## Belle II Recent Results and Prospects

#### Planck 2021 30.06.2021



Bundesministerium für Bildung und Forschung

Thomas Kuhr





# Simon Eidelman

† June 28, 2021

## Search for Tiny Effects

- The standard model of particle physics fails to explain several phenomena
- But we have not found any convincing signals that point to the more general theory
- Have to look closer
- Be smarter
- → Or both



#### Outline

- Experimental conditions
- Recent results
  - Semileptonic decays
  - b  $\rightarrow$  sll transitions
  - Dark matter searches
  - Matter antimatter asymmetries
- Outlook and conclusions

#### SuperKEKB: $e^+e^- \otimes \sqrt{s} \approx 10.6 \text{ GeV}$



#### Belle II Detector

#### TDR: arXiv:1011.0352



## Software and Computing



```
>1M lines of offline software

    CellToolbar

                                                                                                         N C Code
                                                                                         + %
                                                                                               (P)
                                                                                                 PA
                                                                                                       *
                                                                                          In [107]: plt.figure(figsize=(10, 10))
                                                                                                 ax= plt.subplot(211)
 Example: reconstruct B^0 \rightarrow J/\psi(\rightarrow \mu^+\mu^-) K^0_S(\rightarrow \pi^+\pi^-)
                                                                                                 plotargs = dict(bins=100, histtype='step', linewidth=2.0)
                                                                                                 B0.hist(label=r'$B_0$', ax=ax, **plotargs
                                                                                                 B0bar.hist(label=r'$\bar B_0$', ax=ax, **plotargs)
                                                                                                 plt.ylabel('# Entries')
                                                                                                 plt.legend()
 # create Ks -> pi+ pi- list from VO
                                                                                                 ax = plt.subplot(212, sharex=ax)
 # keep only candidates with 0.4 < M(pipi) < 0.6 GeV
                                                                                                 bins = np.linspace(-20, 20, 100)
 fillParticleList('K_S0:pipi', '0.4 < M < 0.6')</pre>
                                                                                                 differences.plot(ls='', marker='.', c=red, ax=ax)
 # reconstruct J/psi -> mu+ mu- decay
                                                                                                 plt.grid(True)
                                                                                                 plt.xlabel(r'$\Delta T$')
 # keep only candidates with 3.0 < M(mumu) < 3.2 GeV
                                                                                                 plt.ylabel(r'Difference between $B_0$ and $\bar B_0$')
                                                                                                 plt.legend().remove()
 reconstructDecay('J/psi:mumu -> mu+:loose mu-:loose', '3.0 < M < 3.2')
                                                                                                    1000
 # reconstruct B0 -> J/psi Ks decay
                                                                                                     800
 # keep only candidates with 5.2 < M(J/PsiKs) < 5.4 GeV</pre>
 reconstructDecay('B0:jspiks -> J/psi:mumu K_S0:pipi', '5.2 < M < 5.4')
                                                                                                  Entries
                                                                                                     600
 # perform BO kinematic vertex fit using only the mu+ mu-
                                                                                                     400
 # keep candidates only passing C.L. value of the fit > 0.0 (no cut)
                                                                                                  #
 vertexRave('B0:jspiks', 0.0, 'B0 -> [J/psi -> ^mu+ ^mu-] K_S0')
                                                                                                     200
 # build the rest of the event associated to the BO
                                                                                                       0
 buildRestOfEvent('B0:jspiks')
                                                                                                 and \bar{B}_0
                                                                                                     200
 # perform MC matching (MC truth asociation). Always before TagV
                                                                                                                                  .
                                                                                                     150
 matchMCTruth('B0:jspiks')
                                                                                                  B_0
                                                                                                     100
                                                                                                      50
 # calculate the Tag Vertex and Delta t (in ps)
                                                                                                       0
 # breco: type of MC association.
 TagV('B0:jspiks', 'breco')
                                                                                                     -50
```

#### Soon to be released as open source

Thomas Kuhr

#### Upyter B2JpsiKshort Last Checkpoint: 5 minutes ago (unsaved changes)





 $\Delta T$ 

#### Event Types





#### Machine induced backgrounds in SVD



#### Complementarity with LHCb

| Property                             | LHCb                              | Belle II              |
|--------------------------------------|-----------------------------------|-----------------------|
| $\sigma_{b\bar{b}}$ (nb)             | ~150,000                          | ~1                    |
| $\int L dt$ (fb <sup>-1</sup> ) goal | ~50 (phase I)                     | ~50,000               |
| Background level                     | High                              | Low                   |
| Typical efficiency                   | Low                               | High                  |
| $\pi^0$ , $K_S$ efficiency           | Low                               | High                  |
| Initial state                        | Not well known                    | Well known            |
| Decay-time resolution                | Excellent                         | Good                  |
| Collision spot size                  | Large                             | Tiny                  |
| Heavy bottom hadrons                 | $B_s$ , $B_c$ , <i>b</i> -baryons | Partly B <sub>s</sub> |
| au physics capability                | Limited                           | Excellent             |
| B-flavor tagging efficiency          | 3.5 - 6%                          | 30%                   |

#### **Reconstruction of Undetected Particles**



- Full reconstruction of  $B_{tag}$  decay in O(10.000) different decay chains with a sequence of BDTs  $\rightarrow$  Full Event Interpretation (FEI)
- → All remaining particles in the event belong to  $B_{sig}$  (→ hermeticity)
- → 4-momentum of  $B_{sig}$  → 4-momentum of undetected particles

## Data Taking Status

- Commissioning run in 2018
- Physics run started 2019
- Collected
   0.2 ab<sup>-1</sup> so far

#### Records:

- L = 3.1 x 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>
   @ June 22, 2021
- ∫L = 12 fb<sup>-1</sup> / week (Belle: 8, BaBar: 5)



#### **FEI** Calibration

#### arXiv:2008.06096 BELLE2-CONF-PH-2020-005



LMU Thomas Kuhr

Planck 2021, 30.06.2021

### Hadronic Moments in $B \rightarrow X_c \ell v$

arXiv:2009.04493 BELLE2-CONF-PH-2020-011



Thomas Kuhr

### Hadronic Moments in $B \rightarrow X_c \ell v$

arXiv:2009.04493 BELLE2-CONF-PH-2020-011



• Results for  $< M_x^n >$  for n=1-6

inclusive measurement

| $p_{\ell}^*$ Cut in GeV/c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.8                                                                                                                                              | 0.9                                                                                                                                                        | 1.0                                                                                                                                                        | 1.1                                                                                                                                              | 1.2                                                                                                                                              | 1.3                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| $\langle M_X^2 \rangle$ in $(\text{GeV}/c1)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.5743                                                                                                                                           | 4.5459                                                                                                                                                     | 4.4902                                                                                                                                                     | 4.4365                                                                                                                                           | 4.3790                                                                                                                                           | 4.3458                                                                                                                                           |
| Stat. error (data)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0146                                                                                                                                           | 0.0151                                                                                                                                                     | 0.0157                                                                                                                                                     | 0.0165                                                                                                                                           | 0.0175                                                                                                                                           | 0.0189                                                                                                                                           |
| Stat. error (signal prob.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0405                                                                                                                                           | 0.0140                                                                                                                                                     | 0.0092                                                                                                                                                     | 0.0071                                                                                                                                           | 0.0017                                                                                                                                           | 0.0003                                                                                                                                           |
| Stat. error (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0431                                                                                                                                           | 0.0206                                                                                                                                                     | 0.0182                                                                                                                                                     | 0.0180                                                                                                                                           | 0.0176                                                                                                                                           | 0.0189                                                                                                                                           |
| Calib. function error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0473                                                                                                                                           | 0.0447                                                                                                                                                     | 0.0427                                                                                                                                                     | 0.0410                                                                                                                                           | 0.0393                                                                                                                                           | 0.0380                                                                                                                                           |
| FEI eff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0340                                                                                                                                           | 0.0201                                                                                                                                                     | 0.0118                                                                                                                                                     | 0.0060                                                                                                                                           | 0.0014                                                                                                                                           | 0.0005                                                                                                                                           |
| PID eff.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0476                                                                                                                                           | 0.0210                                                                                                                                                     | 0.0164                                                                                                                                                     | 0.0109                                                                                                                                           | 0.0060                                                                                                                                           | 0.0046                                                                                                                                           |
| $B \to X_u \ell \nu_\ell BF$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0168                                                                                                                                           | 0.0157                                                                                                                                                     | 0.0151                                                                                                                                                     | 0.0150                                                                                                                                           | 0.0153                                                                                                                                           | 0.0160                                                                                                                                           |
| Bias corr. (stat)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0115                                                                                                                                           | 0.0112                                                                                                                                                     | 0.0110                                                                                                                                                     | 0.0110                                                                                                                                           | 0.0112                                                                                                                                           | 0.0116                                                                                                                                           |
| Bias corr. (model)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2099                                                                                                                                           | 0.1902                                                                                                                                                     | 0.1687                                                                                                                                                     | 0.1446                                                                                                                                           | 0.1254                                                                                                                                           | 0.1106                                                                                                                                           |
| Sys. error (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2239                                                                                                                                           | 0.1985                                                                                                                                                     | 0.1762                                                                                                                                                     | 0.1519                                                                                                                                           | 0.1329                                                                                                                                           | 0.1187                                                                                                                                           |
| Total error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.2280                                                                                                                                           | 0.1996                                                                                                                                                     | 0.1771                                                                                                                                                     | 0.1530                                                                                                                                           | 0.1340                                                                                                                                           | 0.1202                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                            |                                                                                                                                                            |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                  |
| $p_{\ell}^*$ Cut in GeV/c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.4                                                                                                                                              | 1.5                                                                                                                                                        | 1.6                                                                                                                                                        | 1.7                                                                                                                                              | 1.8                                                                                                                                              | 1.9                                                                                                                                              |
| $\frac{p_{\ell}^{*} \operatorname{Cut in GeV}/c}{\langle M_{X}^{2} \rangle \operatorname{in} \left( \operatorname{GeV}/c1 \right)^{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.4<br>4.2980                                                                                                                                    | 1.5<br>4.2691                                                                                                                                              | 1.6<br>4.2209                                                                                                                                              | 1.7<br>4.1483                                                                                                                                    | 1.8<br>4.1493                                                                                                                                    | 1.9<br>4.1547                                                                                                                                    |
| $ \frac{p_{\ell}^{*} \operatorname{Cut} \text{ in } \operatorname{GeV}/c}{\langle M_{X}^{2} \rangle \text{ in } (\operatorname{GeV}/c1)^{2}} $ Stat. error (data)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $     \begin{array}{r}       1.4 \\       4.2980 \\       0.0208     \end{array} $                                                               | 1.5<br>4.2691<br>0.0235                                                                                                                                    | $     \begin{array}{r}       1.6 \\       4.2209 \\       0.0274     \end{array} $                                                                         | 1.7<br>4.1483<br>0.0337                                                                                                                          | $     1.8 \\     4.1493 \\     0.0426 $                                                                                                          | $     \begin{array}{r}       1.9 \\       4.1547 \\       0.0553     \end{array} $                                                               |
| $ \begin{array}{c} \hline p_{\ell}^{*} \operatorname{Cut} \text{ in } \operatorname{GeV}/c \\ \hline \langle M_{X}^{2} \rangle \text{ in } (\operatorname{GeV}/c1)^{2} \\ \hline \operatorname{Stat. \ error \ (data)} \\ \operatorname{Stat. \ error \ (signal \ prob.)} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{r} 1.4\\ 4.2980\\ 0.0208\\ 0.0011 \end{array} $                                                                                  | $\begin{array}{c} 1.5 \\ 4.2691 \\ 0.0235 \\ 0.0017 \end{array}$                                                                                           | $ \begin{array}{r} 1.6\\ 4.2209\\ 0.0274\\ 0.0026\end{array} $                                                                                             | $     \begin{array}{r}       1.7 \\       4.1483 \\       0.0337 \\       0.0054     \end{array} $                                               | $     1.8 \\     4.1493 \\     0.0426 \\     0.0088 $                                                                                            | $ \begin{array}{r} 1.9\\ 4.1547\\ 0.0553\\ 0.0137\end{array} $                                                                                   |
| $ \begin{array}{c} \hline p_{\ell}^* \operatorname{Cut} \text{ in } \operatorname{GeV}/c \\ \hline \langle M_X^2 \rangle \text{ in } (\operatorname{GeV}/c1)^2 \\ \hline \text{Stat. error (data)} \\ \hline \text{Stat. error (signal prob.)} \\ \hline \text{Stat. error (total)} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.4<br>4.2980<br>0.0208<br>0.0011<br>0.0208                                                                                                      | 1.5<br>4.2691<br>0.0235<br>0.0017<br>0.0236                                                                                                                | $ \begin{array}{r} 1.6\\ 4.2209\\ 0.0274\\ 0.0026\\ 0.0275 \end{array} $                                                                                   | $ \begin{array}{r} 1.7\\ 4.1483\\ 0.0337\\ 0.0054\\ 0.0341 \end{array} $                                                                         | $ \begin{array}{r} 1.8\\ 4.1493\\ 0.0426\\ 0.0088\\ 0.0435 \end{array} $                                                                         | $ \begin{array}{r} 1.9\\ 4.1547\\ 0.0553\\ 0.0137\\ 0.0570\\ \end{array} $                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 1.4 \\ 4.2980 \\ 0.0208 \\ 0.0011 \\ 0.0208 \\ 0.0366 \end{array}$                                                             | 1.5         4.2691         0.0235         0.0017         0.0236         0.0355                                                                             | $ \begin{array}{r} 1.6\\ 4.2209\\ 0.0274\\ 0.0026\\ 0.0275\\ 0.0339\end{array} $                                                                           | $ \begin{array}{r} 1.7\\ 4.1483\\ 0.0337\\ 0.0054\\ 0.0341\\ 0.0296\end{array} $                                                                 | 1.8           4.1493           0.0426           0.0088           0.0435           0.0310                                                         | 1.9<br>4.1547<br>0.0553<br>0.0137<br>0.0570<br>0.0303                                                                                            |
| $ \begin{array}{c} \hline p_{\ell}^{*} \operatorname{Cut} \text{ in } \operatorname{GeV}/c \\ \hline \langle M_{X}^{2} \rangle \text{ in } (\operatorname{GeV}/c1)^{2} \\ \hline \operatorname{Stat. } \operatorname{error} (\operatorname{data}) \\ \hline \operatorname{Stat. } \operatorname{error} (\operatorname{signal } \operatorname{prob.}) \\ \hline \\ \hline \operatorname{Stat. } \operatorname{error} (\operatorname{total}) \\ \hline \\ \hline \\ \operatorname{Calib. } \operatorname{function } \operatorname{error} \\ FEI eff \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 1.4 \\ 4.2980 \\ 0.0208 \\ 0.0011 \\ 0.0208 \\ 0.0366 \\ 0.0020 \end{array}$                                                   | $\begin{array}{c} 1.5 \\ 4.2691 \\ 0.0235 \\ 0.0017 \\ 0.0236 \\ 0.0355 \\ 0.0038 \end{array}$                                                             | $\begin{array}{c} 1.6 \\ 4.2209 \\ 0.0274 \\ 0.0026 \\ 0.0275 \\ 0.0339 \\ 0.0050 \end{array}$                                                             | $\begin{array}{c} 1.7 \\ 4.1483 \\ 0.0337 \\ 0.0054 \\ 0.0341 \\ 0.0296 \\ 0.0065 \end{array}$                                                   | $\begin{array}{c} 1.8 \\ 4.1493 \\ 0.0426 \\ 0.0088 \\ 0.0435 \\ 0.0310 \\ 0.0092 \end{array}$                                                   | $\begin{array}{c} 1.9 \\ 4.1547 \\ 0.0553 \\ 0.0137 \\ 0.0570 \\ 0.0303 \\ 0.0134 \end{array}$                                                   |
| $ \begin{array}{c} \hline p_{\ell}^{*} \operatorname{Cut} \text{ in } \operatorname{GeV}/c \\ \hline & \langle M_{X}^{2} \rangle \text{ in } (\operatorname{GeV}/c1)^{2} \\ \hline & \operatorname{Stat. } \operatorname{error} (\operatorname{data}) \\ \hline & \operatorname{Stat. } \operatorname{error} (\operatorname{signal } \operatorname{prob.}) \\ \hline & \operatorname{Stat. } \operatorname{error} (\operatorname{total}) \\ \hline & \operatorname{Calib. } \operatorname{function } \operatorname{error} \\ & \operatorname{FEI} \operatorname{eff.} \\ \\ & \operatorname{PID } \operatorname{eff.} \end{array} $                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 1.4 \\ 4.2980 \\ 0.0208 \\ 0.0011 \\ 0.0208 \\ 0.0366 \\ 0.0020 \\ 0.0037 \end{array}$                                         | $\begin{array}{c} 1.5 \\ 4.2691 \\ 0.0235 \\ 0.0017 \\ 0.0236 \\ 0.0355 \\ 0.0038 \\ 0.0032 \end{array}$                                                   | $\begin{array}{c} 1.6 \\ 4.2209 \\ 0.0274 \\ 0.0026 \\ 0.0275 \\ 0.0339 \\ 0.0050 \\ 0.0035 \end{array}$                                                   | $\begin{array}{c} 1.7 \\ 4.1483 \\ 0.0337 \\ 0.0054 \\ 0.0341 \\ 0.0296 \\ 0.0065 \\ 0.0041 \end{array}$                                         | $\begin{array}{c} 1.8 \\ 4.1493 \\ 0.0426 \\ 0.0088 \\ 0.0435 \\ 0.0310 \\ 0.0092 \\ 0.0051 \end{array}$                                         | $\begin{array}{c} 1.9 \\ 4.1547 \\ 0.0553 \\ 0.0137 \\ 0.0570 \\ 0.0303 \\ 0.0134 \\ 0.0070 \end{array}$                                         |
| $ \begin{array}{c} \hline p_{\ell}^{*} \operatorname{Cut} \text{ in } \operatorname{GeV}/c \\ \hline p_{\ell}^{*} \operatorname{Cut} \text{ in } \operatorname{GeV}/c1)^{2} \\ \hline & \langle M_{X}^{2} \rangle \text{ in } (\operatorname{GeV}/c1)^{2} \\ \hline & \operatorname{Stat. } \operatorname{error} (\operatorname{data}) \\ \hline & \operatorname{Stat. } \operatorname{error} (\operatorname{signal prob.}) \\ \hline & \operatorname{Stat. } \operatorname{error} (\operatorname{total}) \\ \hline & \operatorname{Calib. } \operatorname{function } \operatorname{error} \\ \hline & \operatorname{FEI} \operatorname{eff.} \\ \hline & \operatorname{PID} \operatorname{eff.} \\ & B \to X_{u} \ell \nu_{\ell} \operatorname{BF} \end{array} $                                                                                                                                                                             | $\begin{array}{c} 1.4 \\ 4.2980 \\ 0.0208 \\ 0.0011 \\ 0.0208 \\ 0.0366 \\ 0.0020 \\ 0.0037 \\ 0.0171 \end{array}$                               | $\begin{array}{c} 1.5 \\ 4.2691 \\ 0.0235 \\ 0.0017 \\ 0.0236 \\ 0.0355 \\ 0.0038 \\ 0.0032 \\ 0.0200 \end{array}$                                         | $\begin{array}{c} 1.6 \\ 4.2209 \\ 0.0274 \\ 0.0026 \\ 0.0275 \\ 0.0339 \\ 0.0050 \\ 0.0035 \\ 0.0228 \end{array}$                                         | $\begin{array}{c} 1.7 \\ 4.1483 \\ 0.0337 \\ 0.0054 \\ 0.0341 \\ 0.0296 \\ 0.0065 \\ 0.0041 \\ 0.0283 \end{array}$                               | $\begin{array}{c} 1.8 \\ 4.1493 \\ 0.0426 \\ 0.0088 \\ 0.0435 \\ 0.0310 \\ 0.0092 \\ 0.0051 \\ 0.0358 \end{array}$                               | $\begin{array}{c} 1.9 \\ 4.1547 \\ 0.0553 \\ 0.0137 \\ 0.0570 \\ 0.0303 \\ 0.0134 \\ 0.0070 \\ 0.0503 \end{array}$                               |
| $ \begin{array}{c} \hline p_{\ell}^{*} \operatorname{Cut} \text{ in } \operatorname{GeV}/c \\ \hline \langle M_{X}^{2} \rangle \text{ in } (\operatorname{GeV}/c1)^{2} \\ \hline \text{Stat. error (data)} \\ \hline \text{Stat. error (signal prob.)} \\ \hline \text{Stat. error (total)} \\ \hline \text{Calib. function error} \\ \hline \text{FEI eff} \\ \hline \text{PID eff.} \\ B \rightarrow X_{u} \ell \nu_{\ell} \text{ BF} \\ \hline \text{Bias corr. (stat)} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 1.4\\ 4.2980\\ 0.0208\\ 0.0011\\ 0.0208\\ 0.0366\\ 0.0020\\ 0.0037\\ 0.0171\\ 0.0123\\ \end{array}$                            | $\begin{array}{c} 1.5 \\ 4.2691 \\ 0.0235 \\ 0.0017 \\ 0.0236 \\ 0.0355 \\ 0.0038 \\ 0.0032 \\ 0.0200 \\ 0.0135 \end{array}$                               | $\begin{array}{c} 1.6 \\ 4.2209 \\ 0.0274 \\ 0.0026 \\ 0.0275 \\ 0.0339 \\ 0.0050 \\ 0.0035 \\ 0.0228 \\ 0.0154 \end{array}$                               | $\begin{array}{c} 1.7 \\ 4.1483 \\ 0.0337 \\ 0.0054 \\ 0.0341 \\ 0.0296 \\ 0.0065 \\ 0.0041 \\ 0.0283 \\ 0.0184 \end{array}$                     | $\begin{array}{c} 1.8 \\ 4.1493 \\ 0.0426 \\ 0.0088 \\ 0.0435 \\ 0.0310 \\ 0.0092 \\ 0.0051 \\ 0.0358 \\ 0.0230 \end{array}$                     | $\begin{array}{c} 1.9 \\ 4.1547 \\ 0.0553 \\ 0.0137 \\ 0.0570 \\ 0.0303 \\ 0.0134 \\ 0.0070 \\ 0.0503 \\ 0.0303 \end{array}$                     |
| $\begin{array}{c} \hline p_{\ell}^{*} \operatorname{Cut} \text{ in } \operatorname{GeV}/c \\ \hline \langle M_{X}^{2} \rangle \text{ in } (\operatorname{GeV}/c1)^{2} \\ \hline \text{Stat. error (data)} \\ \hline \text{Stat. error (signal prob.)} \\ \hline \text{Stat. error (total)} \\ \hline \text{Calib. function error} \\ \hline \text{FEI eff} \\ \hline \text{PID eff.} \\ B \rightarrow X_{u} \ell \nu_{\ell} \text{ BF} \\ \hline \text{Bias corr. (stat)} \\ \hline \text{Bias corr. (model)} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 1.4 \\ 4.2980 \\ 0.0208 \\ 0.0011 \\ 0.0208 \\ 0.0366 \\ 0.0020 \\ 0.0037 \\ 0.0171 \\ 0.0123 \\ 0.0920 \end{array}$           | $\begin{array}{c} 1.5 \\ 4.2691 \\ 0.0235 \\ 0.0017 \\ 0.0236 \\ 0.0355 \\ 0.0038 \\ 0.0032 \\ 0.0200 \\ 0.0135 \\ 0.0764 \end{array}$                     | $\begin{array}{c} 1.6 \\ 4.2209 \\ 0.0274 \\ 0.0026 \\ 0.0275 \\ 0.0339 \\ 0.0050 \\ 0.0035 \\ 0.0035 \\ 0.0228 \\ 0.0154 \\ 0.0621 \end{array}$           | $\begin{array}{c} 1.7 \\ 4.1483 \\ 0.0337 \\ 0.0054 \\ 0.0341 \\ 0.0296 \\ 0.0065 \\ 0.0041 \\ 0.0283 \\ 0.0184 \\ 0.0483 \end{array}$           | $\begin{array}{c} 1.8 \\ 4.1493 \\ 0.0426 \\ 0.0088 \\ 0.0435 \\ 0.0310 \\ 0.0092 \\ 0.0051 \\ 0.0358 \\ 0.0230 \\ 0.0328 \end{array}$           | $\begin{array}{c} 1.9 \\ 4.1547 \\ 0.0553 \\ 0.0137 \\ 0.0570 \\ 0.0303 \\ 0.0134 \\ 0.0070 \\ 0.0503 \\ 0.0303 \\ 0.0185 \end{array}$           |
| $ \begin{array}{c} \hline p_{\ell}^{*} \operatorname{Cut} \text{ in } \operatorname{GeV}/c \\ \hline & \langle M_{X}^{2} \rangle \text{ in } (\operatorname{GeV}/c1)^{2} \\ \hline & \operatorname{Stat. } \operatorname{error} (\operatorname{data}) \\ \hline & \operatorname{Stat. } \operatorname{error} (\operatorname{signal } \operatorname{prob.}) \\ \hline & \operatorname{Stat. } \operatorname{error} (\operatorname{total}) \\ \hline & \operatorname{Calib. } \operatorname{function } \operatorname{error} \\ \hline & \operatorname{FEI } \operatorname{eff.} \\ \hline & \operatorname{PID } \operatorname{eff.} \\ & B \to X_{u} \ell \nu_{\ell} \operatorname{BF} \\ & \operatorname{Bias } \operatorname{corr. } (\operatorname{stat}) \\ \hline & \operatorname{Bias } \operatorname{corr. } (\operatorname{model}) \\ \hline & \operatorname{Sys. } \operatorname{error} (\operatorname{total}) \\ \hline \end{array} $ | $\begin{array}{c} 1.4 \\ 4.2980 \\ 0.0208 \\ 0.0011 \\ 0.0208 \\ 0.0366 \\ 0.0020 \\ 0.0037 \\ 0.0171 \\ 0.0123 \\ 0.0920 \\ 0.1013 \end{array}$ | $\begin{array}{c} 1.5 \\ 4.2691 \\ 0.0235 \\ 0.0017 \\ 0.0236 \\ 0.0355 \\ 0.0038 \\ 0.0032 \\ 0.0032 \\ 0.0200 \\ 0.0135 \\ 0.0764 \\ 0.0878 \end{array}$ | $\begin{array}{c} 1.6 \\ 4.2209 \\ 0.0274 \\ 0.0026 \\ 0.0275 \\ 0.0339 \\ 0.0050 \\ 0.0035 \\ 0.0035 \\ 0.0228 \\ 0.0154 \\ 0.0621 \\ 0.0761 \end{array}$ | $\begin{array}{c} 1.7 \\ 4.1483 \\ 0.0337 \\ 0.0054 \\ 0.0341 \\ 0.0296 \\ 0.0065 \\ 0.0041 \\ 0.0283 \\ 0.0184 \\ 0.0483 \\ 0.0664 \end{array}$ | $\begin{array}{c} 1.8 \\ 4.1493 \\ 0.0426 \\ 0.0088 \\ 0.0435 \\ 0.0310 \\ 0.0092 \\ 0.0051 \\ 0.0358 \\ 0.0230 \\ 0.0328 \\ 0.0629 \end{array}$ | $\begin{array}{c} 1.9 \\ 4.1547 \\ 0.0553 \\ 0.0137 \\ 0.0570 \\ 0.0303 \\ 0.0134 \\ 0.0070 \\ 0.0503 \\ 0.0303 \\ 0.0185 \\ 0.0703 \end{array}$ |

#### $\rightarrow$ Step towards a $|V_{cb}|$ measurement

Eur.Phys.J.C 80 (2020) 10, 966

## $B \rightarrow D^* \ell_V$ Branching Fraction

arXiv:2008.10299 BELLE2-CONF-PH-2020-009



 $\mathcal{B}(\overline{B}^0 \to D^{*+} \ell^- \overline{\nu}_l) = \left(4.51 \pm 0.41_{\text{stat}} \pm 0.27_{\text{syst}} \pm 0.45_{\pi_s}\right)\% \quad \text{PDG: (5.06 \pm 0.12) \%}$ 

**MU** Thomas Kuhr

absolute branching fraction





Similar sensitivity for R(K<sup>\*</sup>) and R(X<sub>s</sub>)

 $B \rightarrow K_{VV} \overline{V}$ 



 $B \rightarrow K_{VV} \overline{V}$ 

arXiv:2104.12624 submitted to PRL



 $B \rightarrow K_V \overline{v}$ 



#### Search for Axion Like Particles

PRL 125 (2020) 16, 161806



#### Search for Axion Like Particles

PRL 125 (2020) 16, 161806



Planck 2021, 30.06.2021

#### Search for Axion Like Particles

PRL 125 (2020) 16, 161806



➤ Competitive result with only 0.0004 ab<sup>-1</sup>

## Search for Invisible Z'



#### Signature:

- Two muons and missing momentum
- Peak in recoil mass

Main background:

- tau pair events
  - → cut on transverse recoil momentum

#### PRL 124 (2020) 14, 141801





### Search for Invisible Z'

#### PRL 124 (2020) 14, 141801



#### Search for Invisible LFV Z'



- Signature: muon, electron, missing momentum
- No significant signal in µe recoil mass
- limit on efficiency times cross section

### **CP** Asymmetries



<sub>⊂Ρ</sub>(Κ<sup>∪</sup>π<sup>∪</sup>)

$$I_{K\pi} = \mathcal{A}_{K^{+}\pi^{-}} + \mathcal{A}_{K^{0}\pi^{+}} \frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{+}\pi^{0}} \frac{\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\frac{\mathcal{A}_{K^{0}\pi^{0}}}{\mathcal{B}(K^{+}\pi^{-})} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{0}\pi^{0})} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}$$

- Time integrated measurement:  $\mathcal{P}_{sig}(q) = \frac{1}{2}(1 + q \cdot (1 2w_r) \cdot (1 2\chi_d)\mathcal{A}_{K^0\pi^0})$ Continuum background suppressed with BDT, Flavor  $\triangleright$
- ۲ validated with  $B^0 \rightarrow D^0(\rightarrow K^-\pi^+)\pi^0$ tagging



Planck 2021, 30.06.2021

 $A_{CP}(K^0\pi^0)$ 

arXiv:2104.14871 BELLE2-CONF-PH-2021-001



LMU Thomas Kuhr

Planck 2021, 30.06.2021

 $A_{CP}(K^{U}\pi^{U})$ 



#### **Accelerator Performance Evolution**



### Conclusions

- Belle II produced interesting and competitive results with little data already
- The Belle II physics program is very broad
- New ideas are extending the physics reach
- If new physics is found in the next ten years
   I think the chances are high that Belle II will have to say something about it



# Backup



Planck 2021, 30.06.2021

#### P5'



Planck 2021, 30.06.2021



## Hadronic Moments in $B \rightarrow X_c \ell v$

arXiv:2009.04493 BELLE2-CONF-PH-2020-011

 $\langle M_X^n \rangle = \frac{\sum_i w_i(M_X) M_{X,\text{calib}i}^n}{\sum_i w_i(M_X)} \times \mathcal{C}_{\text{calib}} \times \mathcal{C}_{\text{true}}$ 

Calibration:

- Difference of rec. and true  $M_{\chi}$  in bins of  $E_{miss} p_{miss}$ ,  $X_{mult}$ ,  $p_{\ell}^* \rightarrow M_{\chi, calib}$
- Difference of rec. and true moment  $\rightarrow C_{calib}$
- Difference of true moment with and without event selection  $\rightarrow C_{true}$

