

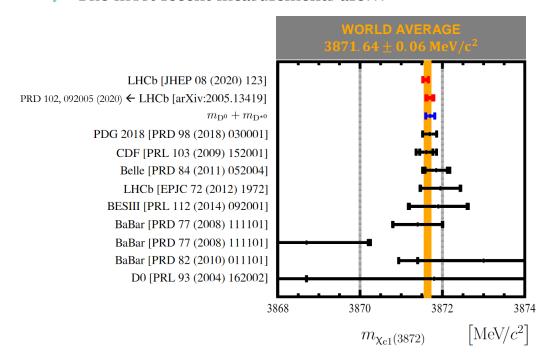
Rediscovery of X(3872) at Belle II Experiment

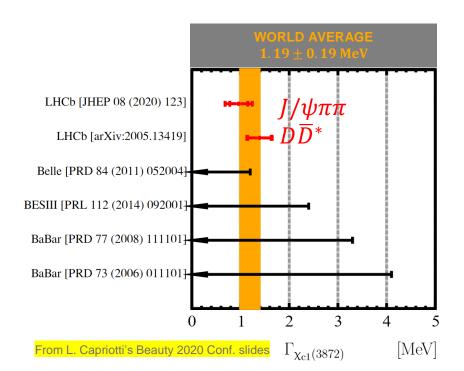
Youngmin Yook (yook@ihep.ac.cn) on behalf of Belle II Collaboration Institute of High Energy Physics, Chinese Academy of Science

10th International Workshop on Charm Physics, June 3rd, 2021

X(3872) Mini Review

The notation was changed to $\chi_{c1}(3872)$ but just for the sake of convenience, I will stick to X in this talk.

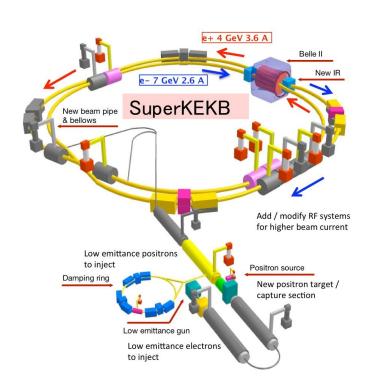

- The 2003 first discovery from Belle in $B \to K(J/\psi \pi^+\pi^-)$ channel PRL 91, 262001 (2003)

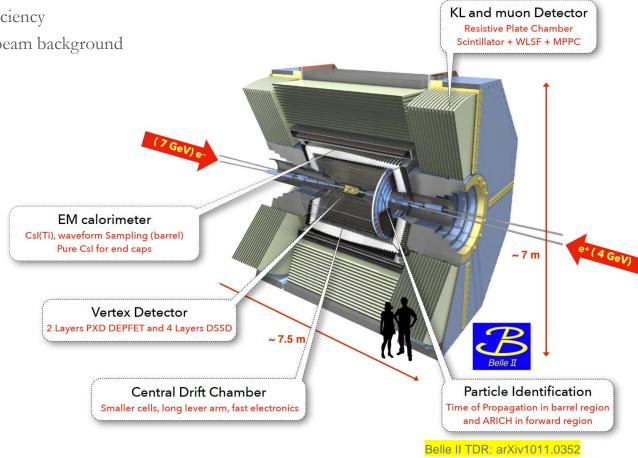

Productions in		$B \to KX$,	$par{p}$,	pp, e	$e^+e^- \rightarrow \gamma X$		
Well established decay modes	$J/\psi\pi^+\pi^-$,	$J/\psi\pi^+\pi^-\pi^0,$	$J/\psi\gamma$,	$\psi(2S)\gamma$, $D\overline{D}\pi$,	$D\overline{D}\gamma$,	$\pi^0 \chi_{c1}$

- Yet the knowledge of the particle is not complete yet
 - Tetraquark / Molecule / Charmonium-Molecule mixture?

Great summaries by Dr. Skwarnicki and Dr. Guo in the first day EXOTIC session!

- Full width measurement can pin down the partial width and provide a handle to constrain model predictions.
- The most recent measurements are...

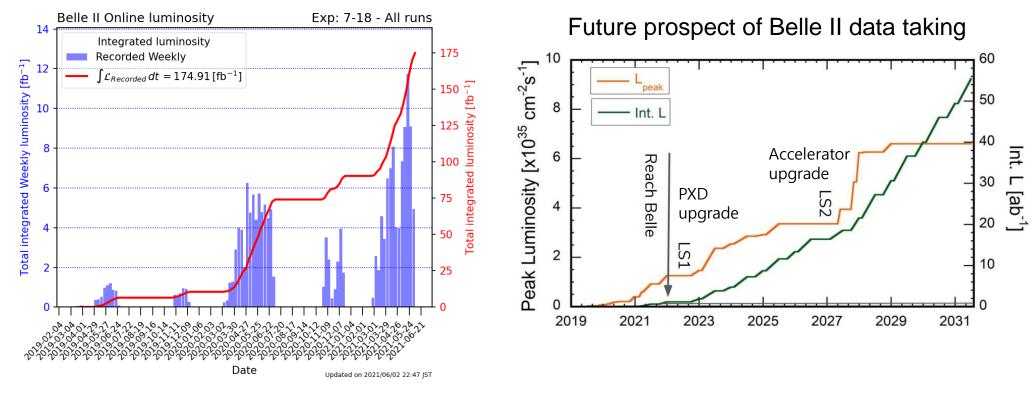




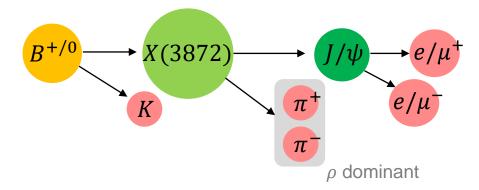
Belle II Detector

- A 4π detector with ability to detect π , K, p, e, μ , γ in wide momentum range
- $\sqrt{s} \sim 10.58 \text{ GeV}$
- J Operates on SuperKEKB accelerator designed to reach $\sim 30-40$ times (6.5 × 10^{35} cm⁻² s⁻¹) the luminosity of the older KEKB
- Major differences to Belle:
 - ▶ Introduction of PXD for improved vertexing / better Ks efficiency

Upgrade in Particle Identification to cope with much higher beam background



Belle II Dataset


- Aiming to collect $50ab^{-1}$ data mostly on $\Upsilon(4S)$ resonance (50 times of Belle)
- Current integrated luminosity 175 fb⁻¹ (peak instantaneous: $2.9 \times 10^{-34} \text{cm}^{-2} \text{s}^{-1}$)
- Increasing by $1 1.5 \text{fb}^{-1}$ day by day

Today, based on 62.8fb⁻¹ $\Upsilon(4S)$ data: $B \to KX(3872)$: $X(3872) \to J/\psi \pi^+ \pi^-$ with high reconstruction rate

Reconstruction and Event Selection

Track Selection

- ① PID for leptons and pions
- 2 Point of closest approach to the interaction point in $r \phi$ (along z direction) < 1.0 (3.0) cm

K_S^0

- 1 Vertex fit with two oppositely charged pions
- 2 $490 < M_{\pi + \pi^-} < 506 \text{ MeV}/c^2$

J/ψ

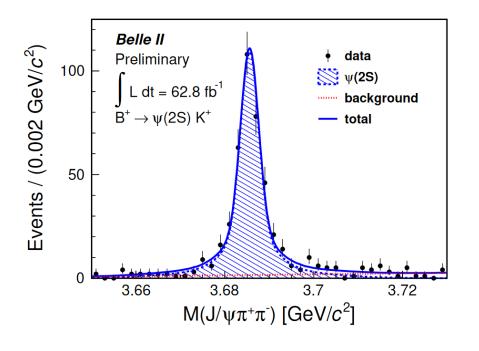
- ① $3.070 (3.065) < M_{J/\psi \to \mu^+ \mu^- (e^+ e^-)} < 3.117 \text{ GeV/}c^2$ (Bremsstrahlung photons are recollected)
- (2) Mass-constrained fit after the first criterion

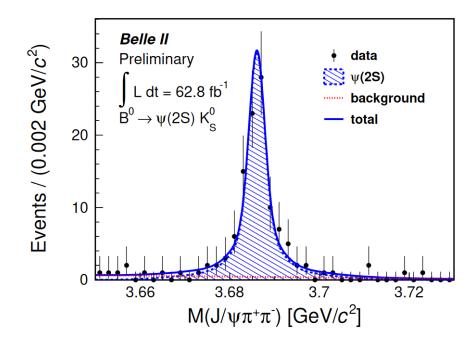
B

- ① $M_{bc} (\equiv \sqrt{(s/2)^2 (p_B^{cms})^2}) > 5.27 \text{ GeV/c}^2$
- $(2) |\Delta E (\equiv s/2 E_B^{cms})| < 0.02 \text{ GeV/c}^2$

Continuum Suppression

Normalized Fox-Wolfram moment R2 < 0.4


$$M_{\pi^+\pi^-}$$


$$M_{\pi+\pi-}^{meas} - M_{\ell+\ell-\pi+\pi-}^{meas} + m_{I/\psi} > -0.150 \text{ GeV}/c^2$$

- Retains \sim 90% of signal / suppresses background by \sim 75%
- Reduction in mis-identified pions

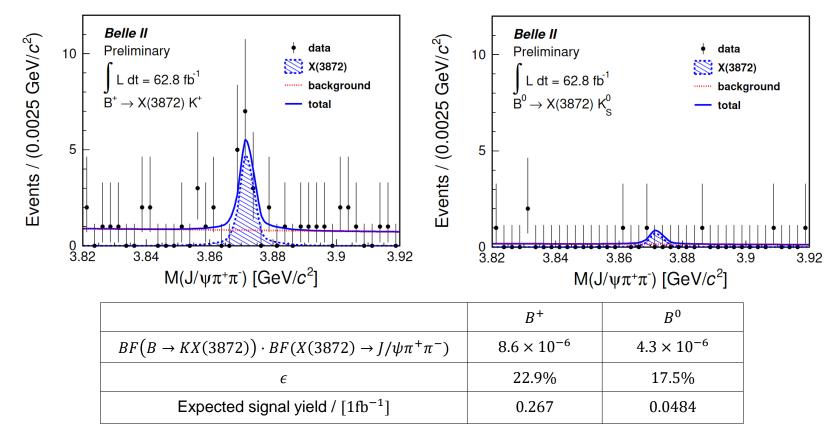
Control Sample Study with $B \to K\psi(2S)$: $\psi(2S) \to J/\psi\pi^+\pi^-$

 $\supset BF(B \to \psi(2S)K)$ from the Belle II data vs. World Average

- J Same conditions for the X(3872) analysis applied: except for the X(3872) specific $M_{\pi^+\pi^-}$ criterion
- J Signal modeled in triple Gaussian with a common mean, Background in 1st order Chebyshev Polynomial
- J Signal PDF width floated
- J Unbinned maximum likelihood fit to the Data in $M_{I/\psi\pi^+\pi^-}$

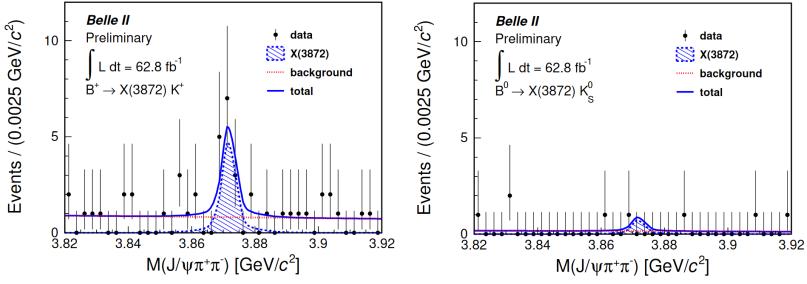
Control Sample Study with $B \to K\psi(2S): \psi(2S) \to J/\psi\pi^+\pi^-$

$$BF = \frac{N_{signal}^{Observed}}{N_B \cdot \epsilon \cdot \Pi BF (\text{sub} - \text{decays})}$$


 ϵ : acceptance x selection efficiency of the signal events with PID correction N_B : Number of B mesons obtained

	$B^+ \to K^+ \psi(2S)$	$B^0 \to K_S^0 \psi(2S)$
Signal efficiency [%]	22.69 ± 0.16	17.40 ± 0.17
Obtained Branching Fraction (World average) [$\times 10^{-4}$]	$6.08 \pm 0.37 \ (6.19 \pm 0.22)$	$6.18 \pm 0.69 \ (5.8 \pm 0.5)$
Obtained / World Average	0.982 ± 0.069	1.07 ± 0.15

PDG2020: PTEP 2020, 083C01 (2020)


- J Statistical uncertainty only
- In a good agreement with the world average branching fraction of $B \to K\psi(2S)$
- J We see increased discrepancy with K/π Identification.
- J Possible major systematic sources are: Tracking, K_s reconstruction, Number of B mesons (2.1%)

Extraction of signal for $B \rightarrow KX(3872)$

- J Unbinned simultaneous extended maximum likelihood fit performed
- J The ratio of signals yields to the expected signal yield per 1 fb^{-1}
 - $BF(B^0 \to X(3872)K^0)/BF(B^+ \to X(3872)K^+) = 0.50$ Belle, PRD 84, 052004 (2011).
 - ▶ Signal PDF: Histogram PDF assuming World Average Mass and Width from LHCb measurements.
 - ▶ Background PDF: 1st order Chebyshev Polynomial

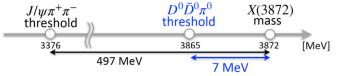
Extraction of signal for $B \rightarrow KX(3872)$

	With signal hypothesis	Without signal hypothesis
Signal Yield	14.4 ± 4.6	-
Background in B ⁺ channel	31.6 ± 6.1	45.0 ± 6.7
Background in B ⁰ channel	7.0 ± 2.8	8.0 ± 2.8
Log likelihood	-231.01	-220.33

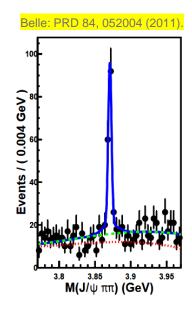
Statistical significance estimated to be:

$$-2\ln(L_0/L) = 4.6\sigma$$

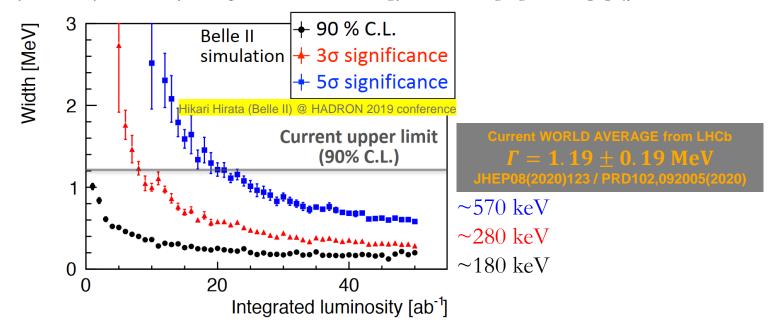
	Ве	elle	Belle II (This analysis)		
	Signal Yield / $\int Ldt$ [fb]	Signal Efficiency [%]	Signal Yield / $\int Ldt$ [fb]	Signal Efficiency [%]	
$B^+ \to K^+ \psi(2S)$	5.027 ± 0.090	17.8 ± 0.2	6.51 ± 0.37	22.7 ± 0.2	
$B^0 \to K_S^0 \psi(2S)$	1.145 ± 0.042	14.1 ± 0.2	1.66 ± 0.18	17.4 ± 0.2	
$B \rightarrow KX(3872)$	0.212 ± 0.021	19.1 ± 0.2	0.194 ± 0.062	22.9	


Note:

 $K\psi(2S)$ at Belle II tends to higher efficiency due to looser criteria compared to Belle analysis as it was being used as a control sample for this analysis.


 π -ID correction is not applied for the Belle II KX(3872) analysis.

What next?: X(3872) Width measurement


- J Mass resolution of signal PDF (1.86 \pm 0.01 MeV/ c^2) $> \Gamma_{total}^{X(3872)}$ in $J/\psi \pi^+ \pi^-$
- In order to improved the mass resolution $D^0 \overline{D}{}^0 \pi^0$ decay modes are preferred.

Previous related search @ Belle: $X(3872) \to D^{*0} \overline{D}{}^{0}$ $BF(B \to KX(3872)) \cdot BF(X(3872) \to D^{*0} \overline{D}{}^{0}) = (0.80 \pm 0.20 \pm 0.10) \times 10^{-4} : \Gamma_{total} = 3.9^{+2.8+0.2(syst)}_{-1.4-1.1(syst)}$ Majority of systematics from fit bias, statistical limitation PRD 81, 031103 (2010).

- Looking forward to full width measurement at Belle II with $B \to KX(3872)$: $X(3872) \to DD\pi$!
 - Toy MC study has already been performed with strategy of extracting signal in $M_{D^0 \overline{D}^0 \pi^0}$

Summary

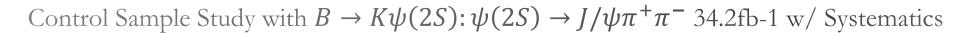
- J The first study of exotic Charmonia at Belle II
- JX(3872) revisited at 4.6σ statistical significance!
- J 62.8 fb⁻¹ $\Upsilon(4S)$ data analyzed for $B \to KX(3872)$: $X(3872) \to J/\psi \pi^+\pi^-$
- J Belle II aims to reach $50ab^{-1}$ data ($5.5 \times 10^{10}~B\bar{B}$ s) and...

Provide total width of X(3872) in $X \to D^0 \overline{D}{}^0 \pi^0$ or inclusively

Provide inputs on the properties of X(3872) in its quantum numbers J^{PC}

Revisit more subchannels and improve measurements of the X(3872) decays e.g. $X(3872) \rightarrow J/\psi \gamma$ as low energy photon reconstruction is no problem @ Belle 2

12 of 11 ▶ Rediscovery of X(3872) at Belle II Experiment < CHARM 2020 ◀ Youngmin Yook, IHEP CAS (yook@ihep.ac.cn) < June 3rd, 2021



BACKUP

PDG2020 summary

State	M [MeV]	Γ [MeV]	J^{PC}	Process (mode)	Experiment (#σ)	Year	Status
X(3872)	3871.69 ± 0.17	< 1.2	1++	$B \to K(\pi^+\pi^-J/\psi)$	Belle [1049,1137] (>10), BaBar [1138] (8.6)	2003	Ok
				$p\bar{p} \to (\pi^+\pi^-J/\psi) \dots$	CDF [1139–1141] (11.6), D0 [1142] (5.2)	2003	Ok
				$pp \to (\pi^+\pi^-J/\psi) \dots$	LHCb [1143–1145] (np), CMS [1146] (np)	2012	Ok
				$Y(4260) \rightarrow \gamma (\pi^+\pi^-J/\psi)$	BESIII [1147] (6.3)	2013	NC!
				$B \to K(\omega J/\psi)$	Belle [1148] (4.3), BaBar [1149] (4.0)	2005	NC!
				$B \to K(\gamma J/\psi)$	Belle [1148,1150] (5.5), BaBar [1151,1152] (3.6),	2005	Ok
				$B \to K(\gamma \psi(2S))$	LHCb [1153] (> 10) BaBar [1152] (3.5), Belle [1150] (0.2),	2008	NC!
				$B \to K(D^0 \bar{D}^{*0})$	LHCb [1153] (4.4) Belle [1154,1155] (6.4), BaBar [1156] (4.9)	2006	NC!

Source	$B^+ \to K^+ \psi(2S)$	$B^0 \to K_S^0 \psi(2S)$
Tracking	8.5%	9.3%
K_s reconstruction efficiency	-	6.0%
Number of B mesons	2.1%	2.1%
Total	8.8%	11%