixing angle θ by searching for $B \rightarrow K \rightarrow \gamma h'$
- Recasting existing $B \rightarrow K \nu \nu$ SM limits untrivial (3-body vs 2-body final state)

Belle II collaboration, "Search for $B^+ \rightarrow K^+ \nu \nu$ decays using an inclusive tagging method at Belle II" (arXiv:2104.1262)
\[\text{B} \rightarrow \text{Kh}' \]

- Event selection is very clean, but not quite at zero background

- Mild lifetime dependence on mass resolution and mass asymmetries
Prospects for long-lived particle searches at Belle II (Torben Ferber)

$B \rightarrow Ka$

- Search for ALPs that predominantly couple to electroweak gauge bosons
 - Dominant decay for $m_a \ll m_W$ into photons:
 \[
 \Gamma(a \rightarrow \gamma\gamma) = \frac{g_{aW}^2 \sin^4 \theta_W M_a^3}{64\pi}
 \]
 - Light ALPs naturally long-lived, but decay in general model-dependent

\[\begin{array}{c}
\text{Figure 66: Limit on } B^+ \rightarrow K^+ a, a^+ \text{ branching fraction as a function of ALP mass and lifetime from Run 3 data.}
\end{array}\]
Prospects for long-lived particle searches at Belle II (Torben Ferber)

B → Ka at BaBar

![Graph showing the 90% CL limit on the branching fraction for B → K^± a) x BF(a → γγ) vs. m_a (GeV).]

![Diagram illustrating the beam dump and BABAR 90% CL limit.]

References:

2. "Improve limit on g_{aW}."
Inelastic Dark Matter

five free parameters:
- dark photon mass \(m_{A'} \) (fixed relative to \(m_{\chi_1} \))
- \(\chi_1 \) mass (stable dark matter candidate) (scan)
- mass difference \(\Delta = m_{\chi_2} - m_{\chi_1} \) (categorical)
- dark coupling \(\alpha_D \) (fixed to benchmarks)
- kinetic mixing parameter \(\epsilon \) (limit)
Clusters trigger, and the displaced vertex trigger separately for an integrated luminosity of 20 fb$^{-1}$.

Sensitivity of Belle II to the parameter space of inelastic DM for an integrated luminosity of 20 fb$^{-1}$.

Figure 6: Sensitivity of Belle II to the parameter space of inelastic DM for an integrated luminosity of 20 fb$^{-1}$.

$\alpha_D = 0.1, m_\nu = 2.5 m_{\chi_1}, \Delta = 0.05 m_{\chi_1}$

$\alpha_D = 0.1, m_\nu = 2.5 m_{\chi_1}, \Delta = 0.1 m_{\chi_1}$

$\alpha_D = 0.1, m_\nu = 2.5 m_{\chi_1}, \Delta = 1.3 m_{\chi_1}$

$\alpha_D = 0.1, m_\nu = 2.5 m_{\chi_1}, \Delta = 0.4 m_{\chi_1}$

Inelastic Dark Matter

displaced search
invisible search
increased mass splitting
GAZELLE

• Study “realistic” dedicated LLP detector near Belle II: GAZELLE*

 *GAZELLE is the Approximately Zero-background Experiment for Long-Lived Exotics

• Three benchmarks studied (HNL, iDM, ALPs)

• No significant gain compared to Belle II due to moderate boost, and excellent solid angle coverage and low backgrounds for missing energy searches at Belle II

Clean τ production

\Rightarrow HNLs: N

Displaced vertices

\Rightarrow iDM: h'

Rare B decays

\Rightarrow ALPs: a
Summary

• Existing LLP triggers at Belle II rely on calorimeter information, dedicated LLP track trigger development has started

• Study of a possible dedicated LLP detector GAZELLE revealed excellent LLP sensitivity for Belle II itself

• Multiple searches with LLPs in the final state started using the existing 200 fb\(^{-1}\) Belle II dataset: \(B\rightarrow Kh'\), \(B\rightarrow Ka\), inelastic DM, dark Higgs, ...
Backup
Inelastic Dark Matter and Dark Higgs

Prospects for long-lived particle searches at Belle II (Torben Ferber)

$m_{\chi_1}(\text{GeV})$

10^{-1} 10^{0} 10^{1}

$m_A = 4m_{\chi_1}$
$m_H = 1\text{GeV}$
$\theta = 10^{-5}$, $\Delta = m_{\chi_1}$
$\alpha_D = 0.1$

10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{1}$

ϵ

100 fb^{-1} 50 ab^{-1}

HERA

LHeC

BaBar mono γ

EWPT

Thermal relic

$\text{mono-} \gamma$

displaced γ

displaced

$\text{BaBar mono-} \gamma$