

Belle II: Status and prospects

Yoshiyuki Onuki On behalf of Belle II collaboration Department of Physics University of Tokyo, Japan

Outline

- SuperKEKB and Bellell detector
- Run plan
- Detector performance
- Selected topics
- Summary

SuperKEKB

parameters		КЕКВ		SuperKEKB		unite
		LER	HER	LER	HER	units
Beam energy	Eb	3.5	8	4	7	GeV
bg		0.425		0.28		
Half crossing angle	ф	11 x20 41.5		5	mrad	
Beta functions at IP	$\beta x^* / \beta y^*$	1200/5.9		60/0.3		mm
Beam currents	lb	1.64	1.19 📥	1.5 2.5	1.8	А
Luminosity	L	2.1 x 10 ³⁴		6.5 x 10 ³⁵		cm ⁻² s ⁻¹

- Very strong vertical focusing at the interaction point (IP)
- Increase beam current

Current luminosity

- 2021b run ended July-5.
- New luminosity world record 3.1 x 10³⁴/cm²/sec at off-resonance set on 22nd June 2021 (previous KEKB set 2.1 x 10³⁴/cm²/sec on 2010).
- Data taking efficiency is almost achieved ~90% by improved efficient detector operation. The 2021a/b physics run makes statistics double. Now ∫L ~ 213 fb-1.

Beauty, charm and tau-factory,

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

EM Calorimeter: CsI(TI), waveform sampling (barrel)

Beryllium beam pipe 2cm diameter

Vertex Detector 2 layers Pixel + 4 layers Strip

electron

(7GeV)

Belle II Detector

Central Drift Chamber(CDC) He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics K_L/μ detector:KLM Resistive Plate (barrel) Scint.+WLSF+MPPC (end-caps)

Focusing Aerogel RICH: ARICH Aerogel+HAPD for PID

Time-of-Propagation counter: TOP

Quarz+MCP PMT

Bellell/CDC Belle/CDC

Run plan

- 2021 July-5. Total >213 fb-1
- 2021 Summer shutdown
- 2021 Autumn run.
 - Y(4S) ~400 fb-1(BaBar)
 - 10.75GeV+scan for 10 fb-1 is planned.
- 2022 Summer ~700 fb-1(Belle)
- 2022 Long shutdown1(LS1)
 - Full pixel in the 2nd inner most layer
 - TOP PMT replacement
- 2026 ~15 ab-1
- 2031 ~50 ab-1

BELLE2-NOTE-PL-2020-014

After the calibration factor introduced, DATA/MC agrees in the broad p_{τ} range.

Find a lepton and 2 good tracks with $\Sigma q_i = \pm 1$ Find 4th track that passes $\Sigma q_i = 0$. Count the events where the probe track is found(N4) and not found (N3): $\varepsilon \times A = N4/(N4+N3)$

A: detector acceptance

 ϵ : track reconstruction efficiency

Particle ID

Each PID detector defines likelihood \mathcal{L}_i for each charged particle hypothesis and $\frac{\mathcal{L}_{\ell}}{\mathcal{L}_{e} + \mathcal{L}_{\mu} + \mathcal{L}_{\pi} + \mathcal{L}_{K} + \mathcal{L}_{p}}$ the global likelihood is defined $\mathcal{L} = \Pi \mathcal{L}_i$. $\ell ID =$ The global likelihood ratio of the particle I can be defined : $1.13 \le \theta < 1.57$ [rad], electronID > 0.9 $0.82 \le \theta < 1.16$ [rad], muonID > 0.9 $D^{*+} \to D^0 [K^- \pi^+] \pi^+$ KID **Belle II** 2020 (Preliminary), $\int L dt = 34.6 \, [fb^{-1}]$ **Belle II** 2020 (Preliminary), $\int Ldt = 34.6 \, [fb^{-1}]$ hrobability probability 1.0 0.8 K ID efficiency (data) mis-ID efficiency, mis-ID ⁸⁰ K ID efficiency (MC) 0.8 0.6 Belle II preliminary efficiency, r Ldt = 37.0 fb $/\psi \rightarrow \mu^+ \mu^- - \epsilon(\mu)$ $|\psi \rightarrow e^+e^- - \epsilon(e)$ 0.4 $\rightarrow \mu\mu\nu - \epsilon(\mu)$ $\rightarrow eev - \epsilon(e)$ π mis-ID rate (data) $\rightarrow ee\mu\mu - \epsilon(\mu)$ $ee \rightarrow eeee - \epsilon(e)$ π mis-ID rate (MC) $K_S \rightarrow \pi^+ \pi^- - \text{mis-ID}(\pi \rightarrow \mu)$ $K_s \rightarrow \pi^+ \pi^- - \text{mis-ID}(\pi \rightarrow e)$ 0.2 $^* \rightarrow D^0(K\pi)\pi$ - mis-ID $(\pi \rightarrow \mu)$ $\rightarrow D^0(K\pi)\pi - \text{mis-ID}(\pi \rightarrow e)$ 0.2 0.2 $\tau(3p)\tau(1p) - mis-ID(\pi \rightarrow \mu)$ $\tau(3p)\tau(1p) - mis-ID(\pi \rightarrow e)$ $D^* \rightarrow D^0(K\pi)\pi$ - mis-ID($K \rightarrow \mu$) $D^* \rightarrow D^0(K\pi)\pi$ - mis-ID($K \rightarrow e$) 0.0 2.5 1.5 3.5 0.5 2 3 4.5 0.0 5 Momentum [GeV/c] 5 6 p [GeV/c] p [GeV/c] BELLE2-NOTE-PL-2020-020

Shows good PID separation.

Neutral reconstruction

Vertexing

Pixel detector improves the vertex position resolution.

Flavor identification

Flavor id of tag-side B-meson : B_{tag}^0 or \overline{B}_{tag}^0 ? Wrong flavor tag fraction w can dilute observed CP asymmetry : $A_{CP}^{Obs} = A_{CP}^{Raw}(1 - 2w)$

Flavor tag index : q • r_{FBDT}

The *w* can be estimated by flavor specific decay B^{0} ->D^(*)h mode with $q \cdot r_{FBDT}$

 $\frac{N_{OF} - N_{SF}}{N_{OF} + N_{SF}} = (1 - 2w) \cdot (1 - \chi_d)$

 N_{OF} : opposite flavor in B_{sig} and B_{tag} N_{SF} : same flavor in B_{sig} and B_{tag} χ_d : mixing prob.(W.A. 0.1858±0.0011).

 r_{FBDT} used binning the flavor tag in 7bins to avoid possible MC bias $r_{FBDT}^i \approx 1 - 2w_i$

Effective Tag efficiency: $\varepsilon_{eff} = \Sigma \varepsilon_{tag}^{i} \cdot (1 - 2w_i)^2$ Belle II: $\varepsilon_{eff} = 33.8 \pm 3.6 \pm 1.6 \%$ Belle: $\varepsilon_{eff} = 30.1 \pm 0.4\%$

arXiv:2008.02707

Time-dependent CPV measurement

$B^+ \rightarrow K^+ \nu \nu$ decay w/ inclusive tagging

Axion/ALPS and Z' search

BelleII can explore large parameter space in ALPS and to exploit the favored g-2 band in $L_{\mu}-L_{\tau}$ model.

Summary

- SuperKEKB/Bellell are running stable.
 - Instantaneous L= 3.1×10^{34} /cm/sec recorded.
 - Integrated L_{int}= 213 fb-1 accumulated now.
 - 400 fb-1 @Y(4S) and energy scan are planned in this year.
 - Deepen understanding of our detector
- Various analyses on going
 - Results with better precision than Belle/BaBar will be appeared soon.