CKM measurements at the Belle II experiment

Qi-Dong ZHOU
Institute for Advanced Research (IAR) / Kobayashi-Maskawa Institute (KMI), Nagoya university

On behalf of Belle II Collaboration

7 - 11 June 2021
FPCP 2021
CKM matrix and unitarity triangle (UT)

\[
V = \begin{pmatrix}
V_{ud} & V_{us} & V_{ub} \\
V_{cd} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}
\end{pmatrix} = \begin{pmatrix}
1 - \lambda^2/2 & \lambda & A\lambda^3 (\rho - i\eta) \\
-\lambda & 1 - \lambda^2/2 & A\lambda^2 \\
A^2 \lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1
\end{pmatrix} + O(\lambda^4)
\]

Complex phase cause CP violation

\[V^\dagger V = 1 \rightarrow \textbf{b row \ d column}\]

- \[\phi_1 = \arg \left(\frac{V_{ub} V_{ud}^*}{V_{ud} V_{ub}^*} \right)\]
- \[\phi_2 = \arg \left(\frac{V_{td} V_{tb}^*}{V_{tb} V_{td}^*} \right)\]
- \[\phi_3 = \arg \left(\frac{V_{cd} V_{cb}^*}{V_{cb} V_{cd}^*} \right)\]

Search for NP with different processes (tree, loop diagrams) by precise measurement of UT

- Comprehensive test (only Belle II)
 - Measure all sides and angles

- \[V_{ub} V_{ud} + V_{cb} V_{cd} + V_{tb} V_{td} = 0\]

- \[\lambda^3 \cdot 1 \quad \lambda^2 \cdot \lambda \quad 1 \cdot \lambda^3\]
The Belle II detector

Level-1 trigger system
CDC+ECL+TOP+KLM
L1 trigger latency 5 μsec

Data acquisition (DAQ) system
Maximum 30 kHz L1 trigger
1MB/event

Computing system
GRID
Tens of PB / year

Vertex detector (VXD)
Inner 2 layers: pixel detector (PXD)
Outer 4 layers: strip sensor (SVD)

Central Drift Chamber (CDC)
He (50%), C₂H₆ (50%), small cells, long lever arm

ElectroMagnetic Calorimeter (ECL)
Barrel: CsI(Tl) + waveform sampling
Endcap: pure CsI + waveform sampling

Particle Identification
Barrel: Time-Of-Propagation counters (TOP)
Forward: Aerogel RICH (ARICH)

K_π/μ detector (KLM)
Outer barrel: Resistive Plate Counter (RPC)
Endcap/inner barrel: Scintillator
This talk focuses on: measurements of $|V_{cb}|$, $|V_{ub}|$ and ϕ_1, ϕ_3.

Data-set used for the analyses present in this talk:
- 34.6 fb$^{-1}$ ($|V_{cb}|$, $|V_{ub}|$, ϕ_1)
- 62.8 fb$^{-1}$ (ϕ_3)

ϕ_1: details in Radek Zlebcik’s talk “Rediscovery of the decays for the CP violation measurements at Belle II” on 10 June

ϕ_2: Ching-hua Li’s talk “Charmless B decays at Belle II” on 10 June
B decay reconstruction at Belle II

Data

\[\int \mathcal{L} dt = 34.6 \text{ fb}^{-1} \]

- **Untag**: only reconstruct signal B decay
- **Tag**: reconstruct signal B decay, also the other side B

Belle II preliminary

![Graph showing candidates](image)

- Baryonic
- \(\psi \)
- \(D^0 \)
- \(D^{*} \)
- \(D^+ \pi^- \)
- \(D^- n \pi^- \)
- \(D^- \pi^+ \)
- \(D^0 m \pi^- \)
- \(D^+ \pi^- \)
- \(K_S \)
- \(K^- \)
- \(\pi^+ \)
- \(\pi^- \)
- \(\tau^- \)
- \(\nu_{\tau} \)

Reconstruction

- **Signal side reconstruction**
- **Tag side reconstruction**

Reconstruct ~100 hadronic decay channels, ~10000 decay chains

- \(\varepsilon = 0.47\% \) for \(B^\pm \) @ purity ~30\%
- \(\varepsilon = 0.29\% \) for \(B^0 \) @ purity ~20\%

arXiv: 1807.08680

arXiv:2008.06096

BELLE2-CONF-PH-2020-005

BELLE2-CONF-PH-2021-005

BELLE2-CONF-PH-2021-009

\[M_{bc} = \sqrt{(E^*_{beam})^2 - (p_B^*)^2} \]
BF$(B \rightarrow D^* l \nu)$ for $|V_{cb}|$

\[\mathcal{B}(B \rightarrow D^* l \nu) \]

hadronic tag

untagged

PLAN:
Form factor determination rely heavily on $w = 1$ (zero recoil)

Unfolded w spectrum to compare with BGL parameterization

Similar plots for the $B \rightarrow D^* \nu$ channel
BF($B^0 \to \pi l \nu$) and BF($B \to X_u l \nu$) for $|V_{ub}|$

$|V_{ub}|$ determination from exclusive and inclusive measurements differ by $\sim 2\sigma$

Measurement of $B(\bar{B}^0 \to \pi l \nu)$ based on hadronic tag

BELLE2-CONF-PH-2020-007

Untagged Inclusive $B \to X_u l \nu$ measurement

- lepton momentum endpoint
- less $B \to X_c l \nu$ (dominant background)

BELLE2-NOTE-PL-2020-026

Next target: q^2 distribution for $|V_{ub}|$ determination

$\mathcal{B}(\bar{B}^0 \to \pi l^+ \nu) = (1.58 \pm 0.43 \text{(stat)} \pm 0.07 \text{ (sys)}) \times 10^{-4}$

$\mathcal{B}(\bar{B}^0 \to \pi l^+ \nu) = (1.50 \pm 0.06) \times 10^{-4}$ (PDG)

Agreement

Capable of measuring $|V_{ub}|$ with more data
Prospects of $|V_{ub}|$ and $|V_{cb}|$

Side	**Observable**	**Dominant uncertainties**
$|V_{td}|$ | Δm_d: $B\bar{B}$ mixing frequency | Lattice QCD ($|V_{td}|$ now is mainly limited by lattice QCD)
$|V_{cb}|$ | $Br(b \rightarrow cl\nu)$ | Exclusive: lattice QCD
Inclusive: experiment vs. phenomenology
$|V_{ub}|$ | $Br(b \rightarrow ul\nu)$ | Inclusive: experiment vs. phenomenology

Table

<table>
<thead>
<tr>
<th>Observables</th>
<th>Belle (2017)</th>
<th>Belle II 5 ab(^{-1})</th>
<th>Belle II 50 ab(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>V_{cb}</td>
<td>$ incl.</td>
<td>$42.2 \cdot 10^{-3}$ · (1 ± 1.8%)</td>
</tr>
<tr>
<td>$</td>
<td>V_{cb}</td>
<td>$ excl.</td>
<td>$39.0 \cdot 10^{-3}$ · (1 ± 3.0%({\text{ex.}}) ± 1.4%({\text{th.}}))</td>
</tr>
<tr>
<td>$</td>
<td>V_{ub}</td>
<td>$ incl.</td>
<td>$4.47 \cdot 10^{-3}$ · (1 ± 6.0%({\text{ex.}}) ± 2.5%({\text{th.}}))</td>
</tr>
<tr>
<td>$</td>
<td>V_{ub}</td>
<td>$ excl. (WA)</td>
<td>$3.65 \cdot 10^{-3}$ · (1 ± 2.5%({\text{ex.}}) ± 3.0%({\text{th.}}))</td>
</tr>
</tbody>
</table>
Time dependent CPV - Flavor tagging

TDCPV measurement:
• Precise measurement of Δt
• B flavor tagger

$\Delta t = \Delta z / \beta \gamma c$
$\Delta z \sim 130$ um

Effective flavor tagging efficiency:
• Belle II : (33.8 ± 3.9)%
• Belle : (30.1 ± 0.4)%
• Belle II MC : ~37%

Details in Radek Zlebcik’s “talk” on 10 June
Measurement of $\sin(2\phi_1)$

- $b \rightarrow c$: tree diagram dominated golden modes $B^0 \rightarrow J/\psi K^0, B^0 \rightarrow \psi(2S)K^0$…
- Theoretically and experimentally precise channel

\[
P(\Delta t, q) = \frac{e^{-|\Delta t|\tau_{B^0}}}{4\tau_{B^0}} (1 + (1 - 2\omega)q[S_f \sin(\Delta m \Delta t) + A_f \cos(\Delta m \Delta t)])
\]

S_f: indirect (time dependent) CPV parameter

A_f: direct CP violating asymmetry assumed zero

ϕ_1: details with more new results in Radek Zlebcik’s “talk” on 10 June

Precision aimed at Belle II for $\sin(2\phi_1)$:
reduce uncertainty by factor ~5 to reach to 5%

$\sin(2\phi_1) \approx S_f = 0.55 \pm 0.21 \text{ (stat.)} \pm 0.04 \text{ (syst.)}$

$\sin(2\phi_1) = 0.699 \pm 0.017 \text{ (world average)}$
Foreseen precision of ϕ_3 is expected to be 1.6° with 50 ab$^{-1}$ dataset
Unitarity Triangle fit extrapolation at Belle II

Standard model (SM) scenario: the central values are chosen such that they satisfy the SM (closed UT)

- Tensions existed on $|V_{ub}|$ and ϕ_1
- UT cannot close if keeping the central value for 50 ab$^{-1}$
- Differences between UT determined by tree ($|V_{ub}|$, ϕ_3) and loop (ϕ_1, ϕ_2) can be discriminated with 50 ab$^{-1}$ data-set
Summary and prospects

- Super B-factory offers good probe for testing SM and searching for NP at luminosity frontier.

- Belle II will play a key role for CKM measurements.
 - First BF measurements of semileptonic B decays with had. tagged/untagged techniques for $|V_{cb}|$ and $|V_{ub}|$.
 - First sin$2\phi_1$ result has agreement with W.A, aim 5% precision at Belle II.
 - Decay rate ratio of $B\rightarrow DK/B\rightarrow D\pi$ was performed for determination of ϕ_3.

- Looking forward for more interesting results from Belle II.

Stay tuned!
Backup
Belle II - LHCb comparison

\[R_\Delta(*) \]

\[|V_{ub}| \]

\[\sin(2\phi_1) \]

\[\phi_3 \]
Hadronic mass moments of inclusive $B \to X_{c\ell}\nu$ with hadronic tag

BELLE2-CONF-PH-2020-011

$|V_{cb}|$ calculated based on the parameters extracted from p^*l vs $\langle M_X^n \rangle$ distributions

A new method proposed in JHEP02 (2019)177 to extract $|V_{cb}|$ from q^2 vs $\langle q^2 \rangle_X$ distributions

Targeting a publication this summer

Moments dependence on the lepton momentum cut
$\sin(2\phi_1)$ with QCD penguin

- $b\to qqs$: QCD penguin dominated contribution, sensitive to New Physics
 - Golden mode, e.g. $B\to \eta'K$ decays
- $\sin(2\phi_1)$ measured by $b\to s$ and $b\to c$ processes used to have $\sim 3.8\sigma$ tension, however now it was reduced to rather small
- Only rediscovery and BR measurement (CP measurement not done yet)

$B^\pm\to \eta'K^\pm$ with $\eta'\to \eta\pi^+\pi^-$ or $\eta'\to \rho\gamma$

$B^0\to \eta'K_S$ with $\eta'\to \eta\pi^+\pi^-$ or $\eta'\to \rho\gamma$

<table>
<thead>
<tr>
<th>Channel</th>
<th>This analysis</th>
<th>World average</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^\pm \to \eta'K$</td>
<td>$68.2^{+3.6}_{-3.5}(\text{stat}) \pm 3.4(\text{syst})$</td>
<td>70.6 ± 2.5</td>
</tr>
<tr>
<td>$B^0 \to \eta'K^0$</td>
<td>$63.7^{+5.9}_{-5.5}(\text{stat}) \pm 5.8(\text{syst})$</td>
<td>66 ± 4</td>
</tr>
</tbody>
</table>
φ₂ measurement (B → πππ)

Diagrams

<table>
<thead>
<tr>
<th>Diagrams</th>
<th>B⁺ → π⁺π⁰</th>
<th>B⁰ → π⁺π⁻</th>
<th>B⁰ → π⁰π⁰</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Color Supp</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penguin</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

Constraint for φ₂
- TDCPV parameter S_f and A_f
- Branch fraction of all B → ππ (π⁺π⁻, π⁺π⁰, π⁰π⁰) modes

\[S_f = \sqrt{1 - A_f^2 \sin(2\phi_2 + 2\Delta\phi_2)} \]

Penguin pollution

- **Interference between tree and penguin**

Results

- **Yield**
 - B⁺ → π⁺π⁰: \(43^{+19}_{-20}\)
 - B⁻ → π⁻π⁰: \(24^{+13}_{-14}\)

- **ACP**
 - \(-0.268^{+0.249}_{-0.322} ± 0.123\)
 - (PDG) \(0.03 ± 0.04\)

- **B⁻ → π⁰π⁰ analysis started at Belle II**
 - 8-fold ambiguity of φ₂ can be reduced to 2-fold with TDCPV in B⁰ → π⁰π⁰
ϕ_2 measurement ($B \to \rho \rho$)

\[\int L \, dt = 62.8 \, fb^{-1} \]

BELLE2-CONF-DRAFT-2021-005

![Graph showing $B^+ \to \rho^+ \rho^0$](image)

<table>
<thead>
<tr>
<th></th>
<th>$B^+ \to \rho^+ \rho^0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yeild</td>
<td>104 ± 16</td>
</tr>
<tr>
<td>$Br(10^{-6})$</td>
<td>$20.6 \pm 3.2 \pm 3.1$</td>
</tr>
<tr>
<td>PDG</td>
<td>24.0 ± 1.9</td>
</tr>
<tr>
<td>f_L</td>
<td>$0.936^{+0.049}_{-0.041} \pm 0.021$</td>
</tr>
<tr>
<td>f_L(PDG)</td>
<td>0.950 ± 0.016</td>
</tr>
</tbody>
</table>

$f_L =$ fraction of longitudinally polarized events

- Compatible with PDG value
- Performance superior to early Belle results

- $\Delta \phi_2 \sim 0.6^\circ$ (current 4.2°) with 50 fb$^{-1}$ data
- $B \to \pi \pi, B \to \rho \rho$ isospin analysis and $B \to \rho(\pi \pi) \pi$
 - Dalitz analysis of 3 body decays
- LHCb can not measure ϕ_2
VXD position resolution

Detector resolution: difference between d_0 and beam profile

- $\sigma_x : 14.8 \, \mu m$
- $\sigma_y : 1.5 \, \mu m$

d_0 resolution:
- $14.2 \pm 0.1 \, \mu m$ (Data)
- $12.5 \pm 0.1 \, \mu m$ (Simulation)