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Abstract

Even though the Standard Model of particle physics is a very successful model,

we know that it is incomplete. For example, it does not explain why the world we

see around us is made of matter rather than anti-matter and it does not incorporate

the force of gravity. One extension of the Standard Model is the introduction of

Axion Like Particles, ALPs. ALPs appear in string theories and supersymmetry

and they might explain some astrophysical anomolies. ALPs can be produced in

electron-positron colliders and detected in the specialized detectors built around

their interaction point, like the PEP-II collider and the BABAR detector at the Stan-

ford Linear Accelerator Center. This work presents an un-blinded search for an

ALP that couples exclusively to photons in 5 % of the BABAR data. We search

for an excess in the invariant mass distribution of ALP candidates over a smooth

background. The results are consistent with the data being composed only of Stan-

dard Model background. 90 % credible interval upper limits are set on the ALP

production cross section and coupling constant. These limits exclude previously

unexplored regions of the phase space in the mass range 0.29 GeV/c2 to 5 GeV/c2.

In searches involving photons, it is important to be able to efficiently detect

them while rejecting other types of particles. Many high energy particle detectors

detect photons in electromagnetic calorimeters that are made up of many cells. A

photon interacting with the calorimeter typically leaves a different energy distribu-

tion in the cells than some other particle types, hadrons, for example. Discrimi-

nating variables for photons, based on Zernike moments, are developed in order to

improve the photon identification at Belle II. One of the new variables is found to

be the best at identifying photons among all other such variables used at Belle II

for photons with energies in the energy range most relevant to e+e−→ BB events.
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Lay Summary

The Standard Model of particle physics describes the most basic constituents of

matter and how they interact with each other. Even though it is very successful

and has been experimentally validated to a high degree of accuracy in a multitude

of ways, we know that it is not complete. There exist extensions to the Standard

Model. One of these extensions predicts a new type of particle that interacts with

photons, the particles of light. This work describes a search for this new particle in

data collected by the BABAR experiment. BABAR collided electrons and their anti-

particles, positrons. It was built and run by an international scientific collaboration.

No significant signal is found in the data.

In addition, new variables for identifying photons are implemented for the

Belle II experiment, the scientific successor of BABAR. One of these is found to

perform better than all available alternatives.
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Chapter 1

Introduction

The physics model describing our world in the subatomic level is the standard

model (SM) of particle physics. It is a quantum field theory that describes the

elementary particles that build up all other matter and three out of the four fun-

damental forces that the particles interact through, the electromagnetic, weak, and

strong forces. The SM is a very successful model that manages to explains almost

all of the experimental results collected thus far in particle physics. The most recent

confirmation of the SM was the discovery of the predicted Higgs boson, indepen-

dently by the ATLAS and CMS collaborations, in 2012 [7, 8]. For their theoretical

prediction of the Higgs boson, Peter Higgs and François Englert were awarded the

2013 Nobel prize in physics.

Even though the SM is so successful, there are things it does not explain and

so is not a “theory of everything”. We know that there exist new physics, physics

beyond the standard model.

One example of an unexplained phenomena is the amount of baryon asymme-

try. Baryons are composite particles made up of three quarks or three anti-quarks.

The difference between the number of baryons and the number of anti-baryons is

called the baryon asymmetry. The world we see around us is made up of baryons

rather than anti-baryons. There is therefore a baryon asymmetry in nature. A

necessary condition for baryon asymmetry is CP violation [9], where C is charge

conjugation and P is parity. The SM contains some CP violating effects in the weak

interactions, but these are not enough to explain the baryon asymmetry we see
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around us.

The SM also does not explain what can constitute dark matter. Dark matter

is matter that does not emit or absorb light [10]. One of the first evidence for

its existence was from galaxy rotation curves, plots of star velocities versus their

distance from the center of the galaxy they belong to. These rotation curves showed

that the star velocities seemed to deviate from predictions of Newtonian gravity.

One of the explanations for this deviation is that the galaxies contain additional

matter, dark matter, that does not emit light but has a mass that affects the star

velocities. None of the SM particles can take the role of dark matter [11].

Furthermore, the SM does not address the strong CP problem, which will be

discussed later in this chapter, and it does not incorporate the force of gravity into

the model.

One of the places new physics can be searched for is in the data collected by

the B Factories, the BABAR and Belle experiments. The PEP-II accelerator for the

BABAR experiment at SLAC and the KEKB accelerator for the Belle experiment

at KEK were e+e− colliders [12], that operated between the late 1990s to the late

2000s [13]. They had successful physics programs which culminated with the first

observation of direct CP violation in the B meson system [14, 15]. For predicting

the existence of this phenomena, the 2008 Nobel prize in physics was awarded to

Makoto Kobayashi and Toshihide Maskawa.

Even though the B Factories discovered CP violation in the B system, it is not

enough to explain the matter anti-matter asymmetry we see in nature. An additional

possible source of CP violation is the strong force. The quantum chromodynamics

(QCD) Lagrangian has a CP violating term −(αs/8π) Θ̄ GµνG̃µν , where αs is the

strong coupling constant, G is the gluonic field strength, and −π ≤ Θ̄ ≤ π is an

effective parameter after diagonalizing the quark masses [10]. Even though there is

no theoretical reason Θ̄ should be small, experimental limits on the neutron electric

dipole moment [16] imply that |Θ̄|. 10−10. The fact that the strong force lacks CP

violating effects, even though they are allowed in principle is termed the strong CP

problem.

A possible solution to this problem is that CP in the strong force is protected

by a new global U(1)PQ symmetry [10]. This is known as the Peccei-Quinn mech-

anism [17, 18]. The new field φA is spontaneously broken creating a pseudo
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Nambu-Goldstone boson, the axion. The axion’s coupling to gluons adds a new

term to the Lagrangian (φAαs)/(8π fA) GµνG̃µν , where fA is the axion’s decay

constant. If fluctuations in the gluon fields create a potential for φA with a min-

imum at φA = Θ̄ fA, the new term exactly cancels the CP violating term in the

QCD Lagrangian making it CP conserving. For the axion mA fA ≈ fπmπ , where

mπ = 135 MeV/c2 is the pion mass and fA ≈ 92 MeV its decay constant. A more

precise calculation produces [10]

mA = 5.7×10−3
(

GeV
fA

)
GeV/c2. (1.1)

The axion’s coupling constant to photons gAγγ depends on the choice of electro-

magnetic and color anomalies of the axial current associated with the axion [10],

but is roughly gAγγ ∼ 10−3(GeV/ fA)GeV [19]. Because heavier axions have a

stronger coupling to photons, axions heavier than ∼ 10 meV/c2 have been experi-

mentally excluded [19]. The axion is a dark matter candidate and, depending on its

mass, can account for part or all of the dark matter content of the universe. Thus,

it may simultaneously solve the strong CP problem and account for dark matter at

the same time [20].

Axions are searched for both in dedicated experiments and by analyzing astro-

physical observations. Light shining through walls experiments shine photons into

a strong magnetic field divided into two regions by an optically opaque wall. The

photons from the laser can interact with the virtual photons of the magnetic field

and convert to axions, but they can not pass through the wall. The axion can pass

through the wall and interact with the second part of the magnetic field converting

back into a photon. The OSQAR experiment set limits on the axion’s coupling to

photons of gAγγ < 3.5×10−8 GeV−1 in the sub meV range using two 9 T Large

Hadron Collider dipole magnets and an 18.5 W laser [10].

If axions are produced in the sun they carry energy and momentum with them

and so require more nuclear energy production compared to the scenario in which

they are not produced in order to account for the same photon flux. The increased

energy production increases the neutrino flux. Measurements of the all-flavor neu-

trino flux and of the photon flux are used to set limits on the axion’s coupling to

photons of gAγγ < 4.1×10−10 GeV−1 at the 3σ level [10]. Even tighter limits can
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be set by analysing stars in globular clusters, spherical groups of stars tightly bound

by gravity. Stars in the cluster that have a burning helium core are recognizable be-

cause they have a brightness that depends only weakly on their mass. They are

called horizontal branch stars. If an axion exists, it increases the helium consump-

tion in the core, reducing the lifetime of the horizontal branch stars. Red giants

are a different class of stars in globular clusters in which a helium core exits but is

not burning. The red giant’s lifetime is less sensitive to the existence of the axion.

By counting the number of horizontal branch stars and the number of red giants

in thirty-nine globular clusters a limit on the axion’s coupling to photons is set to

gAγγ < 6.6×10−11 GeV−1 at 95 % confidence level [10].

Another class of experiments tries to detect axions produced in the sun by

detectors on earth. The CAST experiment uses a decommissioned large hadron

collider dipole magnet on a mount tracking the sun. Axions interacting with the

magnetic field convert to x-ray photons which can be detected by solid-state detec-

tors. CAST set limits on the coupling constant of gAγγ < 6.6×10−11 GeV−1 [10].

The ADMX experiment searches for axions from the galactic halo. It uses a high

quality factor microwave resonant cavity in an external static 8 T magnetic field.

Axions interacting with the magnetic field can convert to photons inside the cavity

producing a spike in the power, which can be detected [10].

Axion like particles (ALPs) are a generalization of axions where the mass and

coupling constant are independent of each other [10] and they do not necessar-

ily couple to gluons. ALPs appear in string compactifications and in models with

broken supersymmetry as the R-axion. Similarly to axions, they can influence the

evolution of stars [21]. The ALP is also a dark matter candidate, but it has to have a

lifetime greater than the age of the universe in order to account for the dark matter

in galaxies [22]. It would therefore decay outside the BABAR detector. ALPs below

the MeV/c2 scale can play a role in astrophysics and cosmology. They can affect

big bang nucleosynthesis which is the production of nuclei in the early stages of the

universe [21]. The ALP can modify the cosmic microwave background by rotating

the polarization of the photons [23].

ALPs might explain some astrophysical anomalies, for example, the observa-

tion that some stellar systems like red giants, horizontal branch stars and white

dwarfs show a weak tendency for non-standard cooling mechanisms compared to
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theoretical models. These could be explained by the production of ALPs, which

introduces a new way of cooling these objects [24]. White dwarfs are stars where

fusion has ended and they have an inactive, degenerate core. ALPs might also ex-

plain why the universe is surprisingly transparent to γ-rays with energies above

100 GeV. These high energy photons are expected to interact with the extragalac-

tic background light, the starlight integrated over all epochs and starlight absorbed

and re-emitted by dust in galaxies, and produce an electron-positron pair. If the

source of these γ-rays is sufficiently far and the energy high enough, the universe

is expected to be opaque to them. But observations seem to suggest that the uni-

verse is more transparent to these γ-rays than what the models predict. If an ALP

exists, the γ-rays can interact with the extragalactic background light and produce

an ALP. The ALP can then travel cosmological distances before converting back to

a γ-ray. This mechanism would decrease the opacity of the universe to these high

energy photons [25].

ALPs spanning a mass range tens orders of magnitude have been considered,

from 10−32 GeV/c2 [26] up to 103 GeV/c2 [27]. ALPs are typically thought to cou-

ple to gauge bosons, mostly to photons. This is due to the mixing of the ALP

with the SM pseudo-scalars, the π0 and η , which predominately couple to photons

[10]. ALPs that couple to fermions can lead to flavor changing processes and are

thus more strongly constrained experimentally [28]. Models where the ALP cou-

ples exclusively to photons include two parameters. The ALP mass mALP and the

ALP-photon coupling constant gγγ [21].

For BABAR, the relevant ALP mass range is roughly 0.1 GeV/c2 to 10 GeV/c2.

Previous limits around this mass range have been set with beam dump experiments

and with colliders. Published results from proton [29] and electron [21] beam

dumps have been re-interpreted to set limits on the ALP phase space. NA64 is an

electron beam dump experiment that performed a search for an ALP with the data

they collected [30]. In these beam dump experiments, the proton or electron radi-

ates a photon which interacts with a nucleus of a target and converts into an ALP via

the Primakoff effect [31]. The ALP passes through an absorber, designed to absorb

background SM particles, before finally decaying in a decay volume. The resulting

photons can then be detected. Photons from a photon beam can interact with the

nucleus of a target via the Primakoff process and produce an ALP. PrimEx [32]
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analyzed such data to measure the π0 photoproduction differential cross section.

An example di-photon invariant mass histogram for one of the angular bins in the

PrimEx paper is reinterpreted in [33] to set limits on the ALP parameter space.

Results from collider experiments have been used to set limits in the relevant

ALP mass range. Published LEP2 results of e+e−→ γγ events are reinterpreted in

order to search for an ALP [34]. The center of mass energy (CME) at LEP2 was

much higher than the ALP masses considered here, causing the ALP to be highly

boosted. The two photon daughters of the ALP hit the calorimeter close to each

other and are reconstructed as a single photon. If the ALP is long lived and decays

outside the detector, the signature of the event is a single photon and missing en-

ergy and momentum. This fact is used in [21] to reinterpret a BABAR search for dark

photons e+e−→ γ + invisible to set limits on the ALP [21]. Recently, the Belle II

collaboration published [1] a very similar analysis to the one described in Chapter 3

which set limits on the ALP in the same mass range as the one considered in this

work. The size of the dataset collected by Belle II is smaller than the one used in

Chapter 3 and therefore the limits set here are more restrictive than the Belle II lim-

its. At the highest energies relevant to this search, the CMS collaboration set limits

on the ALP by analyzing fourteen events involving light-by-light (γγ→ γγ) scatter-

ing in lead ion collisions [35]. Light-by-light in the SM at leading order involves

box diagrams with virtual charged particles. The cross section (CS) for these is sup-

pressed because of the α4 term, where α is the quantum electrodynamics coupling

constant.

The BABAR detector and the PEP-II collider will be described in Chapter 2.

Chapter 3 will describe a search for an ALP with the data collected by BABAR.

In searching for an ALP coupled to photons in a particle accelerator, it is im-

portant to be able to discriminate between photons and other particles. In most

high energy particle physics detectors photons are measured in electromagnetic

calorimeters which are typically made up of multiple cells, each one measuring

the energy deposited by the electromagnetic shower initiated by the interaction of

the incident particle with the detector material. The pattern of energies deposited

in the cells of the calorimeter by a photon can be different from the energy pat-

tern deposited by a different particle, a hadron, for example. This fact is used to

develop discriminating variables between photons and hadrons, based on Zernike
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moments and machine learning techniques, at the Belle II experiment. The Belle II

detector, together with the SuperKEKB collider, are upgrades to the Belle detector

and KEKB collider, respectively. The instantaneous luminosity of SuperKEKB is

planned to reach almost 40 times higher than that of KEKB [36]. Belle II started

taking date in 2018. Chapter 4 will describe work done to develop these new dis-

criminating variables.

Chapter 5 presents the conclusions of this thesis.
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Chapter 2

The BABAR experiment

The BABAR experiment operated between 1999 to 2008 at the SLAC National Ac-

celerator Laboratory. The experiment is composed of the PEP-II collider and the

BABAR detector. The experiment is described in detail in [5, 6, 37, 38].

The main goal of the BABAR experiment is the study of CP asymmetries in

B meson decays. A secondary goal is to study other B physics, charm physics,

tau physics, two photon physics, and ϒ physics. The detector is optimized for

CP asymmetry studies, but also allows to perform research into the other types of

physics.

Most of the data taken by BABAR was at a CME of 10.58 GeV corresponding to

the mass of the ϒ (4S). The ϒ (4S) decays almost exclusively to B0B̄0 and B+B−.

This ensures a unique opportunity to study these B mesons. About 0.7×109 BB

mesons pairs were collected throughout the life of the experiment. 6 % of the data

was taken at a CME of the ϒ (3S), and 3 % at a CME of the ϒ (2S).

For each resonance, about 90 % of the data was taken at a CME as close as

possible to the resonance mass. This is termed On Peak, or on-resonance. About

10 % of the data was taken Off Peak, or off-resonance, that is 25 MeV, 30 MeV,

40 MeV below the ϒ (2S), ϒ (3S), ϒ (4S) masses, respectively. Off-resonance data

was taken mostly for background studies and to study non-resonant processes.
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2.1 The PEP-II collider
The PEP-II machine [39, 40] was an asymmetric electron-positron collider, mean-

ing the electron and positron had different energies in the lab frame. The accelera-

tor achieved the design luminosity in its first year of operation. Following a series

of upgrades, the instantaneous luminosity increased to 1.2×1034 cm−2s−1, four

times the designed luminosity. The integrated luminosity collected each day ex-

ceeded design by a factor of seven. A big factor in this increase was the transition

to trickle injection, whereby the beam is replenished at the same time the detector

collects data.

The collider operated at a CME range of 9.99 GeV to 11.2 GeV. For the ϒ (4S)

CME, the electron beam energy was 9 GeV and the positron beam energy was

3.1 GeV. The center of mass (CM) frame was thus boosted in the lab frame. This

allows to reconstruct the decay vertexes of the B and B mesons and measure their

decays rates as a function of time. This type of measurement makes it possible to

measure CP violation in B0B̄0 mixing.

The accelerator ring was built out of six straight sections and six arc sections.

The beam pipe contained two separate rings, one for the electrons and one for the

positrons. Each ring was able to maintain about 1700 bunches, each bunch with a

maximum charge of 8×1010 particles which amounts to 3 A of current.

2.2 The BABAR detector
In order to obtain the physics goals, the detector was designed to have a large and

uniform acceptance. It was required to have good reconstruction efficiency for

charged particles down to a momentum of 60 MeV/c. Photons were required to

be efficiently reconstructed down to a momentum of 20 MeV/c. Good momentum

resolution and good energy and angular resolution for photons in the range 20 MeV

to 4 GeV is needed in order to be able to reconstruct π0 mesons and η mesons.

Additional requirements were good vertex resolution, and efficient muon, electron,

and hadron identification. Figure 2.1 shows a schematic view of the BABAR detector

along the beam direction and Figure 2.2 across the beam direction.

The detector is composed of a number of sub detectors. The silicon vertex

tracker (SVT) and drift chamber (DCH) are at the innermost part of the detector.
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Figure 2.1: BABAR detector schematic along the beam direction. Numbers are
distances in mm. Figure from [5], page 13, Copyright Elsevier (2002).

Figure 2.2: BABAR detector schematic across the beam direction. The detector
center is 3500 mm above the floor. Figure from [5], page 14, Copyright
Elsevier (2002).
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They form the tracking system which is responsible for reconstructing tracks of

charged particles. Further out are the detector for internally reflected Cherenkov

light (DIRC), that separates pions from kaons and the electromagnetic calorimeter

(EMC) that measures electromagnetic showers. These sub detector are surrounded

by a superconducting solenoid magnet that produces a 1.5 T magnetic field. The

steel flux return of the magnet is part of the instrumented flux return (IFR) sub

detector intended to measure muons and neutral hadrons.

The BABAR coordinate system is anchored to the DCH. The z axis coincides with

the DCH principal axis and points in the direction of travel of the electrons. The y

axis points upward and the x axis points away from the center of the accelerator.

The beam axis is offset from the z axis of BABAR by 20 mrad in order to minimize

the effect of the solenoid magnetic field on the beam. The polar angle θ is measured

from the z-axis. The azimuthal angle φ is measured from the x-axis in the x− y

plane.

2.2.1 Silicon vertex tracker

The SVT is used to measure charged particles close to the beam pipe. It provides

the best measurement of the charged track angles. Figure 2.3 shows a schematic

view of the SVT [6].

The SVT has five layers of double sided, 300 µm thick, silicon strip detectors.

The inner three layers are used to measure the position and angle information of

charged particles, while the outer two layers are primarily used to link SVT and

DCH tracks. The spatial resolution of the inner three layers is 10 µm to 15 µm, and

the resolution of the outer layers is 40 µm.

Each layer is made up of a number of modules. The modules of the three

inner layers are planner shaped. The modules of the two outer layers are arch

shaped. Each module has strips running parallel to the beam pipe on one side and

perpendicular to the beam pipe on the other. The modules provide geometrical

acceptance that covers 90 % of the solid angle in the CM frame.

Each strip is a p-n junction with a bias voltage of 10 V above the depletion

voltage of 25 V to 35 V. When a charged particle passes through the strip, it ionizes

the material forming electron-hole pairs. The electron-hole pairs travel in opposite
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directions, because of the bias voltage applied to the strips, forming a current which

is measured by the detector.

The hit efficiency, one of the most important metric of the SVT, was above

95 %.

2.2.2 Drift chamber

Surrounding the SVT is the drift chamber. As it is further away from the interaction

point (IP), it can therefore measure the curvature of charged tracks and thus their

momentum. It is the only detector that can reconstruct the interaction vertexes

outside the SVT volume. This is useful for reconstructing K0
S , for example.

The DCH is composed of forty layers of hexagonal cells. Each cell has one

sense wire in the center, held at a high voltage, and six field wires surrounding

it, at ground potential. The DCH volume is filled with a 80:20 mixture of he-

lium:isobutane. This decreases multiple scattering. The hit resolution for a single

cell is 100 µm for charged tracks passing near the middle of the cell. In order to

provide longitudinal track information, the wires in 24 of the layers were at a small

angle to the z axis.

A charged particle passing through the DCH volume ionizes the gas, creating

free electrons and heavy ions. Due to the electric field, the electrons travel toward

the sense wires and the ions travel to the field wires. When the electrons get close

enough to the sense wire so that they gain enough kinetic energy between collisions

with the gas molecules to ionize additional atoms, an avalanche is formed. The

Figure 2.3: Schematic view of the SVT. Figure from [6], page 654, Copyright
Elsevier (2013).
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avalanche amplifies the electric charge by 5×104 at a voltage of 1960 V.

The DCH provides particle identification (PID) information by measuring the

ionization loss, dE/dx, which is based on the total charge deposited in each cell.

The DCH information is combined with the DIRC information to achieve better PID

in the barrel region.

2.2.3 Detector of internally reflected Cherenkov light

The DIRC detector helps separate pions from kaons. Its principle of operation is the

detection of Cherenkov radiation. Charged particles travelling faster than the speed

of light in material emit Cherenkov light. The angle between the emitted photons

and the direction of travel, the Cherenkov angle, depends on the particle speed and

the refracting index of the material. Therefore, measuring the Cherenkov angle is

equivalent to measuring the particle speed. Combining the particle’s speed with it’s

momentum allows to deduce it’s mass. The DIRC performs PID in the momentum

range 0.5 GeV/c to 4.5 GeV/c. PID of particles with momentum below 700 MeV/c

is mostly done by measurements of dE/dx in the DCH and SVT.

The DIRC is composed of 4.9 m long, 17 mm by 35 mm rectangular bars of

fused silica. The bars act as emitters of Cherenkov light, as well as light guides

to guide the light toward photo multiplier tubes (PMTs) via total internal reflection.

The Cherenkov light is measured by a closely packed array of PMTs, located 1.2 m

from the end of the bars. The PMTs measure the position and time of arrival of the

photons. Figure 2.4 shows a schematic view of the path the Cherenkov radiation

travels in the detector.

The Cherenkov angle is inferred from the location of the measured photons as

well as from their time of arrival. The single photon Cherenkov angle resolution in

the DIRC was 7 mrad.

2.2.4 Electromagnetic calorimeter

The EMC detects electromagnetic showers in the energy range 0.02 GeV to 9 GeV.

This allows the EMC to detect low energy photons from π0 mesons and η mesons

and high energy photons from electromagnetic, weak, and radiative processes.

The EMC is composed of 6580 Thallium doped Cesium Iodide crystals. The
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Figure 2.4: Schematic view of the path Cherenkov radiation travels inside the
DIRC. Figure from [5], page 60, Copyright Elsevier (2002).

crystals form two separate structures. The barrel is a cylindrical structure concen-

tric with the beam pipe made up of 5760 crystals arranged in 48 rings. The endcap

is shaped as a circle, perpendicular to the beam pipe, in the direction of the electron

beam. It is made up of 820 crystals arranged in 8 rings. Together, the EMC covers

the polar angle range 15.8◦ to 141.8◦ in the lab frame, which translates to 90 % of

the solid angle in the CM frame. Figure 2.5 shows a schematic view of the EMC

along the beam pipe direction.

Each crystal has a trapezoidal cross section and a length of 30 cm. The

cross section lengths vary, but are typically 4.7 cm×4.7 cm at the front and

6.1 cm×6.0 cm at the back. These dimensions are similar to the molière radius.

Similarly to the DIRC, the crystals act as light guides. In addition, the crystals are

wrapped by two layers of diffuse white reflector which reflect any transmitted light

back into the crystals. Aluminum foil is wrapped around the reflector to create a

Faraday cage. In order to isolate the aluminum from the metal support, the crystals

were further wrapped by an insulating Mylar layer.

Light from the electromagnetic showers were measured by two 2 cm×1 cm

silicon PIN diodes at the center of the back face of each crystal. To collect as much
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information about the interacting particle, the amount of inactive material in front

of and between the crystals was minimized.

Electromagnetic showers are created when a photon interacts with the crystal

material and either creates an electron-positron pair directly, or causes the crys-

tal atoms to scintillate and release scintillation light that then creates an electron-

positron pair. These pairs radiate additional photons via the Bremsstrahlung pro-

cess. The new photons produce more electron-positron pairs, and this process con-

tinues until the photons do not have enough energy to produce additional pairs.

The energy resolution depended on the incident photon energy. It varied from

σE/E = 5.0± 0.8% at an energy of 6.13 MeV, to σE/E = 1.90± 0.07% at an

energy of 7.5 GeV [5]. The angular resolution varied between 12 mrad at low

energies to 3 mrad at high energies [5].

2.2.5 Instrumented flux return

The IFR was designed to identify muons and detect neutral hadrons, primarily K0
L

and neutrons. It used the magnet’s steel flux return as a muon filter and a hadron

absorber. The steel was sectioned into layers that ranged in thickness between 2 cm

to 10 cm. The nominal gap between the plates was 3.5 cm in the inner layers of the

barrel and 3.2 cm in other parts of the IFR. Single gap resistive plate chambers

(RPCs) were placed between the steel layers. Nineteen were placed in the barrel

and eighteen in the end caps. Two additional layers of cylindrical RPCs with four

readout planes were placed outside of the EMC in order to detect particles exiting

the calorimeter.

The RPCs consisted of two planer electrodes, separated by a 2 mm gap, with a

high voltage of about 8 kV applied to them. The gap was filled with a gas mixture

of 57 % argon, 39 % freon and 4.5 % isobutane. Copper strips were attached to the

outside of both sides of the electrodes. Electric charges inside the gap were read

out capacitively via the strips. A particle passing through the RPC would ionize the

gas, and similarly to the DCH, avalanches were formed. But because the electric

field was high, during the formation of the avalanche photons were emitted with

high enough energy to produce additional avalanches, amplifying the signal. This

eliminated the need for costly electronic amplification and produced fast signals,
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Figure 2.5: A schematic view of the top half of the EMC along the beam pipe
direction. Distances are in mm. Figure from [5], page 72, Copyright
Elsevier (2002).

but the signal amplitude depended only weakly on the incident particle energy.

The muon detection efficiency was 90 % in the momentum range 1.5 GeV/c to

3.0 GeV/c. The K0
L detection efficiency increased roughly linearly from 20 % to

40 % in the momentum range 1 GeV/c to 4 GeV/c.

The IFR underwent a number of upgrades over the years, because of aging

effects that affected the chambers. In 2001 the RPCs in the forward endcap were

replaced with an improved version, and in 2004 the barrel RPCs were replaced

with limited streamer tubes (LSTs). The LSTs were square tubes with an anode

wire passing through their center. The wire was parallel to the beam direction

and measured the azimuthal coordinate, while strips on the outside of the tube,

perpendicular to the beam, measured the z coordinate. In addition, six RPCs in

the barrel were replaced with brass plates in order to increase the total absorber

thickness.

16



Chapter 3

Search for axion like particles

3.1 Analysis overview
This chapter will describe a search for an ALP coupled exclusively to photons using

the BABAR detector. The goal of the work described in this chapter is to check

whether the BABAR data contains events involving an ALP, and if not, to set upper

limits on the cross section and coupling constant of the ALP.

Two leading order Feynman diagrams contribute to the production of events

with three photons in the final state. Figure 3.1a shows the ALP-strahlung process,

where the ALP is radiated from a photon. Figure 3.1b shows the production mech-

anism through the decay of an ϒ meson. The latter is important only in the ϒ (2S)

and ϒ (3S) CMEs, where the branching ratios to ALPs of these resonances can be

non negligible. The production CS through ϒ is estimated to be 17 % of the com-

bined production CS through ALP-strahlung and through the ϒ (2S), at the ϒ (2S)

CME. For the ϒ (3S), the ratio is 14 %. These assume the SuperKEKB machine

parameters [41]. Nonetheless, the production mechanism through ϒ is not taken

into account in this work.

Section 3.2 describes the signal simulation, background simulation and data

samples used in the analysis.

BABAR has a two back-to-back photon trigger and a trigger requiring at least

one energetic photon. The trigger, together with the event selection process is de-

scribed in Section 3.3. We look for events with three photons that add up to the
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Figure 3.1: Feynman diagrams for the ALP production mechanisms.

CME. Selection cuts are applied in order to optimize the sensitivity of the search.

Throughout the text, cut is used in the sense of retention. 5 % of the data is used

as a background sample. Several of the selection cut threshold values depend on

the ALP candidate invariant mass. These threshold values are optimized for a num-

ber of ALP masses by counting signal and background candidates inside a counting

window and maximizing the sensitivity to the signal. The thresholds are then gen-

eralized to any ALP mass with a smoothing function.

The selection cuts are applied and the ALP candidate mass distributions of data

and simulations are compared in Section 3.4. It is found that the number of ALP

candidates in data is around 80 % that in simulations. The simulations are scaled

to match the data and this scaling factor is incorporated into the signal efficiency

and its associated systematic uncertainty.

Section 3.5 describes the production of toy experiments. These are used for val-

idation, for determining what function should be used to describe the background

shape, and for evaluating the global significance.

The signal extraction procedure is described in Section 3.6. We search for a

bump on top of a smooth background in the ALP candidate invariant mass distribu-

tion. A binned maximum likelihood fit is performed to extract the number of signal

entries inside a fit window that is about five times wider than the counting window.

The Section describes the fit function used and how the shape of the background is

described. Parts of the mass spectrum where the invariant mass distribution varies

rapidly and which require too many degrees of freedom to describe properly are

not used for the search. Fits to background only toy experiments are performed
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in order to validate the fit method, to account for a bias because of how the toy

experiments are produced, to determine what function is needed to describe the

background, and to select which ALP mass hypotheses to use. In addition, fits to

background toys together with entries from signal simulations are described. These

are done in order to verify that the fit can pick up a signal bump, if it is present in

the data, and to evaluate the signal efficiency.

Section 3.7 describes how the data is searched for evidence of an ALP. The

Section describes the results of the local and global significances.

Bayesian credible interval (CI) upper limits on the ALP production CS and its

coupling constant to photons are described in Section 3.8.4. This Section also

describes systematic uncertainties incorporated into the limits.

The upper limit on the coupling constant is compared to limits from other ex-

periments in a phase space exclusion plot in Section 3.9. Specifically, the results

are compared with results from Belle II.

Finally, Section 3.10 describes how this analysis can be expanded in the future.

3.1.1 Disclaimer

The analysis was designed as a blind analysis which here means a measurement

performed on a data sample that is not seen by the experimenter prior to finalizing

the analysis procedure. Analyses that are not blind are prone to experimenter’s

bias. This bias can lead to the optimization of the selection cuts on statistical

fluctuations of the dataset in a way that artificially enhances the significance of the

signal producing a false signal peak. They might also produce artificially restrictive

upper limits [42].

Initially, the measurement was meant to be performed on 95 % of the BABAR

data, without looking at the sample before all other aspects of the analysis are

agreed on and finalized. The remaining 5 % was meant to be used as a sample to

help optimize the analysis and perform sanity checks. It was meant to be used as

a background sample for the selection cut optimization, to examine how well the

background Monte Carlo (MC) agrees with the data, to test the signal extraction

procedure, and to test the limit setting procedure. The plan was to then request

permission from the BABAR collaboration to perform the measurement on the re-
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maining 95 % of the data. Such a request requires a collaboration wide review

of the analysis details. BABAR stopped collecting data in 2008 and over the years

fewer and fewer collaborators have been actively involved in the collaboration.

Therefore, collaboration wide reviews of new results take a considerable amount

of time, on the order of a full year. Because of these time considerations, the mea-

surement using the blinded data is not performed here. Rather, all the results are

based on the 5 % of the data.

It should be stressed, however, that this data sample is the same sample that is

used to optimize the selection cuts. The analysis is therefore not a blind analysis

and this fact should be kept in mind when evaluating the results presented here.

Furthermore, because the analysis is not a blind analysis, the publication of these

results was not pursued.

A further point to keep in mind is that because the analysis did not go through a

BABAR collaboration wide review, the results are not results endorsed by the BABAR

collaboration. Rather, they are results of data collected by BABAR.

3.2 Event samples

3.2.1 Signal MC simulation

Signal MC is generated with MadGraph5 aMC@NLO [43] version 2.6.1.

MadGraph5 aMC@NLO does not simulate initial state radiation (ISR), therefore

an ISR plugin for Madgraph is used [44]. The plugin modifies the momenta of

the colliding e+e− such that they simulate the ISR process. It does not, however,

produce the ISR photon itself. This is acceptable, as the ISR photon is typically

produced at low or high polar angles, and is lost along the beam-pipe.

Two sets of signal MC are simulated. The first is used for optimizing the se-

lection cuts. It includes ALPs with masses in the range 0.1 GeV/c2 to 1 GeV/c2,

every 0.1 GeV/c2, and in the range 1 GeV/c2 to 10.5 GeV/c2 every 0.5 GeV/c2. In

addition, ALPs with masses of 0.135 GeV/c2, 0.548 GeV/c2, and 0.958 GeV/c2 are

simulated. These are the masses of the SM π0, η , and η ′, respectively. The number

of simulated events is 2500, 2497, 49965 for the ϒ (2S), ϒ (3S), ϒ (4S) CMEs, re-

spectively. This set of signal MC simulations have no restriction on the polar angle
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of the final state photons.

The second signal MC set is used to study the invariant mass distribution of the

ALP photon daughters. It includes ALPs simulated every 0.01 GeV/c2 in the mass

range 0.1 GeV/c2 to 10.02 GeV/c2, 0.1 GeV/c2 to 10.35 GeV/c2, 0.1 GeV/c2 to

10.49 GeV/c2, for the ϒ (2S), ϒ (3S), ϒ (4S) CMEs, respectively. The step size is

chosen to be roughly five times smaller than the size of the base width for the

ALP mass with the smallest base width. The base width is the width of the ALP

candidate mass distribution at 10 % of its maximum, and is described in detail in

Section 3.6.4. The number of simulated events is 10000, 9996, 49965 for the

ϒ (2S), ϒ (3S), ϒ (4S) CMEs, respectively. These numbers are selected to ensure

that the number of ALP events that pass the selection cuts is at least five times

larger than the expected number of ALP events in the full BABAR data set, assuming

the current limits on the ALP coupling to photons. To reduce the computation time,

the polar angle of the final state photons for this set of signal MC is limited to the

range 24 ◦ to 156 ◦ in the CM frame. This range ensures that the photons are inside

the acceptance of the EMC.

All of the signal MC is simulated with a coupling constant of gγγ = 10−3 GeV−1.

This value is chosen as it is roughly the coupling constant that is expected to be

excluded with the BABAR data. It is high enough to ensure that the ALP decays

practically at the interaction point. With this coupling constant the ALP width is

negligible compared to the detector resolution effects.

3.2.2 Background MC

Three background MC samples are used.

1. e+e−→ γγ(γ) . This is the main background source for this analysis. It is

generated with the BKQED [45] event generator.

2. e+e− → ωγ . This is the only SM resonance MC relevant to this analysis

available at BABAR. The ω can decay to a π0γ and the π0 can further decay to

two photons. But as the π0 is relatively boosted, its daughters can hit the EMC

close to each other and be reconstructed as a single photon. Such events have

four real photons, but only three reconstructed photons, the same number of
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reconstructed photons of a signal event. This background is generated with

the evtGen [46] event generator.

3. e+e− → e+e−γ . If the electron and positron are not identified as charged

tracks, they will be reconstructed as photons, mimicking a signal event. This

background is generated with the BHWide [47] generator.

The response of the detector for all MC samples is simulated with Geant4 [48].

Table 3.1 shows the number of events for each of the background MC samples,

and Table 3.2 lists the CSs. The CSs for the processes e+e−→ γγ(γ) and e+e−→
e+e−γ are estimated by the respective generator. The CS for the process e+e−→
ωγ is estimated by formula 7 in [49] with updated mass and width values from [10].

Table 3.3 shows the ratio of the equivalent integrated luminosity of the different

background MC samples and the integrated luminosity of the full BABAR dataset.

3.2.3 Data samples

This work uses 5% of the data collected with the BABAR detector. These events

are semi-evenly interspersed throughout the complete dataset. A group of 10000

consecutive events is used, then 190000 consecutive events are skipped, then an-

other 10000 events are used, and so on. The number of events analyzed and the

associated integrated luminosity is detailed in Table 3.4.

Table 3.1: Number of MC background events.

Center of mass energy e+e−→ γγ(γ) e+e−→ ωγ e+e−→ e+e−γ

ϒ (2S) Off peak 10802×103 123×103 7500×103

ϒ (2S) On peak 104846×103 1176×103 70988×103

ϒ (3S) Off peak 27092×103 228×103 19000×103

ϒ (3S) On peak 224158×103 2046×103 170412×103

ϒ (4S) Off peak 21524×103 1079×103 38368×103

ϒ (4S) On peak 214713×103 10707×103 403000×103
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Table 3.2: Background MC CSs in nb.

Center of mass energy e+e−→ γγ(γ) e+e−→ ωγ e+e−→ e+e−(γ)

ϒ (2S) Off peak 3.32±0.07 0.018 25.80±0.07
ϒ (2S) On peak 3.29±0.07 0.018 25.80±0.07
ϒ (3S) Off peak 3.04±0.06 0.018 25.77±0.07
ϒ (3S) On peak 3.01±0.06 0.017 25.76±0.07
ϒ (4S) Off peak 2.87±0.06 0.017 25.29±0.07
ϒ (4S) On peak 2.84±0.06 0.017 25.07±0.06

Table 3.3: Ratio of the equivalent integrated luminosities of background MC

and the integrated luminosity of the full BABAR dataset.

Center of mass energy e+e−→ γγ(γ) e+e−→ ωγ e+e−→ e+e−(γ)

ϒ (2S) Off peak 2.29 4.71 0.20
ϒ (2S) On peak 2.35 4.73 0.20
ϒ (3S) Off peak 3.42 5.01 0.28
ϒ (3S) On peak 2.67 4.22 0.24
ϒ (4S) Off peak 0.17 1.47 0.03
ϒ (4S) On peak 0.18 1.52 0.04

Table 3.4: Number of events in 5 % of the BABAR data and the associated
integrated luminosity.

Center of mass energy Number of events Integrated luminosity
( fb−1)

ϒ (2S) Off peak 2200000 0.071
ϒ (2S) On peak 25960000 0.68
ϒ (3S) Off peak 4480000 0.13
ϒ (3S) On peak 49060000 1.4
ϒ (4S) Off peak 32160726 2.2
ϒ (4S) On peak 335637695 21.0
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3.3 Event selection

3.3.1 Candidate formation and preliminary selection cuts

The first set of selections cuts, the preliminary selection cuts, is applied while pro-

cessing the events saved on the BABAR disks. The events that pass these selections

are saved locally. The preliminary selection cuts are relatively loose and are meant

to get rid of the bulk of the uninteresting events. Additional, tighter, selections are

applied in later steps.

Each event is required to have no more than 3 tracks. The highest energetic

photon in the event has to have an energy of at least 3 GeV in the CM frame. Can-

didates are formed from reconstructed photons. A candidate is a triplet of photons.

Two out of these photons are assumed to be the ALP daughters and form the ALP

candidate. The third photon is termed the recoil photon. There can be multiple

candidates per event and the same three photons can produce three different candi-

dates, each one with a different photon assuming the role of the recoil photon.

All the photons in a candidate are required to have a polar angle of more then

15.8◦ in the lab frame. This is to ensure that they are inside the acceptance of

the electromagnetic calorimeter. The fact that BABAR’s EMC does not include a

backward end cap, as discussed in Section 2.2.4, ensures that the reconstructed

photons are sufficiently far from the beam pipe, and no additional selection cut is

applied on the higher end of the reconstructed polar angle. The photons of the ALP

candidate are required to have an energy greater than 0.7 GeV in the CM frame.

The recoil photon needs to have an energy of at least 0.1 GeV in the lab frame.

These are meant to reject beam background which is typically low energy photons.

The invariant mass of the three photons needs to be in the range 8.5 GeV/c2 to

12 GeV/c2 in order to reject candidates which do not add up to the CME.

The three photons are assumed to originate from the IP and are kinematically

fit [50]. The kinematic fit adjusts the photon’s 4-vectors, taking into account their

uncertainties, and constrains the corresponding candidate’s 4-vector to the pre-

collision 4-vector. In other words, the candidate’s invariant mass is constrained

to the CME, and its momentum is constrained to zero in the CM frame. In addition,

the fitter takes into account the topology of the decay, i.e., it constructs the ALP
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candidate out of two photons and then combines the ALP candidate with the third

photon to form a candidate. This process improves the resolution of the ALP can-

didate mass, as it incorporates the information from the recoil photon as well as

the CME of the collision. On the other hand, kinematic fitting “forces” some types

of background candidates to look like signal candidates. For example, assume

the event is a e+e− → γγ with an unrelated additional beam background photon.

Kinematically fitting this candidate will erroneously adjust the 4-vectors so that

the invariant mass of the three photons is equal to the CME, thereby “forcing” it

to resemble a signal candidate. Therefore, the un-adjusted 4-vectors, as well as

the adjusted, constrained, 4-vectors after the kinematic fit are saved to disk. The

unadjusted values are used for the selection cuts. The constrained ALP candidate

mass is used for studies involving the di-photon mass distribution.

3.3.2 Trigger

Two types of triggers were used to select interesting events. During all of BABAR’s

data taking a two photon trigger was available, named DigiFGammaGamma. This

trigger requires exactly one pair of trigger clusters that each have 30 % of the CM

energy and that are back-to-back in the CM frame, and no trigger tracks with trans-

verse momentum greater than 0.25 GeV and consistent with originating from the

IP.

In addition, two types of single photon triggers are used. These triggers are

used only for data taken at the CME corresponding to the ϒ (2S) and ϒ (3S) and for

the very end of the data taken at the ϒ (4S) CME. The DigiFSingleGamma trig-

ger requires at least one isolated cluster with at least 2 GeV of energy in the CM

frame and no trigger tracks consistent with originating from the IP. The BGFSin-

gleGammaInvisible is a high level trigger which has access to the EMC and DCH

reconstructions and therefore to more accurate information. This trigger requires

at most one cluster with at least 3 GeV energy in the CM frame and no tracks with

momentum above 1 GeV/c. Events are selected if they pass any of the mentioned

triggers.
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Single photon trigger issue at high di-photon masses

There is a disagreement between MC and data for high invariant masses in the

DigiFSingleGamma trigger. Due to an unknown reason, the trigger efficiency at

high invariant masses drops in data, but not in MC. Figure 3.2 shows the di-

photon invariant mass in the e+e− → e+e−γ MC sample and in data for the on-

resonance ϒ (2S) and ϒ (3S) CMEs for events that pass the preliminary selection

cuts discussed in Section 3.3.1. A possible explanation for this effect is that the

DigiFSingleGamma trigger had a veto for high di-photon invariant mass events,

presumably in order to prevent all DigiFGammaGamma triggers, which should be

pre-scaled, to be accepted. If this veto existed, it is not properly documented at

BABAR. To deal with this effect, this work only uses di-photon invariant masses up

to 97.5 % of the CME for the ϒ (2S) and ϒ (3S) CMEs. There are no such issues for

the other two triggers.

Trigger efficiency after preliminary selection cuts

The trigger efficiency after the preliminary selection cuts are applied is calculated

by ntrg/ntot, where ntrg is the number of triggered events after preliminary selection

cuts, and ntot is the total number of generated events. Figure 3.3 shows the trigger

efficiency in signal MC after the preliminary selection cuts. As data taken at the

ϒ (2S) and ϒ (2S) CMEs had the single photon trigger, the trigger efficiency is rela-

tively constant down to low di-photon invariant masses. At low invariant masses,

the trigger efficiency drops because the ALP is highly boosted and the two photons

it decays to start to merge and are reconstructed as a single photon. In that case,

there are not enough photons to properly reconstruct the decay. Therefore, the

fall in efficiency is due to the preliminary selection cuts, not the trigger efficiency

directly.

The efficiency of the DigiFGammaGamma trigger used for the ϒ (4S) CME is

more complicated. At very low di-photon invariant masses it has a similar shape

to the trigger efficiency of the ϒ (2S) and ϒ (3S) CMEs. The efficiency rises as the

invariant mass increases due to the ALP being less boosted and a lower chance of

its daughter photons merging. At higher invariant masses the angle between the

ALP daughter photons increases, and the efficiency decreases because the trigger
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Figure 3.2: Data MC comparison for high invariant masses of candidates in
e+e−→ γγ(γ) MC events that passed preliminary selection cuts. The top
row showsϒ (2S) on-resonance, bottom row showsϒ (3S) on-resonance.
The left column shows events where the DigiFGammaGamma trigger
is not triggered. The right column shows events where DigiFGam-
maGamma is triggered.

reconstruction starts having 3 photons instead of 2 merged photons. At around a

di-photon mass of 6 GeV/c2 the trigger efficiency starts to drop off sharply, pre-

sumably due to some kinematic effect, as at this ALP mass the angle between the

three photons is 120◦. The efficiency drops down to around 1 %. The efficiency

starts to increase again at 6.5 GeV/c2 in part due to one of the ALP daughter pho-

tons and the recoil photon being merged in the trigger reconstruction, leaving two

back-to-back trigger clusters. These large variations in the efficiency for the ϒ (4S)

CME percolate throughout the analysis.
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Figure 3.3: Trigger efficiency after preliminary selection cuts in signal MC of
(a) ϒ (2S) and ϒ (3S) CMEs, (b) ϒ (4S) CME. Note the different y-axis
scales.

3.3.3 Main selection cuts

In addition to the preliminary selection cuts, additional selection cuts are applied

in order to reject background events while keeping signal events. The following

selections are used.

Number of charged tracks

The number of charged tracks in the event is required to be no more than one. One

is allowed because there could be a beam background track from the beam-beam

interactions or interactions of the beam with the beam pipe. Tightening the cut on

the number of charged tracks compared to the preliminary selection increases the

sensitivity at ALP masses below 0.5 GeV/c2.

Polar angle of photons

A discrepancy is found between data and MC at low polar angles. This can be due to

the detector material not being properly simulated in MC. To avoid this region, the

polar angle of all photons is required to be larger than 22.5◦. The fact that the EMC

does not include a backward end cap ensures photons are reconstructed far enough

away from the beam pipe in the backward region that no such discrepancies are

seen for the higher values of the polar angles.
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χ2 of the kinematic fit

In order to reject candidates which are not consistent with the decay chain, or

with the CME, the χ2 of the kinematic fit involving the three photons is required

to be smaller than a maximum value χ2
max, which depends on the constrained ALP

candidate mass.

The reason the χ2 is used and not the associated probability is that the photon

energy distributions are not Gaussian, but rather have a long low energy tail. The

long tail is mainly because of energy leakage out of the back of the crystals. The

fitter assumes Gaussian uncertainties and therefore the χ2 probability of the fit is

practically zero for the large majority of fits.

ALP daughter photon energies

Beam background photons typically have low energies. To reject candidates in-

volving beam background photons the energies of the ALP daughter photons in the

CM frame are required to be larger than a minimum value ECM
min , which depends on

the constrained ALP candidate mass.

The energy of the recoil photon cannot be used for such a selection. This

is because its energy in the CM frame can be shown to equal (s−m2
ALP)/(2

√
s),

where
√

s is the CME, and mALP is the ALP mass. Therefore, requiring a minimum

value for the recoil photon energy imposes a maximum value for the ALP candidate

mass. To be able to search for ALPs with a wide range of masses the selection cut

on the recoil photon energy is kept loose.

Photons from beam background typically have reconstructed times that are not

compatible with the collision time. Therefore, an additional method of reducing

beam background is using a selection cut on the reconstructed photon times. Un-

fortunately, BABAR did not have photon timing information. Therefore, such a cut

is not employed in this analysis.

Polar angle difference of the ALP daughter photons

The absolute value of the difference in polar angle of the two ALP daughter pho-

tons in the lab frame is required to be larger than a minimum value ∆θmin. If any

candidate fails this requirement, the whole event is rejected. This selection cut is
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applied only to low mass ALP candidates.

This selection is meant to reject events where a photon converts into an e+e−

pair via interaction with the detector material. If a photon converts and the resulting

electron and positron are not identified as charged tracks for some reason, they will

be reconstructed as photons. Because of the magnetic field of the BABAR detector,

charged particles curve in the azimuthal angle. Therefore, these miss-reconstructed

photons have different azimuthal angles, but a very similar polar angle. Requiring

a minimum polar angle difference rejects this type of events.

Figure 3.4 shows a two dimensional histogram of the absolute value of the

polar angle difference |∆θ |, versus the di-photon invariant mass mγγ , of the ALP

photon daughters after all selection cuts are applied, apart from the |∆θ | cut. There

is a large population of ALP candidates with low |∆θ | angles, and invariant mass

below 0.6 GeV/c2. They are concentrated predominantly at masses of 0.15 GeV/c2

and 0.3 GeV/c2. The concentration of entries at those masses causes a peaking

structure resembling a signal peak. These candidates occur due to conversions. The

dashed blue line in Figure 3.4 shows the smoothed threshold cut value discussed

later in this section. All entries below the line are discarded. The peaks can be seen

in the blue curve of Figure 3.5 which shows the di-photon invariant mass after all

selection cuts are applied, apart from the |∆θ | cut. The orange curve in Figure 3.5

shows the same distribution with the |∆θ | cut applied. The peaking structures are

removed by this selection cut.

The entries are concentrated at these masses because of interactions with a

support tube and with the inner wall of the drift chamber which are at 22 cm to

24 cm from the interaction point in the transverse direction. Due to the magnetic

field, the electron positron pair splits by the same amount in the azimuthal angle.

Therefore, the invariant mass of these is relatively constant and creates the peak.

No photon pair back-to-back in azimuthal angle

Candidates with any photon pair back-to-back in the azimuthal angle are rejected.

The photons of the candidate are required to satisfy |∆φ CM−180◦|> ∆φ CM
min , where

∆φ CM is the azimuthal angle difference in the CM frame and ∆φ CM
min is the minimum

threshold. This selection cut is meant to reject e+e− → γγγ events where one of
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the photons is lost along the beam pipe and the remaining photons are combined

with a beam background photon to construct a candidate. As the beam direction is

almost along the z axis, the two photons belonging to the collision are back-to-back

in the azimuthal angle. This selection cut is only effective for high invariant mass

ALP candidates, and is therefore only applied for those candidates.

Selection cuts that were not used

Other selection cuts that were assessed but did not improve the sensitivity are the

maximum polar angle, optimizing the unconstrained three photon invariant mass

limits, the helicity angle, and the maximum angle between pairs of photons in the

CM frame.

3.3.4 Optimization of selection cut values

For the selection cut thresholds that depend on the ALP mass, the thresholds are

optimized to maximize the sensitivity S/
√

B, where S is the number of signal can-

didates and B is the number of background candidates expected in the full BABAR

dataset. S and B are counted in a counting window, i.e., in a range of di-photon

masses. The counting window width and its center depend on the ALP mass. The

5 % data sample is used as the background sample. This is done to avoid any

discrepancies between MC and data.

One could be concerned that an ALP exists in the data and because the data is

used as the background sample, the selection cut threshold optimization procedure

somehow filters out ALP events from the data. In fact, for each selection cut vari-

able, the optimization procedure only removes background components that are

different from the signal distribution. In other words, if the signal and background

distribution are identical for a particular selection variable, the optimization proce-

dure will not remove any events.

If an ALP exists and has a mass inside one of the counting windows, it can

affect the selection cut threshold values for one single ALP mass hypothesis. But, as

discussed in Section 3.3.4, the threshold values are later smoothed. The smoothing

is expected to wash out the effect of an ALP in data on the selection cut threshold

values.
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A disadvantage of this method is that it can bias the selection cut threshold

value based on statistical fluctuations in areas with a low number of entries. This

can be seen, for example, in Figure 3.10 which shows the distribution of the χ2

of the kinematic fit for signal and background. The selected threshold is in the

tail of the distributions, where there are a small number of entries per bin and

the exact location of the threshold value depends on where exactly these statistical

fluctuations appear. This effect will be adjusted, at least partially, by the smoothing

of the selection cut threshold values discussed in Section 3.3.4.

Counting window

The number of signal and background entries are counted inside a counting win-

dow of the di-photon mass. The di-photon mass distribution varies depending on

the ALP masses. Figure 3.6 shows the di-photon mass for a 0.5 GeV/c2 and a

10.3 GeV/c2 ALP. As can be seen, the distribution for the 10.3 GeV/c2 ALP has a

long high end tail, while the 0.5 GeV/c2 ALP is more symmetrical, with a small

low side tail.

The counting window is chosen so that at its edges the distribution values are

10 % of the maximum bin height. Values between bins are linearly interpolated.

The dashed horizontal line in Figure 3.6 is at 10 % of the maximum bin height. The

solid vertical lines show the counting window edges. For a Gaussian with standard

deviation σ , 10 % of the maximum occurs at ±2.15σ from the mean.

The counting window is used only to optimize the selection cut threshold val-

ues. The actual number of signal entries is evaluated with a dedicated fit to the

di-photon invariant mass, as will be discussed in Section 3.6.

Optimal selection cut threshold values

For each selection cut that is optimized, different threshold values are tested. For

each threshold value, the selection cut is applied, and the sensitivity S/
√

B is cal-

culated. The threshold value that maximizes the sensitivity is chosen. The next

selection cut is then optimized, while applying the first selection cut as well. This

process is continued until all threshold values are optimized. As applying one se-

lection cut can change the optimal value of a previously optimized selection cut,
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Figure 3.6: Signal MC ALP candidate mass distributions for 0.5 GeV/c2 and
10.3 GeV/c2 ALP masses. Preliminary and trigger selections are ap-
plied. The dashed horizontal line represent 10 % of the maximum bin
height. The solid vertical lines show the counting window range. They
are at the interpolated intersection of the dashed line with the histogram.
The counting ranges are shown in the titles.

after all selection cuts are optimized the whole procedure is repeated two more

times, three times in total, while applying the optimal values that were found in the

previous iteration. This whole procedure is applied for each generated ALP mass.

Figures 3.7 to 3.15 show the results for the 0.5 GeV/c2 ALP and Figures 3.16

to 3.24 for the 10.3 GeV/c2 ALP, both at the ϒ (4S) CME. The 0.5 GeV/c2 results

include the selection cut on |∆θ | which is only applied to low di-photon invariant

masses, while the results for the 10.3 GeV/c2 ALP include the selection cut to pre-

vent photon pairs being back-to-back in the azimuthal angle, which is only used for

high di-photon invariant masses. For each selection cut there is a plot comparing

the distributions of signal MC and data after all selection cuts are applied apart from

the one being considered, distributions after all the selection cuts are applied and a

scatter plot of the S/
√

B versus the threshold selection cut value. All the plots are

after the final round of optimization.

The distributions of signal and background for the χ2 selection cut of the kine-

matic fit are relatively similar to each other because the remaining background

after the other selection cuts are applied is composed mainly of e+e−→ γγγ . The

4-vectors of the candidates of this background add to the pre-collision 4-vector,

just like the signal.
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Figure 3.7: Distribution of the minimum energy of the ALP daughters in the
CM frame for signal MC and data for a 0.5 GeV/c2 ALP at the ϒ (4S) CME

after three rounds of optimization after all other selection cuts are ap-
plied. The signal distribution is normalized to have the same area as the
data. The vertical red line signifies the optimal selection cut threshold
ECM

min .

Smoothed threshold selection cut values

The procedure so far has obtained optimal selection cut values at specific gener-

ated ALP masses. In order to apply selection cuts for any ALP candidate mass,

the optimal threshold cut values were generalized to any ALP candidate mass by a

smoothing function. The smoothing functions are chosen to be piecewise linear.

ALP masses for which the background sample has less than 100 candidates in

the counting window after all selection cuts are applied are not used.

Figures 3.25, 3.26, 3.27 and 3.28 show the optimal threshold values and the

smoothed functions for χ2
min, ECM

min , ∆θmin, ∆φ CM
min , respectively, for the combined

ϒ (2S), ϒ (3S) runs and for the ϒ (4S) runs separately. Figure 3.26 has two different

smoothing functions which will be discussed below.

The smoothing functions are not chosen to be exact. They are not fitted. Rather,

they are chosen to be close to the optimal values, while avoiding sharp transitions.

Sharp transition, such as a step function, are found to make the di-photon mass
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Figure 3.8: Distribution of the minimum energy of the ALP daughters in the
CM frame for signal MC and data for a 0.5 GeV/c2 ALP at the ϒ (4S) CME

after three rounds of optimization after all selection cuts are applied, in-
cluding the minimum energy cut. The signal distribution is normalized
to have the same area as the data.
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Figure 3.9: Scatter plot of S/
√

B versus ECM
min for ϒ (4S) CME after three

rounds of optimization for a 0.5 GeV/c2 ALP. Error bars are colored
red. The best threshold value is noted at the top of the plot.
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Figure 3.10: Distribution of the χ2 of the kinematic fit, for signal MC and data
for 0.5 GeV/c2 ALP at the ϒ (4S) CME after three rounds of optimiza-
tion after all other selection cuts are applied. The signal distribution
is normalized to have the same area as the data. The vertical red line
signifies the optimal selection cut threshold χ2

min.

distribution non-smooth. For example, the maximum smoothed function value for

χ2
min in Figure 3.25 is 100 as it is a nice round number close to the optimal ones.

A significant deviation of the smoothed function from the optimal values can be

seen at high ALP masses in Figure 3.26b. The reason the optimal values increase

rapidly with ALP mass above 9 GeV/c2 is artificial. The signal and background

distributions of the minimum energy of the ALP daughter photons is very similar

for those ALP masses. Because of this, the optimized threshold value found during

the optimization procedure is at the lower edge of the distributions, so that few

candidates are rejected. This can be seen in Figure 3.16, for example. Therefore,

the smoothed function does not follow the optimal values, but instead is chosen to

continue with the same slope determined by lower ALP mass optimal values.

Very few mass points for the |∆θmin| variable for the combined ϒ (2S), ϒ (3S)

dataset have enough background candidates left after the selection cuts are applied,

as can be seen in Figure 3.27a. Therefore, the smoothed function for |∆θmin| for

the ϒ (2S), ϒ (3S) CMEs is chosen to to be the same as the function for the ϒ (4S)
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Figure 3.11: Distribution of the χ2 of the kinematic fit, for signal MC and data
for 0.5 GeV/c2 ALP at the ϒ (4S) CME after three rounds of optimiza-
tion after all other selection cuts are applied, including the χ2 selection
cut. The signal distribution is normalized to have the same area as the
data.
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Figure 3.12: Scatter plot of S/
√

B versus χ2
min for ϒ (4S) CME after three

rounds of optimization for a 0.5 GeV/c2 ALP. Error bars are colored
red. The best threshold value is noted at the top of the plot.
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Figure 3.13: Distribution of the |∆θ |, for signal MC and data for 0.5 GeV/c2

ALP at the ϒ (4S) CME after three rounds of optimization after all other
selection cuts are applied. The signal distribution is normalized to have
the same area as the data. The vertical red line signifies the optimal
selection cut threshold ∆θmin.
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Figure 3.14: Distribution of the |∆θ |, for signal MC and data for 0.5 GeV/c2

ALP at the ϒ (4S) CME after three rounds of optimization after all other
selection cuts are applied, including the χ2 selection cut. The signal
distribution is normalized to have the same area as the data.
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Figure 3.15: Scatter plot of S/
√

B versus ∆θmin for ϒ (4S) CME after three
rounds of optimization for a 0.5 GeV/c2 ALP. Error bars are colored
red. The best threshold value is noted at the top of the plot.
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Figure 3.16: Distribution of the minimum energy of the ALP daughters in the
CM frame for signal MC and data for a 10.3 GeV/c2 ALP at the ϒ (4S)
CME after three rounds of optimization after all other selection cuts are
applied. The signal distribution is normalized to have the same area
as the data. The vertical red line signifies the optimal selection cut
threshold.

40



3 4 5 6 7
min(ECM

1 , ECM
2 ) (GeV)

0

2

4
En

tri
es

 / 
(0

.0
5 

Ge
V)

×103 Run 1-6, ALP mass 10.3 GeV
5% Data
Signal

ϒ (4S)

Figure 3.17: Distribution of the minimum energy of the ALP daughters in the
CM frame for signal MC and data for a 10.3 GeV/c2 ALP at the ϒ (4S)
CME after three rounds of optimization after all selection cuts are ap-
plied, including on the ALP daughter photon energies. The signal dis-
tribution is normalized to have the same area as the data.
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Figure 3.18: Scatter plot of S/
√

B versus ECM
min for ϒ (4S) CME after three

rounds of optimization for a 10.3 GeV/c2 ALP. Error bars are colored
red. The best threshold value is noted at the top of the plot.
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Figure 3.19: Distribution of the χ2 of the kinematic fit, for signal MC and data
for 10.3 GeV/c2 ALP at the ϒ (4S) CME after three rounds of optimiza-
tion after all other selection cuts are applied. The signal distribution
is normalized to have the same area as the data. The vertical red line
signifies the optimal selection cut threshold χ2

min.

CME.

The selection cut for rejecting pairs of photons that are back-to-back in the

azimuthal angle are beneficial only for the ϒ (4S) CME for ALP candidate masses

above 10.3 GeV/c2. To avoid sharp transitions, the smoothed function for ∆φ CM
min is

gradually increased, starting at a mass of 10 GeV/c2, as can be seen in Figure 3.28.

Smoothing di-photon mass distribution for the ϒ (2S), ϒ (3S) CMEs

After applying all the selection cuts the ALP candidate mass distribution has a rel-

atively broad peaking feature around 5.5 GeV/c2 for the ϒ (2S) and ϒ (3S) CMEs.

This can be seen in the blue curves in Figure 3.29. It is more pronounced for the

ϒ (3S) CME.

It is desirable that this mass distribution be as smooth as possible as will be

discussed in Section 3.6.3. The peak is created because the slope of the ECM
min selec-

tion cut changes at 5.5 GeV/c2. It turns out that the values of this selection cut that

optimize S/
√

B reject too many ALP candidates above 5.5 GeV/c2 which causes a
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Figure 3.20: Distribution of the χ2 of the kinematic fit, for signal MC and data
for 10.3 GeV/c2 ALP at the ϒ (4S) CME after three rounds of optimiza-
tion after all other selection cuts are applied, including the χ2 selection
cut. The signal distribution is normalized to have the same area as the
data.
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Figure 3.21: Scatter plot of S/
√

B versus χ2
min for ϒ (4S) CME after three

rounds of optimization for a 10.3 GeV/c2 ALP. Error bars are colored
red. The best threshold value is noted at the top of the plot.
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Figure 3.22: Distribution of the |∆φ CM−180◦|, for signal MC and data for a
10.3 GeV/c2 ALP at the ϒ (4S) CME after three rounds of optimization
after all other selection cuts are applied. The signal distribution is
normalized to have the same area as the data. The vertical red line
signifies the optimal selection cut threshold.
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Figure 3.23: Distribution of the |∆φ CM−180◦|, for signal MC and data for a
10.3 GeV/c2 ALP at the ϒ (4S) CME after three rounds of optimization
after all selection cuts are applied. The signal distribution is normal-
ized to have the same area as the data.
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Figure 3.24: Scatter plot of S/
√

B versus ∆φ CM
min for ϒ (4S) CME after three

rounds of optimization for a 10.3 GeV/c2 ALP. Error bars are colored
red. The best threshold value is noted at the top of the plot.
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Figure 3.25: Optimal χ2
min values and the chosen smoothed function for (a)

combined ϒ (2S), ϒ (3S) and (b) ϒ (4S) CMEs.
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Figure 3.26: Optimal ECM
min values and the chosen smoothed function for (a)

combined ϒ (2S), ϒ (3S) and (b) ϒ (4S) CMEs.
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Figure 3.27: Optimal ∆θmin values and the chosen smoothed function for (a)
combined ϒ (2S), ϒ (3S) and (b) ϒ (4S) CMEs.

trough in the mass range 5.5 GeV/c2 to 8 GeV/c2. A smoother mass distribution

is preferred in this work over optimizing S/
√

B. Therefore, an alternate smooth

function is used for ECM
min .

The alternate function can be seen in the dotted line of Figure 3.26a. This

function is selected empirically because it creates a smoother ALP candidate mass

distribution. The green curves in Figure 3.29 are obtained by applying the alternate

smoothed function.

Figure 3.30 shows a two dimensional histogram of ECM
min versus the ALP candi-

date mass. Three sets of smoothed ECM
min functions are superimposed. The original

in blue, the chosen alternate in green and a third alternate in orange. The orange
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Figure 3.28: Optimal ∆φ CM
min values and the chosen smoothed function for

ϒ (4S) CME.

alternate was chosen to see what would happen if the ECM
min threshold value is kept

constant above 5.5 GeV/c2. As can be seen by the orange curves in Figure 3.29,

the third alternate function does not reject enough ALP candidates and creates a

peak around 5.9 GeV/c2. It turns out that the chosen alternate rejects just enough

ALP candidates to keep the di-photon mass distribution smooth-ish.

3.4 Data-MC comparison
It is important to check how well the data and background MC agree, after applying

all the selection cuts. Figure 3.31 shows a comparison of the ALP candidate mass

distributions of MC and 5 % of data for the ϒ (2S), ϒ (3S), and ϒ (4S) CMEs. The

MC is scaled to 5 % of the full integrated luminosity. There is a relatively constant

ratio between the number of MC candidates and the number of data candidates in

all the mass range and in all the CMEs. The reason for this disagreement has not

been found. It could be because the BKQED generator is relatively old and does

not correctly simulate the e+e−→ γγγ process.

To deal with this disagreement, the e+e− → γγ(γ) MC is scaled so that the

number of entries in the mass range 0 GeV/c2 to 9 GeV/c2 is equal to the number of
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Figure 3.29: ALP candidate mass distributions for (a) ϒ (2S) and (b) ϒ (3S)
CMEs with three sets of selection cuts for ECM

min . The blue distribution
shows the original smoothed function. The green one is the one used
in the rest of the analysis. The orange curve is the third alternate de-
scribed in the text.
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Figure 3.30: Two dimensional histogram of ECM
min versus the ALP candidate

mass. The three sets of ECM
min are overlaid. The blue curve is the original

smoothed function. The green one is the one used in the rest of the
analysis. The orange curve is the third alternate described in the text.
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Figure 3.31: Data-MC comparison. The left column shows low ALP mass
candidates while the right shows high mass candidates. The top row
shows the ϒ (2S) CME, the middle shows the ϒ (3S) CME, and the bot-
tom shows the ϒ (4S) CME.
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entries in the data for that range. The upper limit of this range is chosen to be high

but still lower than the CME. The exact value is chosen arbitrarily. This procedure

shoves all the correction into the e+e−→ γγ(γ) MC, but as the other MC processes

contributing to the background are small, this should be adequate. For each CME,

the on-resonance and off-resonance are scaled separately. Table 3.5 lists the scaling

factors for each sample. This correction is later applied to the signal efficiency and

contributes to the systematic uncertainty as discussed in Section 3.8.2.

Figures 3.32, 3.33, 3.34 show data-MC comparisons for the ϒ (2S), ϒ (3S), and

ϒ (4S) CMEs, respectively, after the MC scaling is applied. Figure 3.34a nicely

shows the contribution of the e+e−→ ωγ process in the ϒ (4S) CME sample. The

ϒ (2S) and ϒ (3S) have lower statistics and this process is not as visible in them.

Figure 3.34c shows that the MC simulates quite well the relatively sharp transitions

in the ALP candidate mass distributions due to the trigger efficiency.

3.5 Toy experiments creation
The background MC is used to create 5000 toy experiment. Each toy experiment is

a histogram of di-photon invariant masses expected if 5 % of the data are collected.

A toy experiment is created by bootstrapping - randomly drawing ALP candidate

masses from the different MC samples at the different CMEs. The number of entries

drawn from each MC sample is the expected number of entries after scaling the MC

to 5 % of the total integrated luminosity. For the e+e− → γγ(γ) MC, the number

of drawn entries is further scaled by the scale factor used to normalize the MC to

Table 3.5: Scale factors for the e+e−→ γγ(γ) MC sample that normalize the
number of entries to that in data in the mass range 0 GeV/c2 to 9 GeV/c2.

CME On/Off resonance Scale factor

ϒ (2S)
Off 0.83
On 0.83

ϒ (3S)
Off 0.79
On 0.82

ϒ (4S)
Off 0.87
On 0.81
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Figure 3.32: Data-MC comparisons at the ϒ (2S) CME. e+e− → γγ(γ) MC

scaling is applied.

data, as discussed in Section 3.4. For the runs at the ϒ (2S) and ϒ (3S) CMEs, only

masses up to 97.5 % of the CME are used because of the trigger issues discussed in

Section 3.3.2.

The size of the e+e−→ e+e−γ MC sample at the ϒ (4S) CME is relatively small.

The number of entries that pass the selection cuts are not enough to bootstrap from.

Therefore, the di-photon invariant mass distribution for that MC sample is approx-

imated by a function. The distributions and approximation functions can be seen

in Figure 3.35. The off-resonance sample is approximated by a constant term and

a Gaussian at the high mass peak. The on-resonance sample is approximated by

a constant term and three Gaussians at the three peaks. The entries in the toy ex-

periments for the e+e− → e+e−γ process at the ϒ (4S) CME are drawn from the

approximation functions instead of from the MC entries themselves. The actual
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Figure 3.33: Data-MC comparisons at the ϒ (3S) CME. e+e− → γγ(γ) MC

scaling is applied.

number of entries used for each MC sample and each CME is listed in Table 3.6.

Figure 3.36 shows the di-photon mass distributions of two toy experiments for

the combined ϒ (2S), ϒ (3S) CMEs and the ϒ (4S) CME together with the data. Small

statistical fluctuations can be seen between the two toy experiments.

Discussion of the method

The method of creating the toy experiments by sampling from the MC entries them-

selves has a disadvantage. The toys are not sampled from a continuous distribution,

but rather from a distribution already affected by statistical fluctuations. These sta-

tistical fluctuation in the MC manifest themselves in all the toy experiments drawn

from that MC. The size of the fluctuations in MC compared to the ones in data is
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Figure 3.34: Data-MC comparisons at the ϒ (4S) CME. e+e− → γγ(γ) MC

scaling is applied. Note the different bin sizes in the subplots.
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Figure 3.35: ALP candidate mass distributions for the e+e− → e+e−γ MC

sample at the ϒ (4S) CME, together with the functions approximating
the distributions.
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Table 3.6: Number of entries contributing to each toy experiment by each
background process for each CME.

CME On/Off resonance
e+e−→

γγ(γ) ωγ e+e−(γ)

ϒ (2S)
Off 4587 6 18
On 41546 57 181

ϒ (3S)
Off 7294 10 36
On 76447 112 249

ϒ (4S)
Off 36932 57 47
On 346328 565 485
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Figure 3.36: ALP candidate mass distributions of two toy experiments to-
gether with the data. The left column shows toy experiment 0. The
right column shows toy experiment 861. The top row shows the ϒ (4S)
CME. The bottom row shows the combined ϒ (2S), ϒ (3S) CMEs. The
data points in the two plots of the same toy experiment are identical.
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determined by the ratio of the equivalent integrated luminosity of the MC and the

integrated luminosity of the data. Table 3.3 lists this ratio for the full BABAR dataset.

If the MC has a downward fluctuation at a particular mass range then, on av-

erage, the toy experiments will also have a deficit in the number of entries in that

mass range. For example, the sum of all the MC samples at the ϒ (4S) CME has

a deficit in the di-photon mass range 1.12 GeV/c2 to 1.16 GeV/c2. This can be

seen as a two bin wide trough in Figure 3.34a. The number of entries in that

mass range in all the toys will, on average, be smaller then the number of entries

in ranges 1.08 GeV/c2 to 1.12 GeV/c2 and in 1.16 GeV/c2 to 1.2 GeV/c2. This

poses a problem because the Poisson uncertainties associated with each bin do not

accurately represent the average difference between the bin content and the true

probability density function (PDF) describing the distribution. For this reason, fits

to the toy experiments usually have a very low χ2 probability. It should be noted

that this effect only applies to MC toy experiments. The data is truly drawn from

the PDF describing the data. The uncertainties of the data correctly describe the

deviation of the measurement from the underlying PDF.

3.6 Signal extraction
A binned maximum likelihood fit to the ALP candidate mass distribution is used to

extract the number of signal events. The fit is performed with the root framework

version 6.18.00 [51]. The fit modifies the fit parameters and maximizes the likeli-

hood that the data is described by the fit function. The fit function is composed of a

signal component, a background component, and components for SM resonances.

3.6.1 Signal shape function

For each ALP mass hypothesis, the signal component is built using the ALP candi-

date mass distribution of the signal MC for that mass. The distribution is linearly

interpolated between the bin contents to construct a continuous function. All en-

tries that pass the selection cuts contribute, even those with the wrong combination

of photons, i.e. ones in which an ALP daughter photon is combined with the recoil

photon to produce an ALP candidate. Figure 3.37 shows examples of the histogram

and the smooth function for two ALP masses at the ϒ (4S) CME.
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Figure 3.37: Signal MC shapes for (a) 6 GeV/c2 and (b) 9 GeV/c2 at the
ϒ (4S) CME. The figures show the histogram bin content in blue and
the linearly interpolated function in red.

3.6.2 Standard model resonance contributions

Some SM resonances can contribute a peaking component to the background. We

consider the π0, η , η ′, ρ0, ω , and φ . Heavier SM resonances are neglected.

The π0, η , and η ′ SM resonances with masses of 0.135 GeV/c2, 0.548 GeV/c2,

0.958 GeV/c2 [10], respectively, can decay to two photons, just like an ALP, and

therefore leave the same signature in the detector as an ALP.

The ρ0 with a mass of 0.775 GeV/c2, the ω with a mass of 0.784 GeV/c2, and

the φ with a mass of 1.02 GeV/c2, can all decay to a γπ0, where the π0 is boosted

enough that when it decays to two photons, the photons merge in the detector and

are reconstructed as a single photon. Therefore, these SM resonances look like they

decay into two photons.

π0

The π0 mesons mass is very close to the lower edge of the mass range this search is

sensitive to. In order not to complicate the search, it was decided to avoid the mass

range that the π0 influences and start the search for the ALP above it. The method

used to decide where the π0 contribution is negligible and where to start the search

is described in Section 3.6.4.
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η

As BABAR does not have e+e−→ ηγ MC the shape of the η is evaluated from signal

MC where the ALP is generated at the η mass. Figure 3.38 shows signal MC at the

η mass. Each histogram is fitted with a Gaussian. The Gaussians are used as the η

component in the fit function.
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Figure 3.38: MC distributions used to evaluate the η resonance shape at the
(a) ϒ (2S), (b) ϒ (3S), and (c) ϒ (4S) CMEs. Each distribution is approx-
imated by a Gaussian.

As the number of η events is too small to measure their contribution from 5 %

of the data, its normalization in the fit function is fixed to the expected value. The

CS of the process e+e−→ ηγ was measured at BABAR at the ϒ (4S) CME [52]. In

order to calculate the expected number of η events, the CS is multiplied by 5 % of

the integrated luminosity, the η → γγ branching fraction, and the signal efficiency

at the η mass. Table 3.7 lists prompt production CSs and branching fractions to two
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photons for the η and some of the other SM resonances appearing in this section.

The values are for the ϒ (4S) CME. The expected number of η events for the full

BABAR dataset is 12, 22, 105, at the ϒ (2S), ϒ (3S), ϒ (4S) CMEs, respectively.

It is assumed that the CS does not change rapidly with the CME. Therefore, the

measured CS at the ϒ (4S) CME is also used for the ϒ (2S) and ϒ (3S) CMEs. As the

contributions at the ϒ (2S) and ϒ (3S) CMEs are small, it probably does not make

much difference to the final calculated limits, even if this assumption is not true.

Table 3.7: CSs and branching ratios for SM resonances at the ϒ (4S) on-
resonance. The sources are listed in the table. The CSs for the e+e−→ωγ

and e+e−→ φγ processes are calculated with formula 7 from [49].

X CS of e+e−→ Xγ ( fb) X → γγ branching fraction (%)

η 4.5 [52] 39.4 [10]
ω 17000 8.4 [10]
η ′ 5.4 [52] 2.2 [10]
φ 26000 0.1 [10]

ρ0

Although the ρ0 has a mass of 0.775 GeV/c2 which is in the search range, it has

a relatively large width of 0.148 GeV. This width is an order of magnitude wider

than the detector resolution at the ρ0 mass and therefore the background function

absorbs its contribution. The ρ0 is therefore not part of the fit function.

ω

BABAR has prompt ω MC. This MC is used to to produce a smooth function by

linearly interpolating between the bin contents, in the same way that is done in

the signal MC described in Section 3.6.1. Figure 3.39 shows the histograms of the

prompt ω MC used to create the smooth function.

The ω peak is relatively large and can be measured in data. Therefore, a dedi-

cated fit to extract the ω normalization is performed. The dedicated fit is done only

around the ω mass range. The ω normalization in all the mass range is then fixed

to the value obtained from the dedicated fit.
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Figure 3.39: Distributions of the e+e−→ ωγ MC after all selection cuts are
applied for. Each subplot includes an inset with a zoomed in version
around the ω peak.

It was decided that even if an excess of entries around the ω mass is observed

in the data, no ALP discovery will be claimed. To decide what range of masses

around the ω mass to exclude, the mass range around the ω mass is fitted with

floating omega component as well as floating signal component. Floating here

means a variable which is adjusted by the fit. The uncertainty on the number of

signal entries, averaged over all the toy experiments is plotted in Figure 3.40 for

the ϒ (4S) CME. The figure shows that around the ω mass, the fit cannot decide

how to split the entries between the signal and ω components and therefore the

uncertainty of the number of signal entries increases. Using the figure, the mass
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range 0.72 GeV/c2 to 0.81 GeV/c2, where the uncertainty on the number of signal

entries increases, is excluded. The same range is used to exclude the masses for

the ϒ (2S) and ϒ (3S) CMEs.

η ′

An identical analysis to that of the η is used to roughly estimate the η ′ contribu-

tion. The production CS is taken from [52]. The number of η ′ events is estimated

to be less than six events in the complete ϒ (4S) data sample. Therefore, the η ′

contribution is neglected.

φ

The shape of the φ component is obtained in exactly the same way as the η , de-

scribed earlier in the section, using the 1 GeV/c2 ALP signal MC. Figure 3.41 shows

the signal MC at the φ mass, used to obtain the Gaussian parameters.

A naive calculation of the number of expected events as the product of the

CS, integrated luminosity, and signal efficiency at the φ mass is not sufficient to

estimate the φ normalization. It does not reflect the fact that the φ has total angular

momentum of one, unlike the ALP which is a scalar. It also does not take into

account that for a φγ → π0γγ event to be signal-like, the daughter photons of the

π0 must merge and be reconstructed as a single photon. The single merged photon

reconstructed from the π0 decay and the second photon of the φ decay combine to

produce a peaking background at the φ mass. A correction factor is used to adjust

the naive expected number of events to take these effects into account. As BABAR

does not have prompt φ MC, the correction factor is calculated from the prompt ω

MC. It is assumed that the correction factors for the φ and the ω are similar.

The correction factor is the ratio of the number of prompt ω MC events with an

ALP candidate with a mass below 2 GeV/c2 and the expected number of e+e−→
γω → γγπ0 events. The later is calculated by multiplying the theoretical CS of

the e+e−→ ωγ process, integrated luminosity, ω → γπ0 branching fraction, and

efficiency estimated from signal MC at the ω mass. The CS of the ω→ γπ0 process

is calculated using formula 7 in [49], with second order corrections and updated

mass and width values from [10]. The correction factors are listed in Table 3.8.
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Figure 3.40: Uncertainty on the number of signal entries, averaged over all
the toy experiments as a function of the ALP candidate mass, for the
ϒ (4S) CME. Both the signal component and the ω component are al-
lowed to float in the fit.

Having obtained the correction factor, the theoretical CS of the process

e+e− → γφ → γγπ0 is calculated in the same way. It is multiplied by the cor-

rection factor to produce the expected number of relevant φ events, which is used

to fix the normalization of the φ component of the fit function. The corrected ex-

pected number of φ events in the full BABAR dataset are 8, 16, 87, for the ϒ (2S),

ϒ (3S), ϒ (4S) CMEs, respectively.

Table 3.8: Correction factor for the e+e−→ γφ → γγπ0 CS.

Center of
mass energy

Correction
factor

Y2S 0.032
Y3S 0.034
Y4S 0.054
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Figure 3.41: MC distributions used to evaluate the φ resonance shape. Each
distribution is approximated with a Gaussian.

3.6.3 Background shape

The background component of the fitting function is modeled by a Chebyshev

polynomial. Chebyshev polynomials are chosen as they are an orthogonal set,

unlike Taylor polynomials.

In order to determine the polynomial degree required to describe the back-

ground, all the toy experiments are fitted with polynomials of different degrees.

The signal component in these fits is fixed to zero and the fit is performed in the

fit window described in Section 3.6.4. For each mass, the percent of toy experi-

ments with bad fits is checked. Bad fits for this purpose are defined as fits with a

χ2 fit probability of less than 1 %. The value is chosen arbitrarily. The polynomial

degree chosen to describe the background is the degree that if it is increased, does

not significantly decrease the percentage of bad fits. Each ALP mass hypothesis can
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have a different polynomial degree.

In an ideal case, if the background is truly described by the Chebyshev poly-

nomial that is fit and the uncertainties are properly modeled, the χ2 probability of

the fit is uniformly distributed between zero and one. Therefore, in such a case,

the probability of a bad fit is 1 %. But as discussed in Section 3.5, the uncertainties

of the toy experiments do not accurately reflect the deviation from the underlying

distribution. Therefore, even if the background is properly modeled by a specific

polynomial degree, the percentage of bad fits can be substantially higher than 1 %.

For this reason, the absolute value of the percentage of bad fits is not a meaningful

value. The change in the percentage of bad fits when modifying the polynomial

degree is chosen as the metric for choosing the polynomial degree, rather than the

absolute value.

Figure 3.42 and Figure 3.43 show the percentage of toy experiments with bad

fits as a function of the ALP mass hypothesis for the ϒ (2S) and ϒ (3S) CMEs, re-

spectively. Each figure has a zoomed version of the high mass region in an inset.

As can be seen, in most of the mass range, up to around 8.5 GeV/c2, the percent-

age of bad fits is the same whether the background is modeled by a first degree

Chebyshev polynomial or a higher degree polynomial. At the higher masses, the

ALP candidate mass distribution is sufficiently non-linear that a first degree poly-

nomial is not enough to describe it. Increasing the polynomial degree decreases

the percentage of bad fits. Therefore, in the high mass region, a higher polynomial

degree is needed to describe the background.

Figure 3.44 shows the percentage of bad fits as a function of the ALP mass hy-

pothesis for the ϒ (4S) CME at different mass ranges. The lower end of the ALP

candidate mass distribution changes sufficiently fast that a second degree poly-

nomial is needed. The mass range up to 5.5 GeV/c2 can be described by a first

degree polynomial. The range 5.5 GeV/c2 to 6.5 GeV/c2 changes rapidly because

of the large decrease in the trigger efficiency. This mass range is excluded. The

highest mass range requires second and third degree polynomials to describe the

background.

Table 3.9 lists the different ALP mass ranges and the polynomial degree used to

describe the background.
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Figure 3.42: Percentage of bad fits to the background MC as a function of
the ALP mass hypothesis for different Chebyshev polynomials degrees
at the ϒ (2S) CME. The inset photo shows a zoomed area of the high
masses.

3.6.4 Fit windows

For each ALP mass hypothesis, the fit is done in a fit window containing the ALP

mass being considered. To select the fit window width, first a base width is deter-

mined. The base width is calculated in the same way as the counting window in

Section 3.3.4, only that for the base width, all the final selection cuts are applied.

As each mass hypothesis has a different base width, adjacent mass hypotheses can

have different widths. The base width is smoothed as a function of the ALP mass

hypothesis and the edges are adjusted to coincide with bin edges. To form the ac-

tual fit window two base widths are added below and two above the base width

containing the ALP mass. The total fit window is five times wider than the base

width. If the counting window can be thought of as being 4.3 σ wide, the fit win-

dow is 21.5 σ wide, where σ is the equivalent Gaussian standard deviation. The

fit window is wider than the base width to give the fit more information about the
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Figure 3.43: Percentage of bad fits to the background MC as a function of
the ALP mass hypothesis for different Chebyshev polynomials degrees
at the ϒ (3S) CME. The inset photo shows a zoomed area of the high
masses.

background so it can fit the background component of the fit function.

Selecting relevant ALP mass hypotheses

A few different methods are used to decide on the mass range in which to search

for an ALP. The smallest ALP mass hypothesis is chosen to exclude the π0 peak.

The ALP candidate mass distribution of signal MC of an ALP with a mass of

0.135 GeV/c2 is fitted with a Gaussian. Figure 3.45 shows the distribution and

the fitted function. The ALP mass for which the lower end of the fit window is

larger than two standard deviations above the Gaussian mean of the π0 peak is the

first ALP mass hypothesis used. This turns out to be 0.29 GeV/c2, 0.31 GeV/c2,

0.32 GeV/c2, for the ϒ (2S), ϒ (3S), ϒ (4S) CMEs, respectively.

For the ϒ (2S) and ϒ (3S) CMEs, the largest ALP mass is chosen such that the

higher end of the fitting window is smaller than the mass for which the trigger
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Figure 3.44: Percentage of bad fits to the background MC as a function of the
ALP mass hypothesis for different Chebyshev polynomials degrees at
the ϒ (4S) CME.
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Table 3.9: Background component Chebyshev polynomial degrees for differ-
ent ALP mass ranges.

CME Mass range (GeV/c2) Polynomial degree

ϒ (2S)

0.29 to 0.72 1
0.81 to 8.59 1
8.6 to 9.29 2
9.3 to 9.4 3

ϒ (3S)

0.31 to 0.72 1
0.81 to 8.89 1
8.9 to 9.59 2
9.6 to 9.8 3

ϒ (4S)

0.32 to 0.37 2
0.38 to 0.72 1
0.81 to 5.45 1
6.65 to 7.19 1
7.2 to 8.79 2
8.8 to 10.05 3

issues arise, as discussed in Section 3.3.2. For the ϒ (4S) CME, the largest ALP

mass is the mass for which a 3rd degree Chebyshev polynomial is not sufficient

to describe the background shape, as discussed below. The maximum fitted ALP

mass is 9.4 GeV/c2, 9.8 GeV/c2, 10.05 GeV/c2, for the ϒ (2S), ϒ (3S), ϒ (4S) CMEs,

respectively.

3.6.5 Background only MC fits

To check the fitting procedure each ALP mass hypothesis for each of the 5000

toy experiments is fitted with a floating signal component. Figure 3.46 shows an

example fit for an ALP with a mass of 4.7 GeV/c2 at the ϒ (4S) CME. The result

of the fit is the number of signal entries NS and the uncertainty on the number of

signal entries σNS .

The distribution of the number of signal entries for the 4.7 GeV/c2 ALP of all

the toy experiments at the ϒ (4S) CME is shown in in Figure 3.47. Ideally, the

distribution should be centered on zero, as there are no signal entries added in the
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Figure 3.45: ALP candidate mass distribution for signal MC of an ALP with a
mass of 0.135 GeV/c2. The distributions are fitted with Gaussians.

fits. Nevertheless, the mean is highly inconsistent with zero. It is 97 standard

deviations away. 90 % of the means for the mass hypotheses at the ϒ (4S) CME

are between −48 and 67. They are also between −57 and 71 standard deviations

away from zero. One of the more extreme examples is shown in Figure 3.47.

As discussed in Section 3.5, this bias is due to the way the toy experiments are

generated and should not appear in data. The bias information is still useful and

will be used in later parts of the analysis.

Even though the number of signal entries returned by the fit is not consistent

with zero, we can check whether the uncertainty on the number of signal entries

that the fit returns is reasonable. This is checked using the pull distribution for NS.

As the expected number of signal entries is zero, the pull for NS is (NS−0)/σNS . If

the uncertainties are correct, the standard deviation of the pull distribution is one.
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mγγ (GeV/c2)

Figure 3.46: Example of a fit to a background only toy experiment, at a mass
of 4.7 GeV/c2 at the ϒ (4S) CME. The solid red line is the complete
fit function. The dashed red line is the fit function without the signal
component.
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Figure 3.47: Distribution of the number of signal entries for all the toy exper-
iment fits at a mass of 4.7 GeV/c2 at the ϒ (4S) CME. The distribution
is fitted with a Gaussian.

69



Figure 3.48 shows the pull of the 4.7 GeV/c2 ALP at the ϒ (4S) CME. It shows

that the uncertainties returned by the fit are a bit too large. The same can be done

for all the other masses. Figure 3.49 shows the distribution of the standard devi-

ations of the pulls of NS for the different CMEs. Each entry in a histogram is the

standard deviation of a pull of a specific ALP mass. As can be seen, on average,

the uncertainties returned by the fit are too large by a few percent. This is not

too concerning. First, the uncertainties are too large by a small amount. Second,

uncertainties that are too large will make it harder to claim a discovery of an ALP

and they increase the limit on the ALP coupling constant. If the fit had returned

uncertainties that were too small, that would be more concerning.

3.6.6 Signal plus background MC fits

To check that the signal extraction works as intended in the presence of signal, sig-

nal MC entries are added to the toy experiments and the signal extraction procedure

is repeated.

Adding signal MC entries

A fixed number of signal MC events is chosen for each ALP mass hypothesis. The

number of events is chosen so that, on average, the total number of entries in the

fit region is equal to five standard deviations of the number of signal entries of

the background only MC fits to the toy experiments, discussed in Section 3.6.5.

Five standard deviations is chosen because that is the accepted threshold for a new

discovery. Each ALP mass hypothesis has its own fixed number of added signal

events. The events for each toy are randomly chosen from among all the signal MC

events that have at least one ALP candidate that passes the selection cuts.

Fits

Figure 3.50 shows a sample fit to a toy experiment with signal MC entries added, at

the 4.7 GeV/c2 ALP mass at the ϒ (4S) CME. This is the same toy experiment as in

Figure 3.46, the only difference is that in Figure 3.50 signal entries are present.

One way to check if the fits are biased is to examine the residuals. If the fit

returns the correct number of signal entries, the residual distribution should be
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Figure 3.48: The NS pull, NS/σNS , for the toy experiment fits at a mass of
4.7 GeV/c2 at the ϒ (4S) CME. The distribution is fitted with a Gaus-
sian.

centered on zero. Figure 3.51 shows the residuals for the 4.7 GeV/c2 ALP at the

ϒ (4S) CME for all the toy experiments. NTrue
S is the true number of signal MC entries

in the fit window added to each toy experiment. As can be seen, the mean residual

has a large bias. As discussed in Section 3.6.5, the number of signal entries in the

background only fits is also biased. Therefore, to get a meaningful residual, the

number of signal entries from the background only fits is used as a baseline for the

number of signal entries in the signal plus background case. This creates a new

residual, the adjusted residual, and it is calculated by subtracting the mean number

of signal entries of the background only fit < N0sig
S > from the regular residual,

where < .. . > signifies the mean. The bias disappears if the adjusted residual is

used, as can be seen in Figure 3.52. The mean is now consistent with zero. It should

be noted that this adjustment is needed to address the bias in the toy experiments.

The data should not have a bias and therefore no adjustments are made to fits of

the data.

A better way to evaluate the bias which takes into account the uncertainties on

the number of signal entries is with the adjusted pull, (NS−<N0sig
S >−NTrue

S )/σNs .

Figure 3.53 shows the mean of the adjusted pull for the three CMEs. There is a
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Figure 3.49: Distributions of the standard deviation of the pulls of the num-
ber of signal entries for fits to toy experiments for all the ALP mass
hypotheses. Each ALP mass hypothesis is one entry in each of the his-
tograms. Each plot is fitted with a Gaussian.

slight bias toward negative values, meaning the fit returns slightly less signal entries

than there actually are. But like previously, the bias is small and it is toward the

conservative direction. Figure 3.53 shows that each of distributions has a low edge

tail. This tail is because the fits to the ALP masses around 1.1 GeV/c2 return a

lower number of signal entries than the true number of signal entries added. This

happens for all three CMEs. The reason why this happens is not clear.

The uncertainty on the number of signal events in the signal plus background

MC fits is also checked. Figure 3.54 shows the standard deviation of the pull dis-

tributions as a function of the ALP mass hypothesis. Ideally, these should equal to

one. For the ϒ (2S) and ϒ (3S) CMEs the standard deviations are relatively small at

low ALP masses and increase for high masses. For the ϒ (4S) CME, there is a large
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Figure 3.50: Example of a fit to a toy experiment with signal MC entries for
an ALP with a mass of 4.7 GeV/c2 at the ϒ (4S) CME.
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Figure 3.51: Residuals distribution for the number of signal entries for a
4.7 GeV/c2 ALP at the ϒ (4S) CME in signal plus background MC. The
distribution is fitted with a Gaussian.
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Figure 3.52: Adjusted residuals for an ALP with a mass of 4.7 GeV/c2 at the
ϒ (4S) CME in signal plus background MC. The distribution is fitted
with a Gaussian.

decrease in the standard deviations around 6.5 GeV/c2, just on the edge of the ex-

cluded masses. Low standard deviations mean that, on average, the uncertainty on

the number of signal entries returned by the fit is too large. The reason why the

standard deviations are so different from one, and why they depend on the mass is

not understood. But, like previously, the deviations from the ideal case are in the

conservative direction.

Because adding signal entries increases the total number of entries in the sig-

nal region, the uncertainty on the number of signal entries in the signal plus back-

ground fits is higher than in the background only case. This causes the mean of

the adjusted local significance, < (NS− < N0sig
S >)/σNS >, to decrease. This is

demonstrated in Figure 3.55. The blue points show the mean of the adjusted local

significance as a function of the ALP mass hypothesis, where the uncertainty is the

uncertainty of the signal plus background fits. Remember that the number of signal

entries added to the toy experiments is chosen so that the average local significance

is five. The blue points show that for the signal plus background case, the local sig-

nificance is lower than five. The orange points show the adjusted local significance

with the uncertainties taken from the background only fits. In this case, the local
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Figure 3.53: Distributions of the mean of the adjusted pull for signal plus
background MC fits. Each ALP mass hypothesis contributes one entry
to a histogram. Each plot is fitted with a Gaussian.

significances are close to five, as intended.

3.6.7 Signal efficiency

In this work, the signal efficiency is treated as a conversion factor between the fitted

number of signal entries Nfit and the true number of ALP events ntrue. ntrue can be

either generated MC events, or ALP particles produced in the accelerator. N denotes

number of entries and n denotes number of events. The signal efficiency needs to

reflect the fact that an event can have multiple ALP candidates in the fit window.

With this definition, the relation between Nfit, the efficiency ε , the integrated
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Figure 3.54: Scatter plots of the standard deviation of the adjusted pull as a
function of the ALP mass hypothesis, in signal plus background MC fits.

luminosity L and the cross section σ is

Nfit = L σε. (3.1)

The efficiency is evaluated from the signal plus background fits, described in

Section 3.6.6. As not all the signal MC events that passed the selection cuts are

added to the toy experiments, the effective number of generated ALP events neff
gen is

neff
gen =

nadded

ncut
ngen, (3.2)

where nadded is the number of signal MC events added to the toy experiments, ngen

is the number of generated signal MC events, and ncut is the number of signal MC

events that pass the selection cuts. The events counted in nadded do not necessarily
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Figure 3.55: Scatter plots of the mean of the adjusted local significances as a
function of the ALP mass hypothesis, in signal plus background MC fits.
The blue points use the uncertainty on the number of signal entries of
the signal plus background fits. The orange points use the uncertainty
on the number of signal entries of the background only fits.

have an ALP candidate in the fit window.

The efficiency is then calculated as

ε =
Nfit

neff
gen

κ, (3.3)

where κ is the scale factor that corrects for the disagreement between data and MC,

as listed in Table 3.5 and is equal to about 0.8. Figure 3.56 shows the efficiency as

a function of ALP mass. The efficiency for the ϒ (2S) and ϒ (3S) CMEs is relatively

low at ALP masses below 3.75 GeV/c2 because the number of entries per event

is 0.6. The efficiency increases in the ALP mass range 3.75 GeV/c2 to 7 GeV/c2
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because the number of “wrong” ALP candidates that fall within the fit window

gradually increases. This has the effect of gradually increasing the average number

of ALP candidates per event up to around 1.4. A “wrong” ALP candidate is any

ALP candidate that is not formed from the two ALP daughter photons. For exam-

ple, an ALP candidate formed from an ALP daughter photon and the recoil photon.

Above 7 GeV/c2 the number of “wrong” ALP candidates inside the fit window falls

sharply to one, causing the efficiency to fall sharply. The gradual increase above

7.5 GeV/c2 is due to an increase in the selection cut efficiency. The same effects

happens for the ϒ (4S) as well, but they are not as apparent because of the large

variation of the trigger efficiency for this CME.

3.7 Search of the data for evidence of an ALP

In order to search the 5 % of the BABAR data for evidence of an ALP, the fitting

procedure is repeated on the data. This is the same data sample that is used for

the selection cut optimization, therefore, as discussed in Section 3.1.1, the results

might be biased. The local significance, as well as the global significance are

evaluated.

3.7.1 Local significances

The local significance is the naive significance NS/σNS for each ALP mass hypoth-

esis, without taking into account the fact that many ALP mass hypotheses are used.

Even though the local significance is not the correct statistical quantity used for

discovery, it is still interesting to evaluate it and inspect which ALP mass had the

largest significance. Figure 3.57 shows histograms of the local significances for

the three CMEs. Figure 3.58 shows the fits to the data that gave the maximum local

significance for each of the CMEs.

These figures show that the largest local significances in 5 % of the data do not

approach the threshold for discovery of five standard deviations. Even if they were

large enough, to actually claim a discovery the global significance should be used.
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Figure 3.56: The efficiency ε as a function of the ALP mass hypothesis.

3.7.2 Global significances

The local significance does not take into account the number of ALP mass hypothe-

ses. Just due to statistics, the more ALP mass hypotheses are used, the higher the

chance that at least one of them will have a high local significance result. This is

known as the look elsewhere effect.

To take into account the number of ALP mass hypotheses used, the histogram of

the maximum adjusted local significance of each of the MC toy experiments is cre-

ated. These are created by looking at all the local significances for a particular toy

experiment, one value for each ALP mass hypothesis, after correcting for the bias

on NS observed in the toy MC. The maximum local significance value from each

toy is used to fill the histogram, one entry per toy experiment. These histograms

are treated as the PDF for the maximum local significance. The p-value, the proba-

bility of obtaining a maximum local significance that is greater or equal to the one

measured in data, is then evaluated. Figure 3.59 shows the histograms, the maxi-

mum local significance observed in data, the p-value, and the p-value equivalent in

Gaussian standard deviations. The p-values for the three CMEs are large, meaning

there is a high probability that a random fluctuation of the background will produce

a maximum local significance at least as large as observed in data. As the p-values
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Figure 3.57: Histograms of the local significances of fits to 5 % of the data.
The top of each subplot has the ALP masses that produced the minimum
and maximum local significance.

for the three CMEs are all greater than one half, the equivalent Gaussian standard

deviations are negative. Analyzing the global significance shows that 5 % of the

data is completely consistent with the data being composed only of background,

with no hints of an ALP. Even if the results had suggested that an ALP existed, a

discovery could be claimed only by performing a blind analysis on the remaining

95 % of the data, without re-optimizing the selection cut threshold values.

3.8 Cross section and coupling constant upper limits
Failing to find indications for an ALP in the data, the data is used to set 90 % CI

upper limits on the ALP production CS σ . As each CME has a different CS, the

measurements at the three CMEs are later combined to produce upper limits on the

80



mγγ (GeV/c2)

(a) Y2S, 4.35 GeV/c2

mγγ (GeV/c2)

(b) Y3S, 9.72 GeV/c2

mγγ (GeV/c2)

(c) Y4S, 8.69 GeV/c2

Figure 3.58: Fits to 5 % of the data for the ALP mass hypotheses that gave the
maximum local significance for each CME. The solid red line is the
complete fit function. The dashed red line is the fit function without
the signal component.

ALP-photon coupling gγγ . Limits are set using Bayesian methods [53].

3.8.1 CS upper limits with statistical uncertainties only

As a first step, the limits are calculated taking into account statistical uncertainties

only. The statistical uncertainty is the uncertainty on the number of signal entries

returned by the fit.

The likelihood function, i.e., the probability of measuring the number of signal

entries observed in data given the model, for the measured number of signal entries

NS and its uncertainty δS given σ , L , and ε from Equation 3.1 is modeled by a
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Figure 3.59: Histograms of the maximum adjusted local significances of the
MC toy experiments. The vertical dashed line shows the maximum
local significance in 5 % of the data. Above each subplot are the p-
value and the equivalent number of Gaussian standard deviations of
the observed value.

Gaussian with mean NS and standard deviation δS

P(NS,δS|σ) =
1

δS
√

2π
exp

[
−1

2

(
L σε−NS

δS

)2
]
. (3.4)

A flat non-negative prior is used for the CS up to some unimportant large value

σmax. The posterior, i.e., the PDF of the CS given the data, is

P(σ |NS,δS) =

1
δS
√

2π
exp
(
−1

2(
L σε−NS

δS
)2
)

1
σmax∫

∞

0
1

δS
√

2π
exp
(
−1

2(
L σε−NS

δS
)2
)

1
σmax

dσ

. (3.5)
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To calculate the 90 % CI upper limit on σ , σUL, the following equation needs

to be solved

0.9 =

∫
σUL
0 exp

[
−1

2(
σ−NS/L ε

δS/L ε
)2
]

dσ∫
∞

0 exp
[
−1

2(
σ−NS/L ε

δS/L ε
)2
]

dσ

. (3.6)

The analytical solution to this equation is

σUL = NS/L ε +
√

2δS/L ε · erf−1
(

0.9+(0.9−1)erf
(

NS√
2δS

))
. (3.7)

The green curve in Figure 3.61 shows the 90 % CI upper limit on the CS using

statistical uncertainties only, for 5 % of the data.

3.8.2 Systematic uncertainties

Systematic uncertainties are calculated for the number of signal entries NS and for

the signal efficiency ε .

Number of signal entries

Two effects are taken into account when calculating the systematic uncertainty

on the number of signal entries. The first is the background polynomial degree.

Section 3.6.3 described how the background polynomial degree is selected. If the

selected degree is smaller than the true degree needed to describe the background,

the number of signal events returned by the fit will be wrong. This can happen, for

example, due to limited statistics of the MC sample.

To evaluate the effect this has on the number of signal events returned by the

fit, the polynomial degree is increased by one and the fit procedure is repeated.

The absolute value of the difference between the number of signal events with

the nominal polynomial degree and the increased polynomial degree is used as a

systematic uncertainty.

Theoretically, it could be possible for the selected polynomial degree to be

too high, instead of too low. But the statistics are high enough that decreasing

the polynomial degree causes fits for many masses to fail. For example, if the

background is truly described by a second degree polynomial and the statistics

are high enough, fitting it with a first degree polynomial will fail. Therefore, the
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systematic uncertainty is evaluated only by increasing the polynomial degree.

The second effect contributing to the systematic uncertainty on the number of

signal entries is the fit window size. The nominal fit window size is five times the

size of the base width, as described in Section 3.6.4. If the nominal fit window size

is not wide enough to extract the true shape of the background, the fit will return

the wrong number of signal entries. To evaluate how this affects the fitted number

of signal events, the fit procedure is repeated with a fit window six times larger than

the counting window. The absolute value of the difference between the number of

signal events with the nominal fit window range and the wider fit window is used

as a systematic uncertainty.

Figure 3.60 shows the distributions of the ratios of the systematic uncertainty

on the number of signal entries because of the Chebyshev polynomial degree and

because of the fit window size to the statistical uncertainty on the number of signal

entries. These give a sense of the size of the systematic uncertainties on the number

of signal entries.

Because the bin width is much smaller than the ALP candidate mass resolution,

the systematic uncertainty that could result from changing the bin width is expected

to be negligible and is not evaluated.

Signal efficiency

The systematic uncertainty on the signal efficiency is roughly 11 %. The vast ma-

jority of the uncertainty is because of the scaling of the MC to fit the data, κ , de-

scribed in Section 3.4. This effect is included in the systematic calculation because

it can cause the number of signal MC entries to be too large. The uncertainty on

κ is calculated by (1−κ)/2. Any systematic uncertainties on the integrated lumi-

nosities, the trigger, and on the photon detection efficiency are incorporated into

κ .

Even though the selection cut threshold values affect the background shape, the

analysis does not depend on the knowledge of the exact shape of the background.

The polynomial coefficients describing the shape of the background are floating

parameters in the fit function. Therefore, the exact values of the selection cut

thresholds are not considered a source of systematic uncertainty.
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Figure 3.60: Distributions of the ratios of the systematic uncertainty on the
number of signal entries because of the Chebyshev polynomial degree
(a) and the fit window size (b) to the statistical uncertainty on the num-
ber of signal entries.

3.8.3 CS upper limits with statistical and systematic uncertainties

The systematic uncertainties on NS and ε are added to the limit calculation in dif-

ferent ways.

The equation used to calculate the limit, Equation 3.5 already includes a term

for the statistical uncertainty on NS, δS. The systematic uncertainty on NS is incor-

porated into the limit by modifying δS to be the square root of the quadratic sum of

the statistical and systematic uncertainties

δ
tot
S =

√
δ 2

S +δ 2
pol +δ 2

win, (3.8)

where δ 2
pol is the systematic uncertainty due to modifying the background polyno-

mial degree, and δ 2
win is the systematic uncertainty due to modifying the fit window

size. This assumes there is no correlation between δ 2
pol and δ 2

win.

In order to add the systematic uncertainty on ε , a Gaussian term for the prob-

ability of ε is added to Equation 3.5. The Gaussian has mean ε̄ , which is the

efficiency obtained in Section 3.6.7, and standard deviation δε , which is the un-

certainty on the obtained efficiency. The efficiency is then marginalized out. The

85



modified equation that includes the systematic uncertainties is

0.9 =

∫
σUL
0 dσ

∫ 1
0 dε

1
δ tot

S

√
2π

exp
[
−1

2(
L σε−NS

δ tot
S

)2
]

1
δε

√
2π

exp
[
−1

2(
ε−ε̄

δε
)2
]

∫
∞

0 dσ
∫ 1

0 dε
1

δ tot
S

√
2π

exp
[
−1

2(
L σε−NS

δ tot
S

)2
]

1
δε

√
2π

exp
[
−1

2(
ε−ε̄

δε
)2
] . (3.9)

This equation is solved numerically. Figure 3.61 shows the upper limits obtained

for the three CMEs. The green curve shows the limits calculated with statistical un-

certainties only. The black curve shows the limits with the systematic uncertainties

included.

To get a sense of the effect of the systematic uncertainties on the limit, Fig-

ure 3.62 shows the ratio of the limit with the systematic and statistical uncertainties

to the limit calculated with only the statistical uncertainties. The systematic uncer-

tainties degrade the upper limit by roughly 5 %. The uncertainty on NS produces

the long high side tail in Figure 3.62. The uncertainty on ε increases the limit by

roughly 5 % for all mass hypotheses, shifting the distribution to the right.

3.8.4 Coupling constant upper limits

Instead of calculating the limit on the CS, the limit on the coupling constant can

be calculated instead. A CS value can be converted into a coupling constant value.

The CS is proportional to the coupling constant squared, σ(g) ∝ g2 [21]. The in-

formation provided by Madgraph while simulating the signal MC is used to relate

the cross section to the coupling constant

σ = g2
σmad/g2

mad, (3.10)

where σmad is the CS reported by Madgraph and gmad is the coupling constant set

in Madgraph, which in simulated signal MC is equal to gmad = 10−3 GeV−1. The

upper limit on the coupling constant is calculated in the same way to the one on

the CS, with a flat prior for the coupling constant and a likelihood function for the

coupling constant
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Figure 3.61: 90 % CI upper limits on the ALP production cross section, using
5 % of the data. The green curve shows the limit calculated with sta-
tistical uncertainties only. The black curve shows the limit calculated
with both statistical and systematic uncertainties.
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√
2π

exp
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2
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mad/L σmadε

)2
]
·
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√
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exp
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−1

2
(
ε− ε̄

δε

)2
]
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(3.11)

The upper limit on the coupling constant is calculated separately for each CME.

Figure 3.63 shows the ratio of the limit on the coupling constant calculated with a

flat prior on the coupling constant over the limit on the CS converted into a limit on

the coupling constant. The limit on the CS is calculated with a flat prior on the CS.

The figure shows that calculating the limit directly on the coupling constant, with
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Figure 3.62: Ratio of the CS upper limit calculated with systematic and statis-
tical uncertainties to the limit calculated with statistical uncertainties
only. The plots use 5 % of the BABAR data.

a flat prior on the coupling constant, produces results better by about 15 %.

The main advantage of using the likelihood for the coupling constant is that

it allows to combine the measurements at the three CMEs. As the cross section is

different at each CME, the coupling constant is the quantity that is constant with

energy. The combined likelihood is the product of the likelihoods in Equation 3.11

for each of the CMEs. Figure 3.64 shows the combined limit on the coupling con-

stant using the three CMEs measurements.

3.9 Phase space exclusion
Figure 3.65, reproduced from [1], shows the ALP phase space with different regions

excluded by different types of experiments. It also shows the result of this work,

which uses 5 % of the data collected by BABAR. As can be seen, the results exclude

regions of the phase space that have not been explored before in the mass range

0.29 GeV/c2 to 5 GeV/c2. It should be kept in mind, however, that the analysis is

not a blind analysis, as discussed in Section 3.1.1.

The excluded coupling constants are large enough that the ALP’s proper decay
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data is used.
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length in the lab frame is less than 0.2 mm for the lowest masses excluded here.

This is short enough that the ALP can be assumed to be produced at the IP. This

assumption should be re-evaluated after the full BABAR dataset is analysed and more

stringent limits are produced.
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Figure 3.65: Phase space exclusion plot in the coupling constant - ALP mass
plane. The plot is a reproduction of Figure 5 from [1]1 with updated
proton beam dump limits from [29]. Superimposed are the result of
this work which are based on 5 % of the BABAR data.

1 c© 2021 American Physical Society

3.9.1 Comparison of the Belle II and BABAR limits

The limits of BABAR and Belle II are calculated with different integrated luminosi-

ties. This analysis uses 25.5 fb−1 which is 5 % of the BABAR data. The published

Belle II analysis is based on 445 pb−1.

In order to compare the Belle II limits to the limits calculated in this work,

while taking into account the differences in integrated luminosities, the Belle II
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limits are scaled by 4
√

L to a total integrated luminosity of 25.5 fb−1. The limits

on the coupling constant scale like 4
√

L because the limit on the cross section

scales like the uncertainty on the number of signal events which, assuming Poisson

statistics, scales as the square root of the number of entries. The coupling constant

scales like gγγ ∝
√

σ , as can be seen in Equation 3.10. Combining these produces

the 4
√

L . Figure 3.66 shows the scaled Belle II limits and the limits calculated here.

As can be seen, the limits are very similar to each other. In fact, a more detailed

comparison shows that they are practically identical.

There are a number of differences between BABAR and Belle II that affect each

experiment’s sensitivity to an ALP. One advantage of Belle II over BABAR is its

higher trigger efficiency. Most of BABAR’s data is at the ϒ (4S) CME. As discussed

in Section 3.3.2, BABAR had only a two back-to-back photon trigger for the ϒ (4S)

runs. For the ϒ (2S) and ϒ (3S) runs, BABAR had a single photon trigger requiring

at least a single photon. The single photon trigger efficiency is up to nine times

higher than the two photon trigger efficiency in the mass range excluding the ALP

mass around 6.5 GeV/c2, where the two photon trigger efficiency has a minimum.

Close to the minimum, the trigger efficiency for the single photon trigger is up

to eighty times higher than for the two photon trigger. Belle II has had a single

photon trigger since it started recording data, and is not affected by the low trigger

efficiencies like most of the BABAR data. Scaling the Belle II result to the effective

BABAR integrated luminosity if BABAR had a trigger efficiency for the ϒ (4S) runs

like that of the ϒ (2S), ϒ (3S) runs shows that limits of BABAR and Belle II are

comparable at the lowest and highest masses. For most of the mass range, though,

BABAR’s limits are roughly one and a half times better. This indicates that BABAR

has superior performance per integrated luminosity.

Another advantage of Belle II is that it has timing information for its recon-

structed photons. This allows to reject photon candidates with times that are not

compatible with the collision time. This is important in rejecting beam background

photons, for example. Photon timing information is not available at BABAR.

On the other hand, BABAR has a number of advantages over Belle II. One of

these is that BABAR has kinematic fitting which improves the ALP candidate mass

resolution. The ALP candidate mass resolution is comparable between the experi-

ments for ALP masses of 0.5 GeV/c2 and 9 GeV/c2. For ALP masses of 5 GeV/c2
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Figure 3.66: Comparison of the phase space exclusion of Belle II and BABAR.
The Belle II result [1] is scaled by 4

√
L to 5 % of the integrated lumi-

nosity collected by BABAR and used in this work.

and 7.5 GeV/c2, BABAR’s mass resolution is three to three and a half times better

than Belle II’s. The number of entries in the signal region is proportional to the ALP

mass resolution. Therefore, the limits on the coupling constant scale like the forth

root of the ratio of mass resolutions. The published Belle II analysis [1] did not use

kinematic fitting, as it was not available in the Belle II software when the analysis

was performed. It is planned to be implemented at Belle II in the future, though.

Even though Belle II has both a forward and a backward end cap calorimeter, the

published Belle II analysis [1] requires all the reconstructed photons to be inside

the calorimeter barrel. The BABAR analysis uses the barrel as well as the forward

end cap. BABAR does not have a backward end cap. This means the angular accep-

tance used in the Belle II analysis is 80 % that used in BABAR in the CM frame. As

the number of candidates is proportional to the acceptance, the limits scale by the

fourth root of the ratio of acceptances. If a future Belle II analysis will use both end

caps, Belle II’s acceptance will be greater than that of BABAR. Lastly, even though
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Belle II may have had lower beam backgrounds than BABAR for their published

analysis, they will have higher backgrounds as they gather larger datasets due to

the higher instantaneous luminosities.

It should be noted that the effects of these differences are washed out because

most of them scale as the fourth root of the ratio between the relevant quantity at

Belle II and BABAR.

3.10 Future analysis of the blind data
If the remaining data will be analysed in the future, the analysis can follow the

exact same procedure described in Sections 3.7 to 3.9 on the remaining 95 % of the

data. The 5 % of the data used for optimizing the selection cuts should not be used

for the final analysis because of the issues discussed in Section 3.1.1.

As Belle II is currently gathering data at high rate, at some point the Belle II

dataset will be larger than that of BABAR. Using current projections, Belle II will

gather 430 fb−1 to 490 fb−1 by the end of 2021. This amount of data is comparable

to the BABAR dataset. This puts into context when a result using the full BABAR

dataset might not be competitive with a Belle II result.

Figure 3.67 shows the phase space exclusion plot and includes the projected

limits using 95 % of the BABAR data. These limits are calculated by scaling the

limits from Figure 3.65 by 4
√

L . The limits are expected to improve by a factor

of 4
√

19 = 2.1 when analysing 95 % of the BABAR data. The projected limit is

smoothed by a rolling mean calculated inside a sliding window that is 30 mass

points wide.
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is the projected limits using 95 % of the BABAR data, smoothed by a
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Chapter 4

Photon hadron separation using
Zernike moments

4.1 Introduction
Whereas Chapter 3 described an analysis using data collected by BABAR this chap-

ter describes a project done for Belle II. In general, Belle II and BABAR are similar

detectors. The main differences relevant to this project are between the two detec-

tors’ electromagnetic calorimeters and the higher beam backgrounds at Belle II.

The BABAR electromagnetic calorimeter, the EMC, is composed of a barrel and

a forward end cap. Belle II’s electromagnetic calorimeter (ECL) has, in addition,

a backward end cap. This allows it to cover a larger fraction of the solid angle,

12.4◦ to 155.1◦ [36]. Another interesting difference is that BABAR’s EMC crystals

are oriented such that they point at the IP along the polar angle direction. This

allows some of the photons to pass without interacting with the EMC. In contrast,

Belle II’s ECL crystals are rotated in both axes so that there is no gap between the

crystals for a particle originating at the IP.

In order to achieve the higher instantaneous luminosities required for Super-

KEKB, the nano beam scheme is used, in which the width of the beams is decreased

and the crossing angle between the beams is increased [54]. At SuperKEKB, the

beam width is reduced by a factor of fifteen and the crossing angle is increased by
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a factor of four compared to KEKB. Unfortunately, this change causes a large in-

crease in the beam backgrounds. The higher luminosity produces more low angle

radiative Bhabha events (e+e−→ e+e−γ) that shower on the beam focusing mag-

nets close to the interaction point and deposit energy in the detector. This process

is another source of higher backgrounds.

This chapter describes a project to develop shower shape variables based on

Zernike moments that distinguish between electromagnetic and hadronic interac-

tions in the ECL. Shower shapes are variables that depend on how energy is dis-

tributed between the crystals when an incident particle interacts with the calorime-

ter. Different particles produce different distributions of energies. For example,

minimum ionizing particles usually leave energy in just one or two crystals [2].

Photons usually create symmetric showers with most of the energy in the center of

the shower. K0
L mesons can create non-symmetric showers spread out over many

crystals. Therefore, shower shape variables can be useful for particle identifica-

tion [13, 55].

Figure 4.1 shows energies deposited by a photon with an energy of 1.5 GeV

shot at the central crystal of a 15×15 crystal matrix. Each crystal is a box with

dimensions of 6cm×6cm×30cm. The matrix represents a simplified version of

the ECL. In contrast, the ECL crystals have shapes of truncated pyramids with a

front face typically measuring 5.5cm×5.5cm and a back face typically measuring

6.5cm× 6.5cm. A 1.5 T magnetic field points to the left. Figure 4.2 shows a

similar plot, only that a K0
L with an energy of 1.5 GeV is shot at the crystal matrix.

The differences between the energy distributions left by these two particles can be

seen in these plots. The plots are modified versions of ones appearing in [2].

The ECL reconstruction analyses the energy in the ECL crystals and constructs

ECL showers [2]. Each shower has an energy and position and is assumed to be

the result of a single incident particle. The reconstruction begins by grouping all

the ECL crystals into groups of adjacent crystals that are assumed to contain energy

from one or more incident particles. Each group of crystals is called a connected

region. To form a connected region, the reconstruction code loops over the crystals

and searches for crystals with relatively high energy depositions of 10 MeV. These

are the seeds of connected regions. It then searches crystals adjacent to the seed

crystal and adds them to the connected region if their energy is above 1.5 MeV.
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Figure 4.1: The energy deposited in a 15×15 crystal matrix by a photon with
an energy of 1.5 GeV photon shot at the central crystal. The matrix is
a simplified version of the ECL. Each crystal is a 6cm× 6cm× 30cm
box. The red circle has a radius of 10 cm and is centered on the central
crystal. The plot is a modified version of one appearing in [2].

The crystals adjacent to these are then added if their energy is high enough. This is

repeated until no more crystals with high enough energy are found adjacent to the

crystals in the connected region.

The reconstruction continues by forming ECL showers from the crystals in con-

nected regions based on the hypothesis of which particle(s) interacted with the ECL

in a particular connected region. In the hypothesis based reconstruction, each con-

nected region is analysed twice, each with a different hypothesis of the incident

particle(s).

In the photon hypothesis, N1, the connected region is analysed with the hy-

pothesis that the incident particle(s) are photons, each creating a shower. There

can be multiple photon showers in a connected region. Each photon shower is as-

sociated with, at most, twenty-five crystals arranged in 5×5 matrix. If a particular

crystal is associated with more than one shower, the total energy in the crystal is
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Figure 4.2: The energy deposited in a 15×15 crystal matrix by a photon with
an energy of 1.5 GeV K0

L shot at the central crystal. The matrix is a
simplified version of the ECL. Each crystal is a 6cm× 6cm× 30cm
box. The red circle has a radius of 20 cm and is centered on the central
crystal. The plot is a modified version of one appearing in [2].

split between the showers.

In the neutral hadron hypothesis, N2, the connected region is analysed with the

hypothesis that the incident particle is a neutral hadron. Because hadron cascades

are much less radially symmetric and can spread over a larger number of crystals,

all the crystals in the connected region are associated with the shower and are used

to infer the shower energy and position.

Zernike polynomials were first introduced by Zernike [56]. They are useful in

the field of optics and play a vital role in the diffraction theory of optical aberra-

tions [57]. They are also used in image recognition [58]. Zernike moments are used

in BABAR for particle identification [13] as well as in ZEUS to distinguish between

particles interacting electromagnetically and hadronically [55]. Zernike moments

were not used in Belle.

In this work Zernike moments are introduced into the Belle II software frame-
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work, basf2. Eleven Zernike moments are considered. Saving all eleven mo-

ments for each ECL shower to disk is not feasible, as it would take up too much

space. Therefore, only three values are saved for each shower, two raw Zernike

moment values and an output of a multivariate analysis (MVA) using all eleven

Zernike moments. The calculation of Zernike moments for ECL showers depends

on a number of parameters.

The goals set out for this work are:

• Decide which two raw Zernike moment values to save for each shower and

with which parameters to calculate them.

• Decide which parameters to use in the calculation of the eleven Zernike mo-

ments for the MVA.

In order to make these decisions, the separation power between K0
L and photon

events is evaluated using different combinations of Zernike moments calculated

with different parameters. The relevant neutral hadrons that reach the ECL are

neutrons and K0
L mesons. But as K0

L mesons are more common in B decays, they

are the particle used to represent neutral hadrons in this work.

This chapter uses solely MC samples. There is no data analysed in this chapter.

The work described in this chapter is summarized in an internal Belle II note

[59].

4.2 Mathematical background

4.2.1 Zernike polynomials

There are an infinite number of complete sets of complex polynomials in two real

variables, V (x,y), which are [57]:

1. Orthogonal for the interior of the unit circle,

2. Contain only polynomials which are invariant in form with respect to ro-

tations of the axes by angle α about the origin. That is, for a polynomial

V (x,y), and x′, y′ rotated coordinates, V (x,y) = G(α)V (x′,y′), where G(α)

is a continuous function with period 2π .
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Such sets of polynomials in polar coordinates (x = ρ cosα,y = ρ sinα) can be

shown to have the form [60]:

Vnm(ρ cosα,ρ sinα) = Rnm(ρ)eimα , (4.1)

where m is an integer. Rnm(ρ) =V (ρ,0) is a polynomial of degree n in ρ , contains

no power of ρ lower than |m|, and n, m have the same parity. The set of Zernike

polynomials is unique in that

3. It contains a polynomial for each permissible pair of values n and m, i.e. for

integer values of n and m such that n≥ 0, n≥ |m|, and n−|m| is even.

The radial component can be shown to have the form

Rnm(ρ) =

n−|m|
2

∑
s=0

(−1)s (n− s)!

s!
(

n+|m|
2 − s

)
!
(

n−|m|
2 − s

)
!
ρ

n−2s. (4.2)

Figure 4.3 shows surface plots of the Zernike polynomials up to n = 10, taken

from [3]. In the figure, surfaces with m ≥ 0 are of the real part of the polynomial

and surfaces with m < 0 are of the imaginary part. Some of the surfaces are labeled

with the name associated with their classical optical aberration function.

4.2.2 Zernike moments

The moments of a function f (ρ cosα,ρ sinα) with respect to Zernike polynomial

Vnm are [58]

Znm =
n+1

π

2π∫
0

1∫
0

V ∗nm(ρ cosα,ρ sinα) f (ρ cosα,ρ sinα) ρ dρ dα. (4.3)

The factor before the integrals is a normalization factor which is due to the fact that

the Zernike polynomials are orthogonal and not orthonormal.

A property of Zernike moments which will be useful in Section 4.3 is that the

absolute value of the Zernike moments is invariant under rotations of the function

f around the origin [58]. In other words, the value of |Znm| is invariant under the

transformation f (ρ,α)→ f (ρ,α−α0) where α0 is the angle of rotation.
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Figure 4.3: Surface plots of the Zernike polynomial with n ≤ 10. Some sur-
faces are labeled with the name associated with their classical optical
aberration function. The figure is from [3].
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Another useful property of the absolute value of the Zernike moments is that

|Zn(−m)|= |Znm| [58]. The analysis sections in this note will only use absolute

values of Zernike moments. Therefore, only Zernike moments with positive m

values will be discussed.

4.2.3 Zernike moments of a Dirac comb

As will be discussed in Section 4.4, the function f (x) for which the Zernike mo-

ments will be calculated is a weighted Dirac comb, that models the discrete ECL

crystal energy measurements. A Dirac comb is defined by

f (x) = ∑
i

δ (x−xi)Ai. (4.4)

Boldface denotes a vector. In polar coordinates and for ρi 6= 0, the Dirac delta

function can be written as:

δ (x−xi) =
1
ρ

δ (ρ−ρi)δ (α−αi) . (4.5)

Thus, the function f becomes

f (x) = ∑
i

δ (x−xi)Ai

= ∑
i

1
ρ

δ (ρ−ρi)δ (α−αi)Ai.
(4.6)

The Zernike moments of such a function are:

Znm =
n+1

π

2π∫
0

1∫
0

V ∗nm(ρ cosα,ρ sinα) f (ρ cosα,ρ sinα) ρ dρ dα

=
n+1

π

2π∫
0

1∫
0

Rnm(ρ)e−imα
∑

i

1
ρ

δ (ρ−ρi)δ (α−αi)Ai ρ dρ dα

=
n+1

π
∑

i
Rnm(ρi)e−imαiAi.

(4.7)
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4.3 Plane perpendicular to the shower direction
Electromagnetic showers are typically symmetric around the incident particle di-

rection. Thus, it will be convenient to calculate the Zernike moments in a plane per-

pendicular to the shower direction. This plane is termed the perpendicular plane.

The shower direction used here is defined by the vector p from the detector coordi-

nate system origin to the measured shower position in the ECL. The perpendicular

plane’s origin is the measured shower position.

In the following, un-primed vectors, v, will represent quantities in the detector

coordinate system. Primed vectors, v′, will represent vectors in the perpendicular

plane. The perpendicular plane is spanned by two perpendicular unit vectors, x̂′

and ŷ′ defined by

x̂′ =
p̂× ẑ
|p̂× ẑ| ,

ŷ′ =
x̂′× p̂
|x̂′× p̂| ,

(4.8)

where x̂, ŷ, and ẑ are the unit vectors that define the detector coordinate system.

As was discussed in Section 4.2.2, the absolute value of the Zernike moments

is invariant under rotations of the coordinate system around the origin. Thus, as

long as x̂′ and ŷ′ are perpendicular, their orientation in the perpendicular plane will

not affect the absolute value of the Zernike moments.

Each crystal in a shower is projected onto the perpendicular plane. The pro-

jected point in the plane is represented in polar coordinates (ρ,α), as shown in

Figure 4.4.

Distances in the perpendicular plane are initially calculated with variables that

have units. The distances are later scaled by a distance scale factor to obtain dimen-

sionless quantities so that the results of Section 4.2 can be used. The non scaled

radial distance r is defined by Equation 4.9 and depicted in Figure 4.5.

r = |p| tanψ, (4.9)

where ψ is the angle between p and the vector pointing from the detector origin to

the crystal center, c.

α is the angle between the projected crystal center c′ and x̂′, as shown in Fig-
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Figure 4.4: Perpendicular plane to shower direction. Each point in the plane
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Figure 4.5: Cartoon diagram of the radial distance, r, of a crystal in the plane
perpendicular to the shower direction. p is the vector from the detec-
tor coordinate system origin to the shower position, and ψ is the angle
between p and the vector from the detector origin to the crystal center,
c.
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ure 4.4. Instead of using c′ to calculate α , a vector parallel to c′, cp, will be used.

cp is defined by Equation 4.10

cp = c− (c · p̂)p̂ (4.10)

and depicted in Figure 4.6.

Note that in general
∣∣cp
∣∣ 6= r. Nevertheless, as cp is only used to find the angle

α , its magnitude does not matter.

4.4 Calculation of Zernike moments for ECL showers
In order to use the results of Section 4.2, the projected crystal positions in the

perpendicular plane are scaled so they are dimensionless

x′ =
X′

ρ0
, (4.11)

where X′ is the position of the crystal in the perpendicular plane before scaling,

ρ0 is a distance scale factor, and x′ is the dimensionless crystal position in the

perpendicular plane.

Zernike moments are calculated with respect to a function. The function that

will be used is a Dirac comb weighted by the normalized crystal energies as defined

in Equation 4.12.

f (x′) = ∑
i

δ (x′−x′i)
wiEi

∑i wiEi
, (4.12)

where Ei is the energy of the ith crystal, and the sum runs over the crystals in the

shower. As a crystal can be related to more than one shower, wi is the fraction of

the energy of the ith crystal associated with the shower in question.

The absolute value of the Zernike moments of ECL showers will be calculated

by combining Equation 4.7 with Equation 4.12

|Znm|=
n+1

π

1
∑i wiEi

∣∣∣∣∣∑i
Rnm(ρi)e−imαiwiEi

∣∣∣∣∣ , (4.13)

where ρi = |x′i| is the dimensionless radial distance.

As the Zernike polynomials are defined only inside the unit circle, only crystals
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Figure 4.6: Cartoon diagram of how cp is calculated. p is the vector from the
detector coordinate system origin to the shower position, c points from
the detector origin to the crystal center, and cp is a vector parallel to
the vector from the perpendicular plane origin to the projected crystal
center.

with ρ ≤ 1 can be used for the Zernike moment calculation. Crystals with ρ > 1

will be called far crystals.

Two ways to deal with far crystals are evaluated

• Ignore them in the Zernike moment calculation,

• Reduce their radial distance so that their ρ = 1 and include them in the

Zernike moment calculation.

The two mentioned parameters that influence the calculation of the Zernike

moments, ρ0 and how to treat far crystals, will be optimized so that the calculated

Zernike moments best distinguish between photon events and K0
L events.

4.5 Selection of best Zernike moments to distinguish
between photons and K0

L mesons
In this work, the eleven Zernike moments with n between one to five are consid-

ered. Using fewer moments provides less information about the shower. Higher

level moments are more susceptible to noise [61]. Using a maximum n of five is
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chosen as a compromise. The V00 Zernike polynomial is a constant. Therefore, Z00

is proportional to the sum of the weighted energies in the shower and is not used in

this work.

This section will describe how the best two Zernike moments that distinguish

between photon and K0
L events are chosen, what are the optimal parameters with

which to calculate them, and what are the optimal parameters to calculate the

Zernike moments used as input to the MVA that uses all eleven Zernike moments.

In order to perform these tasks, MC samples are generated.

4.5.1 MC samples

The MC samples consist of single particle events of either a K0
L or a photon. In

order to choose at which energies to generate the particles, an initial sample of

1.01×106 e+e−→ϒ (4S) events is generated with EvtGen [46]. This sample is

not fully reconstructed and is used only in order to choose the energies with which

to generate the photons and K0
L mesons. Figure 4.7 shows the distribution of the

momentum of all the K0
L particles in the generated sample.

Based on Figure 4.7, K0
L momentum ranges are chosen.

• Low momentum range - 100 MeV/c to 200 MeV/c,

• Medium momentum range - 450 MeV/c to 550 MeV/c,

• High momentum range - 1500 MeV/c to 1600 MeV/c.

For each momentum range a photon sample and a K0
L sample are generated.

Each sample has a single initial particle created at the IP. Each initial particle is

generated with a flat polar angle distribution in the range 17◦ to 150◦, which is

the acceptance range of the Belle II drift chamber. The predicted background for

the full SuperKEKB instantaneous luminosity is used in the simulation. For each

particle type and momentum range 5×104 events are generated.

For the K0
L sample, momenta are chosen from a uniform distribution corre-

sponding to the momenta range. The energies of the photon sample are generated

so that the distribution of reconstructed energies of the photons is similar to the

distribution of reconstructed energies of the K0
L mesons. This is done so that in

case the Zernike moments have an energy dependence, the reconstructed energy is
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Figure 4.7: Generated K0
L momentum in e+e−→ϒ (4S) events.

not a discriminating factor between the event types. The generated photon ener-

gies are sampled from a distribution defined by a piecewise linear polynomial. The

generated photon energies are tweaked until the photon and K0
L distributions are

similar. Figure 4.8 shows the distributions of the generated photon energies in the

lab frame for the three momentum ranges. Figure 4.9 shows the resulting distri-

butions of reconstructed energies after the selection cuts described in Section 4.5.2

were applied for the photon hypothesis and hadron hypothesis showers for the three

momentum ranges.

4.5.2 Selection cuts

Selection cuts are applied in order to choose a single N1 photon hypothesis shower

and a single N2 neutral hadron hypothesis shower from each event. Showers re-

constructed using each hypothesis have to pass all selection criteria. The cuts are

• trec < 125ns,

• Erec ≥ 30 MeV,

• Angle between reconstructed shower momentum and primary generated par-

ticle momentum in the lab frame ≤ 10◦,
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Figure 4.8: Distributions of generated photon energies for the low, medium
and high momentum ranges.

where trec is the reconstructed shower time, and Erec is the reconstructed shower en-

ergy in the lab frame. Only one photon hypothesis shower and one neutral hadron

hypothesis shower are picked from each event. If more than one photon hypothesis

shower passes the selection cuts, the most energetic shower is picked. The selected

neutral hadron hypothesis shower is the one from the same connected region as the

selected photon hypothesis shower. If an event does not have a pair of showers,

one photon hypothesis shower and one neutral hadron hypothesis shower, that both

pass the selection cuts, the event is discarded.

Table 4.1 lists the number of events that pass all the selection cuts. Some

K0
L mesons pass through the ECL without interacting and the showers for some of

those that do interact are not fully contained in the ECL. Therefore, the number of

reconstructed showers is smaller than the number of generated events for the K0
L

sample. Figures 4.9 to 4.11 show the reconstructed energy distributions, recon-

structed time distributions, and the angle between the primary generated particle’s

momentum and reconstructed shower momentum, respectively in the three K0
L mo-

mentum ranges, separately for photon hypothesis and neutral hadron hypothesis

showers after all selection cuts are applied.
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Figure 4.9: Reconstructed energy distributions of showers chosen as de-
scribed in the text. Figures on the left are of photon hypothesis showers
(N1), and figures on the right are of neutral hadron hypothesis show-
ers (N2). The top, center, and bottom rows are for the low, medium,
and high momentum ranges, respectively. Each momentum range has a
different x-axis scale. The histograms in each plot have an area of one.

4.5.3 Zernike moment distributions

In order to increase statistics and to simplify the analysis, the events from all three

momentum ranges are combined into one dataset for the rest of the analysis. Fig-

ure 4.12 shows normalized distributions of the absolute value of the Zernike mo-

ments for showers reconstructed in the barrel region. The Zernike moments are

calculated with ρ0;N1 = 10cm, ρ0;N2 = 20cm, and using the far crystals. ρ0;N1

(ρ0;N2) is the ρ0 used to calculate Zernike moments of N1 (N2) showers. Each

plot has four curves. The blue curves are of events with a generated photon and

the red curves are of events with a generated K0
L . The solid curves are for showers

reconstructed under the photon hypothesis and the dotted curves are for showers
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Table 4.1: Number of events that passed the selection cuts for the different
detector regions, momentum ranges, and particle types.

γ K0
L

Low momentum range

Forward endcap 5288 2528
Barrel 34296 19852

Backward endcap 6517 3052
Entire ECL 46101 25432

Medium momentum range

Forward endcap 5209 2736
Barrel 33892 18070

Backward endcap 6609 3394
Entire ECL 45710 24200

High momentum range

Forward endcap 5326 3335
Barrel 34546 20866

Backward endcap 6839 4113
Entire ECL 46711 28314

reconstructed under the neutral hadron hypothesis.

The ρ0 used in calculating the Zernike moments has a large impact on some

of the distribution shapes. For example, Figure 4.13 shows the same events as in

Figure 4.12 only that the Zernike moments of the photon hypothesis showers are

calculated with ρ0;N1 = 20cm.

The dependence of the Zernike moments on the reconstructed energy, polar an-

gle, and azimuthal angle are plotted in Figure 4.14, Figure 4.15, and Figure 4.16,

respectively. Some Zernike moments have a strong dependence on the recon-

structed energy, especially in the ERec < 500 MeV range. In the barrel region,

on average, the value of the Zernike moments does not depend on polar angle.

There is some dependence on the polar angle in the gap between the barrel and the

forward end cap, at a polar angle of 32◦, and in the gap between the barrel and

backward end cap and in the backward endcap itself, at a polar angle larger than

129◦. The dependence of some Zernike moments on the azimuthal angle might be

due to the dependence of the boost on the azimuthal angle. Plotting Figures 4.15,

and 4.16 with finer binning (not shown) reveals that there is a periodic dependence

of the Zernike moments on the reconstructed polar and azimuthal angles. The pe-
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Figure 4.10: Reconstructed time of showers chosen as described in the text.
Figures on the left are of photon hypothesis (N1) showers, and figures
on the right are of neutral hadron hypothesis showers (N2). The top,
center, and bottom rows are for the low, medium, and high momentum
ranges, respectively.

riod is the same as the crystal period in each variable. This is due to the fact that in

Equation 4.12 the energy is modeled to be deposited at a single point, the center of

the crystal.

4.5.4 Selection of the best Zernike moments and the parameters with
which to calculate them

In order to compare the usefulness of different combinations of Zernike moments,

different MVAs are trained, each one with a different combination of Zernike mo-

ments. The ability of the output of each MVA to distinguish between photon and

K0
L events is checked.

The following combinations of Zernike moments are tested
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Figure 4.11: Angle between primary generated particle momentum and re-
constructed shower momentum. Events chosen as described in the text.
Figures on the left are of photon hypothesis showers (N1), and figures
on the right are of neutral hadron hypothesis showers (N2). The top,
center, and bottom rows are for the low, medium, and high momentum
ranges, respectively.

• All single moments: |Z11|, |Z20|, |Z22|, ...

• All two moment combinations: (|Z11|,|Z20|) , (|Z11|,|Z22|), ..., (|Z20|,|Z22|),
(|Z20|,|Z31|), ...

• All eleven moments (|Z11|,|Z20|,|Z22|,|Z31|,|Z33|,|Z40|,|Z42|,|Z44|,|Z51|,
|Z53|,|Z55|).

For each Zernike moment used, the input to the MVA includes the Zernike mo-

ment of the selected photon hypothesis shower and the Zernike moment of the

selected neutral hadron hypothesis shower. In other words, the number of input

variables to the MVA is twice the number of Zernike moments used. For example,
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Figure 4.12: Distributions of the absolute value of the Zernike moments. For
each particle type, the events of the three momentum ranges are com-
bined. The plots are of events where the shower location is in the bar-
rel region. The Zernike moments are calculated with ρ0;N1 = 10cm,
ρ0;N2 = 20cm, and using the far crystals. Each histogram is normal-
ized to have unit area.

when testing the combination of Zernike moments (|Z40|, |Z51|), four values are

supplied as inputs to the MVA for each event

1. |Z40| of the photon hypothesis shower,

2. |Z51| of the photon hypothesis shower,

3. |Z40| of the neutral hadron hypothesis shower,

4. |Z51| of the neutral hadron hypothesis shower.

In addition to the different combinations of Zernike moments, different com-

binations of the parameters used in calculating the moments are evaluated. These

parameters are discussed in Section 4.4

In order to choose which values of ρ0 to evaluate, the distributions of rmax,

the maximum radial distance of a crystal in the perpendicular plane of the selected
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Figure 4.13: Distributions of the absolute value of the Zernike moments. This
plot is the same as Figure 4.12, only that the Zernike moments are
calculated with ρ0;N1 = 20cm.

showers, are evaluated. The distributions are shown in Figure 4.17. Based on the

results of Figure 4.17, five values of ρ0 are selected, 10 cm, 15 cm, 20 cm, 30 cm,

and 50 cm.

For each event, the Zernike moments of the selected showers are calculated

using all possible combinations of the following three parameters

1. ρ0;N1 ∈ {10,15,20,30,50} cm,

2. ρ0;N2 ∈ {10,15,20,30,50} cm,

3. Using the far crystals or ignoring them.

A boosted decision tree (BDT) with the GradientBoost algorithm, BDTG, is

used as the MVA method in the TMVA framework [62] using the default BDTG

parameters. TMVA is chosen because it is an integral part of the ROOT framework
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Figure 4.14: Mean absolute values of the Zernike moments as a function of
the reconstructed shower energy. The Zernike moments are calculated
with ρ0;N1 = 10cm, ρ0;N2 = 20cm, and using the far crystals.

[51] and provides easy access to different validation plots of the MVA training and

testing.

The metric that is used for comparing the output of the different MVAs is the

K0
L rejection at 90 % photon efficiency. The 90 % value is chosen arbitrarily. Fig-

ure 4.18 shows two receiver operating characteristic (ROC) curves for the outputs

of two MVAs each using different Zernike moments. The intersection of the ROC

curve with the blue vertical line representing the 90 % photon efficiency is used as

the metric for the quality of the MVA. In the case depicted in the figure, the combi-

nation of (|Z40|,|Z51|) gives a better result than the combination of (|Z31|,|Z55|).
In order to check if the MC sample, described in Section 4.5.1, is too small,

the over training plots produced by TMVA were examined. Over training hap-

pens when the training sample is too small and the MVA is tuned on the statistical

fluctuations of the sample. Figure 4.19 shows examples of such plots for the MVA
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Figure 4.15: Mean absolute values of the Zernike moments as a function of
the reconstructed shower polar angle. The Zernike moments are cal-
culated with ρ0;N1 = 10cm, ρ0;N2 = 20cm, and using the far crystals.

using the Zernike moment pair (|Z40|,|Z51|) and the MVA using the eleven Zernike

moments. Both MVAs use ρ0;N1 = 10cm, ρ0;N2 = 20cm, and the far crystals, and

include only events where the showers are reconstructed in the barrel.

The Kolmogorov-Smirnov test is a statistical test designed to check if two sam-

ples originate from the same underlying distribution. Values close to zero im-

ply that the samples are drawn from different distributions. Two out of the four

Kolmogorov-Smirnov test results are close to zero. This suggests that their asso-

ciated training and testing samples are from different parent distributions. This

hints that the MVAs might be over trained on the sample used for the training. Nev-

ertheless, the shapes of the distributions are similar and a larger sample was not

produced.

All eight distributions have a peak around the BDT response value of −0.2. A

similar feature appeared in the BDT response discussed in Section 4.6.2. It is not
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Figure 4.16: Mean absolute values of the Zernike moments as a function of
the reconstructed shower azimuthal angle. The Zernike moments are
calculated with ρ0;N1 = 10cm, ρ0;N2 = 20cm, and using the far crys-
tals.

clear what causes this feature.

Figure 4.20 shows the K0
L rejection at 90 % γ efficiency as a function of the

number of Zernike moments used in the MVA for the MVAs that gave the best results

using one, two, and eleven Zernike moments. Because the best results with the

two and eleven Zernike moments are obtained using ρ0;N1 = 10cm which is the

smallest ρ0;N1 value tested, values of ρ0;N1 = 8cm and ρ0;N1 = 12.5cm are also

evaluated. They give inferior results.

As Z40 is the moment that gives the best results in the MVA with a single mo-

ment as input, and (Z40, Z51) is the pair of moments that gives the best results in the

MVA with two moments as input, the raw values of |Z40| and |Z51| are the values that

are selected to be kept for each shower. They are calculated with ρ0;N1 = 10cm and

ρ0;N2 = 20cm and using the far crystals, as these parameters give the best results
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Figure 4.17: Largest radial distance of a crystal in the perpendicular plane,
rmax, for the selected showers. Figures on the left are of photon hy-
pothesis (N1) showers, and figures on the right are of neutral hadron
hypothesis showers (N2). The top, center, and bottom rows are for
the low, medium, and high momentum ranges, respectively. Note the
different x-axis scales.

for the MVA with two and eleven moments as input. In order to give a sense of the

selected ρ values, Figure 4.1 has a red circle with a radius of 10 cm centered on the

central crystal, and Figure 4.2 has a red circle with a radius of 20 cm. In basf2,

ρ is measured from the reconstructed shower position.

4.6 MVAs using eleven Zernike moments for basf2
This section will describe the training of the MVAs using all eleven Zernike mo-

ments that are implemented in basf2 version 00-08-00, which was released in

January, 2018. Different MVAs are created for the forward endcap, barrel, and

backward endcap. Each one is trained separately.
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Figure 4.19: TMVA over training plots for (a) the MVA using Zernike moment
pair (|Z40|,|Z51|) and (b) the MVA using eleven Zernike moments. Both
MVAs use ρ0;N1 = 10cm, ρ0;N2 = 20cm, and the far crystals. Only
showers reconstructed in the barrel region are considered.
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Figure 4.20: K0
L rejection at 90 % γ efficiency for the best MVAs using one,

two, and eleven Zernike moments. Only events reconstructed in the
barrel are used.

The input to the MVAs are the eleven Zernike moments of the photon hypothesis

shower and the eleven Zernike moments of the neutral hadron hypothesis shower.

The Zernike moments are calculated with the optimal parameters found in Sec-

tion 4.5.4, ρ0;N1 = 10cm and ρ0;N2 = 20cm and using the far crystals. Although

these parameters are found using showers reconstructed in the barrel region, they

are used for the end caps as well.

The MVA method that is used in is FastBDT [63]. It is chosen for two reasons.

First, it is the default MVA method in basf2. Second, the training is consider-

ably faster than BDTG in TMVA. As the MVAs are used in production versions of

basf2, a larger MC sample is generated in order to train the MVAs.

4.6.1 MC sample

The MC sample is generated using the same procedures as described in Sec-

tion 4.5.1 and the same selection cuts as in Section 4.5.2 are used. Table 4.2 lists

the number of generated events and the number of events that passed the selection

cuts for each particle type and each ECL detector region.
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Table 4.2: Number of generated events and number of events that passed se-
lection cuts for the MC samples used for the training of the MVAs used in
basf2 release 00-08-00.

Generated Passed cuts
γ K0

L γ K0
L

Forward endcap 895000 1695000 772785 757852
Barrel 720000 1245000 771371 778038

Backward endcap 735000 1860000 602348 758957

4.6.2 Over training check

Figures 4.21, 4.22, and 4.23 show over training plots for the forward, barrel, and

backward detector regions, respectively. All three MVAs exhibit a peak around a

classifier output value of 0.2. This peak is similar to the one in Figure 4.19 even

though the MC samples are completely different and much larger and a different

MVA methods are used in each section. The origin of this feature is not investigated.

4.6.3 Results

Each FastBDT MVA for each of the three ECL detector regions is trained with

the complete sample of events that passed the selection cuts. The ROC curves for

the MVAs are presented in Figure 4.24. The results in the barrel are similar to the

results obtained using the smaller sample and TMVA’s BDTG algorithm described

in Section 4.5.

4.7 ECL shower shape module
The calculation of the Zernike moments is added to the basf2 shower shape mod-

ule. For each ECL shower, the module adds the values of |Z40| and |Z51| to the

C++ data object representing an ECL shower. In addition, for a connected region

containing at least one photon hypothesis shower and a neutral hadron hypothesis

shower, the module adds a value called zernikeMVA to the showers. The value of

zernikeMVA is based on the MVAs described in Section 4.6 and is calculated dif-

ferently for each shower hypothesis. For a photon hypothesis shower zernikeMVA
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Figure 4.21: Over training plot of forward endcap MVA.
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Figure 4.22: Over training plot of barrel MVA.
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Figure 4.23: Over training plot of backward endcap MVA.
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is set to the output of the MVA using the eleven Zernike moments of the photon hy-

pothesis shower and the eleven Zernike moments of the neutral hadron hypothesis

shower from the same connected region. For a neutral hadron hypothesis shower,

zernikeMVA is set to the value of

1−∏
i∈N1

(zernikeMVAi), (4.14)

where the product is over all the photon hypothesis showers in the same connected

region as the neutral hadron hypothesis shower.

For a given connected region with one photon hypothesis shower and one neu-

tral hadron hypothesis shower, the zernikeMVA variable acts as the likelihood that

the photon hypothesis shower is created by a photon. This is because the FastBDT

MVA output is between 0 (neutral hadron like) and 1 (photon like).

4.8 Comparison of zernikeMVA in data and MC

Comparison of the zernikeMVA in MC and data is performed in [4] with radiative

muon pairs, e+e−→ µ+µ−γ . Events with exactly two tracks and one photon are

selected. The tracks are required to have a momentum greater than 1 GeV/c, and to

originate close to the IP. The photons need to have an energy greater than 0.1 GeV.

Both the photons and the muons are required to have a polar angle in the range

37 ◦ < θ < 124 ◦. This is the range of the ECL barrel without the 5 ◦ closest to

the edges. The muon recoil momentum, precoil , is the difference between the pre-

collision momentum and the sum of the muon momenta. The photons are required

to be within 14 ◦ of precoil . No other photons with E > 0.2 GeV can be present in

the event. All quantities are in the lab frame.

Figure 4.25 shows the zernikeMVA values in data and in MC for different

ranges of precoil . The MC agrees well with the data for all vales of precoil .

4.9 Shower shape variables in e+e−→ BB events
In order to check if the three new Zernike moment variables are useful shower

shape variables to identify photons, ROC curves for the different ECL shower shape

variables in release 00-08-00 for e+e−→ BB events are produced. The plots are at

125



0.0 0.2 0.4 0.6 0.8 1.0

Zernike MVA

0

20

40

60
3−10×

E
ve

nt
s 

/ b
in

 (
no

rm
al

iz
ed

)

)γ(µµMC 

Data

U
/O

-f
lo

w
 (

M
C

 #
m

u#
m

u(
#g

am
m

a)
):

 n
on

e 
/ n

on
e

U
/O

-f
lo

w
 (

D
at

a)
: n

on
e 

/ n
on

e

0.25 GeV/c < p(recoil) < 0.40 GeV/c

Belle II2018 (Preliminary)

0.0 0.2 0.4 0.6 0.8 1.0

Zernike MVA

0

10

20

30

40

50

3−10×

E
ve

nt
s 

/ b
in

 (
no

rm
al

iz
ed

)

)γ(µµMC 

Data

U
/O

-f
lo

w
 (

M
C

 #
m

u#
m

u(
#g

am
m

a)
):

 n
on

e 
/ n

on
e

U
/O

-f
lo

w
 (

D
at

a)
: n

on
e 

/ n
on

e

0.40 GeV/c < p(recoil) < 0.65 GeV/c

Belle II2018 (Preliminary)

0.0 0.2 0.4 0.6 0.8 1.0

Zernike MVA

0

20

40

60

3−10×

E
ve

nt
s 

/ b
in

 (
no

rm
al

iz
ed

)

)γ(µµMC 

Data

U
/O

-f
lo

w
 (

M
C

 #
m

u#
m

u(
#g

am
m

a)
):

 n
on

e 
/ n

on
e

U
/O

-f
lo

w
 (

D
at

a)
: n

on
e 

/ n
on

e

0.65 GeV/c < p(recoil) < 0.80 GeV/c

Belle II2018 (Preliminary)

0.0 0.2 0.4 0.6 0.8 1.0

Zernike MVA

0

20

40

60

80

3−10×

E
ve

nt
s 

/ b
in

 (
no

rm
al

iz
ed

)

)γ(µµMC 

Data

U
/O

-f
lo

w
 (

M
C

 #
m

u#
m

u(
#g

am
m

a)
):

 n
on

e 
/ n

on
e

U
/O

-f
lo

w
 (

D
at

a)
: n

on
e 

/ n
on

e

0.80 GeV/c < p(recoil) < 1.00 GeV/c

Belle II2018 (Preliminary)

0.0 0.2 0.4 0.6 0.8 1.0

Zernike MVA

0

20

40

60

80

3−10×

E
ve

nt
s 

/ b
in

 (
no

rm
al

iz
ed

)

)γ(µµMC 

Data

U
/O

-f
lo

w
 (

M
C

 #
m

u#
m

u(
#g

am
m

a)
):

 n
on

e 
/ n

on
e

U
/O

-f
lo

w
 (

D
at

a)
: n

on
e 

/ n
on

e

1.00 GeV/c < p(recoil) < 1.25 GeV/c

Belle II2018 (Preliminary)

0.0 0.2 0.4 0.6 0.8 1.0

Zernike MVA

0.00

0.02

0.04

0.06

0.08

0.10

E
ve

nt
s 

/ b
in

 (
no

rm
al

iz
ed

)

)γ(µµMC 

Data

U
/O

-f
lo

w
 (

M
C

 #
m

u#
m

u(
#g

am
m

a)
):

 n
on

e 
/ n

on
e

U
/O

-f
lo

w
 (

D
at

a)
: n

on
e 

/ n
on

e

1.25 GeV/c < p(recoil) < 1.50 GeV/c

Belle II2018 (Preliminary)

0.0 0.2 0.4 0.6 0.8 1.0

Zernike MVA

0.00

0.02

0.04

0.06

0.08

0.10

0.12

E
ve

nt
s 

/ b
in

 (
no

rm
al

iz
ed

)

)γ(µµMC 

Data

U
/O

-f
lo

w
 (

M
C

 #
m

u#
m

u(
#g

am
m

a)
):

 n
on

e 
/ n

on
e

U
/O

-f
lo

w
 (

D
at

a)
: n

on
e 

/ n
on

e

1.50 GeV/c < p(recoil) < 1.75 GeV/c

Belle II2018 (Preliminary)

0.0 0.2 0.4 0.6 0.8 1.0

Zernike MVA

0.00

0.02

0.04

0.06

0.08

0.10

E
ve

nt
s 

/ b
in

 (
no

rm
al

iz
ed

)

)γ(µµMC 

Data

U
/O

-f
lo

w
 (

M
C

 #
m

u#
m

u(
#g

am
m

a)
):

 n
on

e 
/ n

on
e

U
/O

-f
lo

w
 (

D
at

a)
: n

on
e 

/ n
on

e

1.75 GeV/c < p(recoil) < 2.00 GeV/c

Belle II2018 (Preliminary)

0.0 0.2 0.4 0.6 0.8 1.0

Zernike MVA

0.00

0.02

0.04

0.06

0.08

0.10

0.12
E

ve
nt

s 
/ b

in
 (

no
rm

al
iz

ed
)
)γ(µµMC 

Data

U
/O

-f
lo

w
 (

M
C

 #
m

u#
m

u(
#g

am
m

a)
):

 n
on

e 
/ n

on
e

U
/O

-f
lo

w
 (

D
at

a)
: n

on
e 

/ n
on

e

2.00 GeV/c < p(recoil) < 3.00 GeV/c

Belle II2018 (Preliminary)

0.0 0.2 0.4 0.6 0.8 1.0

Zernike MVA

0.00

0.02

0.04

0.06

0.08

0.10

0.12

E
ve

nt
s 

/ b
in

 (
no

rm
al

iz
ed

)

)γ(µµMC 

Data

U
/O

-f
lo

w
 (

M
C

 #
m

u#
m

u(
#g

am
m

a)
):

 n
on

e 
/ n

on
e

U
/O

-f
lo

w
 (

D
at

a)
: n

on
e 

/ n
on

e

3.00 GeV/c < p(recoil) < 4.00 GeV/c

Belle II2018 (Preliminary)

0.0 0.2 0.4 0.6 0.8 1.0

Zernike MVA

0.00

0.05

0.10

0.15

E
ve

nt
s 

/ b
in

 (
no

rm
al

iz
ed

)

)γ(µµMC 

Data

U
/O

-f
lo

w
 (

M
C

 #
m

u#
m

u(
#g

am
m

a)
):

 n
on

e 
/ n

on
e

U
/O

-f
lo

w
 (

D
at

a)
: n

on
e 

/ n
on

e

4.00 GeV/c < p(recoil) < 5.00 GeV/c

Belle II2018 (Preliminary)

0.0 0.2 0.4 0.6 0.8 1.0

Zernike MVA

0.00

0.05

0.10

0.15

E
ve

nt
s 

/ b
in

 (
no

rm
al

iz
ed

)

)γ(µµMC 

Data

U
/O

-f
lo

w
 (

M
C

 #
m

u#
m

u(
#g

am
m

a)
):

 n
on

e 
/ n

on
e

U
/O

-f
lo

w
 (

D
at

a)
: n

on
e 

/ n
on

e

5.00 GeV/c < p(recoil) < 6.00 GeV/c

Belle II2018 (Preliminary)

FIG. 95: Output of the ZernikeMVA classifier for data and MC for different bins of

p(recoil).
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Figure 4.25: Comparison of zernikeMVA results in data and MC in radiative
muon pair events, e+e−→ µ+µ−γ . The different plots are for differ-
ent ranges of precoil , which is the difference between the pre-collision
momentum and the sum of the muon momenta. The plot is from [4].
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a few different energy ranges.

Signal in the ROC curves is defined as showers that are not associated with a

charged track, contain at least 60 % of the energy of a photon originating from a BB

pair, are in the polar angle range 17◦ to 150◦ in the lab frame, have a reconstructed

energy significance between −4 and 3, have a reconstructed polar and azimuthal

angle significance between −5 and 5, and have a reconstructed time within the

timing range that includes 99 % of all true photons. The significance for a quantity

in this context is the quantity over the uncertainty on the quantity. Background is

defined as anything that is not signal.

Figures 4.26 to 4.29 show ROC curves for different energy ranges. At the low-

est energy range, the Zernike moment variables are not the optimal variables to

select photons. On the other hand, at the energy range of 0.1 GeV to 0.15 GeV,

the zernikeMVA variable performs the best. At the highest energy range, the

zernikeMVA gives the best results for signal efficiencies up to about 90 %.

Figure 4.30 shows the true photon energy spectrum of any photon with

E > 0.5 MeV in the lab frame appearing in the 1.01×106 ϒ (4S) MC sample dis-

cussed in Section 4.5.1. Most photons in these events are in the energy range of

Figure 4.28 where the zernikeMVA variable is the best identifier of photons.

4.10 Usage of the zernikeMVA variable at Belle II
The zernikeMVA variable is used in at least three projects at Belle II. It is used

to identify background photons which originate far away from the IP, when the

beam hits the detector material and resulting photons travel back to interact with

the ECL. In this case, the energy distribution in the crystals is not consistent with

a photon originating at the IP and the zernikeMVA has some discriminating power

to reject these events. The zernikeMVA is also used as a discriminating variable

in the Belle II ALP search [1] to reject neutral hadrons and particles that do not

originate at the IP. The zernikeMVA variable is also used in the Belle II trigger to

select single photon event candidates.
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Figure 4.26: ROC curves for the different ECL shower shape variables in re-
lease 00-08-00 in e+e−→ BB events for the energy range 25 MeV to
30 MeV. LAT is the lateral moment described in [13], E1toE9 is the
energy of the central crystal over the energy sum of 3× 3 crystal ma-
trix around the central crystal, E9toE21 is the energy sum of a 3× 3
crystal matrix over the energy sum of a 5× 5 crystal matrix without
the corners, and second moment is defined as ∑wiEir2

i /∑wiEi, where
Ei is the energy of the ith crystal in the shower, wi is the weight of the
ith crystal in the shower to account for crystals that belong to multiple
showers, and ri is the distance of the ith crystal to the shower center in
the perpendicular plane.
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Figure 4.27: ROC curves for the different ECL shower shape variables in re-
lease 00-08-00 in e−e+→ BB events for the energy range 40 MeV to
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Figure 4.28: ROC curves for the different ECL shower shape variables in re-
lease 00-08-00 in e−e+→ BB events for the energy range 100 MeV to
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Chapter 5

Conclusions

ALP search at BABAR

This chapter described a search for a new particle, an ALP that couples exclusively

to photons in 5 % of the BABAR data. Depending on their mass, ALPs can influence

a range physical phenomena, for example big bang nucleosynthesis and the cosmic

microwave background. ALPs are dark matter candidates and they affect a number

of astrophysical processes.

The goal of the chapter was to find evidence of an ALP or to set upper limits on

the cross section and coupling constant of the ALP.

In the model considered here, an ALP event leaves a signature of three photons

in the detector. The main background for this search are e+e−→ γγγ events, which

have an identical signature. Various selection variables and threshold values are

optimized to maximize the sensitivity of the search.

The number of signal entries is extracted by a binned maximum likelihood fit

to the di-photon invariant mass distribution. The signal shape component of the fit

function is the signal MC di-photon invariant mass histogram. The background is

modeled by Chebyshev polynomials.

The number of entries in data is only about 80 % that in the MC. This difference

is incorporated into the signal efficiency and contributes to the systematic uncer-

tainty on the signal efficiency, which is the main source of systematic uncertainty

in this search. A more modern generator might produce better agreement between
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data and MC, which will reduce the systematic uncertainty on the limits.

The results after analysing 5 % of the BABAR data are consistent with the data

being composed only of background. Therefore, 90 % Bayesian CI upper limits on

the cross section and coupling constant are set. Even with just 5 % of the BABAR

data, this is the most stringent measurement in the mass range 0.29 GeV/c2 to

5 GeV/c2, and the limits exclude regions of the phase space that have not been

explored before. The data sample used to optimize the selection cuts is the same

sample used to perform the measurements and to set the upper limits. Therefore,

the analysis is not blind and can be biased. The results should be interpreted in

light of this.

More stringent limits might be set if the analysis is applied to the remaining

95 % of the BABAR data. This was not pursued here due to time constraints and

the long collaboration review required in order to obtain permission to un-blind the

rest of the data.

The effect of differences between the Belle II and BABAR analyses and detectors

is explored. BABAR had a much lower trigger efficiency for the runs at the ϒ (4S)

CME. Scaling the Belle II limits to the effective integrated luminosity taking into

account the lower trigger efficiency shows that the BABAR limits on the coupling

constant are around one and a half times better for intermediate ALP masses. This

shows that BABAR has superior performance per integrated luminosity. This con-

clusion should be re-evaluated when Belle II starts using kinematic fitting in their

analyses.

Photon hadron separation using Zernike moments

Shower shape variables are useful for particle identification. Zernike moments are

used in BABAR and ZEUS for this purpose. This chapter described a project to

introduce shower shape variables into the Belle II software framework. It is one

of the first projects to take advantage of the hypothesis based ECL reconstruction.

The goal of this project was to study the use of Zernike moments to distinguish

photon showers from K0
L showers. To choose the best moments, different MVAs

were checked. Each one had a different combination of Zernike moments as input

variables and they were calculated with different parameter values.
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The best two Zernike moment combination was found to be (|Z40|,|Z51|), calcu-

lated with ρ0;N1 = 10cm, ρ0;N2 = 20cm, and using far crystals. In basf2 release

00-08-00, which was released in Jan 2018, the raw values of each of these moments

are saved for each shower. In addition, FastBDT MVAs which use all the eleven

Zernike moments considered in this project were trained for each of the three ECL

detector regions. The output of these BDTs are used to fill the zernikeMVA vari-

able, which is also saved for each shower. This might be the first time information

from multiple Zernike moments is combined in order to improve particle identifi-

cation results. Furthermore, it might also be the first time particle identification is

performed with an MVA method based on information of Zernike moments.

ROC curves for the different ECL shower shape variables were produced for

e+e−→ BB events for different energy ranges. The zernikeMVA variable was the

best variable to identify photons in the energy range in which most photons are

produced in e+e−→ BB events.

The zernikeMVA is used at Belle II to identify background photons which orig-

inate far away from the IP and travel back to interact in the ECL. This results in an

energy distribution in the crystals that is not consistent with a photon originating at

the IP. The zernikeMVA is also used as a discriminating variable in the Belle II ALP

search, which was recently published. The variable is used in the Belle II trigger

to select single photon event candidates.

The project described in this chapter was summarized in an internal Belle II

note.

The process of converting the information about the energy deposited in the

ECL crystals into a limited number of Zernike moments is lossy. That is, informa-

tion is lost in this process. A different approach is to treat the ECL crystals as pixels

of an image, where the color of each pixel is proportional to the energy deposited in

the associated crystal. In such an approach Figures 4.1 and 4.2 can be interpreted

as images composed of pixels. These images can be used to try to infer which

particle interacted with the ECL with either image analysis tools, or by training an

MVA method with the images themselves. The advantage of these methods is that

they use the full information provided by the ECL, without compressing it into the

Zernike moments.

The light produced in the ECL by a particle interacting with the crystal is con-
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verted into an electronic signal by PIN diodes. Different particles interacting with

the ECL produce slightly different electronic signal shapes. These differences pro-

vide a completely different approach to particle identification with the ECL [64].
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