Charm and XYZ Prospects at Belle II

Roy A. Briere
Carnegie Mellon
for the Belle II Collaboration

CHARM2020
31 May 2021
Outline

Introduction: Belle II & Super KEKB

Charm
- Overview
- CP Violating Asymmetries
- Lifetimes and Mixing
- (Semi)leptonics
- Spectroscopy & Baryons

XYZ
- Overview
- Double charmonia, ISR, B decays

Conclusions
Belle II Detector

2nd Generation B-Factory Detector

• High-luminosity performance
• Much improved vertexing
• Novel Cherenkov PID (TOP)
• Other upgrades…

31 May 2021
Roy A Briere - Charm and XYZ Prospects at Belle II - CHARM2020
Belle II & Super KEK-B Overview

Our Goal: 50 ab\(^{-1}\) dataset [> 50x Belle!]
- The only second-generation e\(^+\)e\(^-\) B factory
- Current total dataset of >170 fb\(^{-1}\)
- Running schedule maintained during COVID-19

Detector
- All components working well
- Shutdown in 2022 to install rest of 2\(^{nd}\) inner pixel layer

Accelerator
- “Nanobeams”: aggressive vertical focusing
- Holds world luminosity record: \(\mathcal{L}_{\text{peak}} \sim 2.9 \times 10^{34} \text{ cm}^2/\text{s}\) [took lead @ 2.4 \(\times 10^{34}\) in June 2020]
 (and now also has the best integrated day & week for a B factory…)
- Still much more work to get to design goal: \(\mathcal{L}_{\text{peak}} = 6.5 \times 10^{35} \text{ cm}^2/\text{s}\)
 → Beam currents now limited: occasional “dust events”; background mitigation work

31 May 2021
Roy A Briere - Charm and XYZ Prospects at Belle II - CHARM2020
Charm

For Projections: Belle II Physics Book
Prog. Th. Exp. Phys. 2019, 1232C01; 2020, 029201(E) [arXiv 1808.10567]
Extensive work by Belle II Collaboration & Theorists
Roadmap for physics with projections, comparisons, …
Experimental Context

BESIII: absolute BFs, (semi-)leptonics, charmonia, exotics (XYZ)
Statistics limit CPV, rare decays; no boost for time-dependence

LHCb: excels at CPV, lifetimes, mixing, rare decays, spectroscopy,
Some analyses with π^0 & single γ; recent $B_{(s)}$ semileptonic (!)

Belle II: can generally cover *all* of the above topics
LHCb stats are often overwhelming for charged final states (incl. K_S)
BESIII cleanliness very powerful *when statistics suffice*
But Belle II can perform world’s best analyses in many cases,
as well as *verify results* from others

Open charm mesons, baryons: from continuum (typically)
Cross-sections (in nb): $0.6 + 0.6$ D$^{*+} +$ D*0 0.2 Ds 0.2 Λ_c
nb $\times ab^{-1} = 10^9 \rightarrow$ 10-30 billion of each produced in final samples

XYZ Exotics from B decays, ISR, two-photon
Physics Context

Precision Studies of tree-level processes:

Over-constrain the CKM matrix

• (Semi-)leptonic - use/test LQCD via decay constants, form factors

Search for anomalous CP Violation

• Direct CP asymmetries: especially SCS decays
 \[\text{SCS} = \text{Singly Cabibbo Suppressed} \]

• T-odd triple products

Suppressed decays (loops):

FCNC: Radiative modes, di-leptons
 \[\text{FCNC} = \text{Flavor-Changing Neutral Currents} \]

Forbidden decays:

Lepton flavor violation, ...

Exotic States and Spectroscopy
Belle II & Charm

Continuum Production
• $e^+e^- \to c\bar{c}$: fragmentation…

Charm from B decays: de-emphasize today
• Good for J^P studies, more constraints…

Strengths of charm @ $\Upsilon(4S)$:
• π^0 reconstruction
• ν reconstruction [“continuum tagging”: find other charm \oplus fragmentation]
• Kinematics constraints, cleaner events

Middle ground between LHCb and BESIII
• Lower cross-sections, but simpler events than LHCb
• Not quite as clean as BESIII at threshold, but much higher statistics

Silicon improved vs. first-generation B factories

7 Weakly-decaying ground states: D^0 D^+ D_s^+ Λ_c^+ Ξ_c^+ Ξ_c^0 Ω_c^0
• Rich set of decays: Search for CP violation & new physics
 Map out lifetimes, D^0 mixing, …
Selected Mass Peaks: D⁰

All analyses here are D*⁺ (flavor) tagged; plots show the D*-D mass differences:
\[\Delta m = M(D^0 \pi^+) - M(D^0) \]
where “D₀“ is the candidate D⁰ decay

SCS (Singly-Cabibbo-Suppressed) modes are of interest for CPV studies
CP Asymmetries

CPV can be found in mixing, and also in direct asymmetries
Many modes exploit Belle II’s excellent CsI calorimetry:
- \(D^0 \rightarrow K_S \pi^0, \pi^0 \pi^0 \)
- \(D^+ \rightarrow \pi^+ \pi^0 \)
- \(D_s^+ \rightarrow \pi^+ \pi^0 \)

and others: \(\eta \) & \(\eta' \) modes, multi-body, …
Neutral \(D \): need \(D^* \) tag; small tag and \(\gamma-Z \) asymmetries to study
- [easier than larger LHCb production asymmetry]

ALSO: T-odd triple products (four-body final states)
- Use \(D - D\bar{D} \) difference to cancel final-state interaction mimicry

CP & Rare Decays

FCNC: Radiative Decays:
- \(D^0 \rightarrow \rho \gamma, \phi \gamma, K^* \gamma \)
- Single photons = good modes for Belle II!
- *Also measure CP asymmetries: reach is \(\pm 2\% \), \(\pm 1\% \), \(\pm 0.3\% \)*

FCNC: dileptons \(\rightarrow \) daunting LHCb competition!
CP Asymmetries

Belle results and final Belle II precision†

<table>
<thead>
<tr>
<th>Mode</th>
<th>\mathcal{L} (fb$^{-1}$)</th>
<th>A_{CP} (%)</th>
<th>Belle II 50 ab$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D^0 \to K^+K^-$</td>
<td>976</td>
<td>$-0.32 \pm 0.21 \pm 0.09$</td>
<td>± 0.03</td>
</tr>
<tr>
<td>$D^0 \to \pi^+\pi^-$</td>
<td>976</td>
<td>$+0.55 \pm 0.36 \pm 0.09$</td>
<td>± 0.05</td>
</tr>
<tr>
<td>$D^0 \to \pi^0\pi^0$</td>
<td>966</td>
<td>$-0.03 \pm 0.64 \pm 0.10$</td>
<td>± 0.09</td>
</tr>
<tr>
<td>$D^0 \to K^0_S\pi^0$</td>
<td>966</td>
<td>$-0.21 \pm 0.16 \pm 0.07$</td>
<td>± 0.02</td>
</tr>
<tr>
<td>$D^0 \to K^0_SK^0_S$</td>
<td>921</td>
<td>$-0.02 \pm 1.53 \pm 0.02 \pm 0.17$</td>
<td>± 0.23</td>
</tr>
<tr>
<td>$D^0 \to K^0_S\eta$</td>
<td>791</td>
<td>$+0.54 \pm 0.51 \pm 0.16$</td>
<td>± 0.07</td>
</tr>
<tr>
<td>$D^0 \to K^0_S\eta'$</td>
<td>791</td>
<td>$+0.98 \pm 0.67 \pm 0.14$</td>
<td>± 0.09</td>
</tr>
<tr>
<td>$D^0 \to \pi^+\pi^-\pi^0$</td>
<td>532</td>
<td>$+0.43 \pm 1.30$</td>
<td>± 0.13</td>
</tr>
<tr>
<td>$D^0 \to K^+\pi^-\pi^0$</td>
<td>281</td>
<td>-0.60 ± 5.30</td>
<td>± 0.40</td>
</tr>
<tr>
<td>$D^0 \to K^+\pi^-\pi^+\pi^-$</td>
<td>281</td>
<td>-1.80 ± 4.40</td>
<td>± 0.33</td>
</tr>
<tr>
<td>$D^+ \to \phi\pi^+$</td>
<td>955</td>
<td>$+0.51 \pm 0.28 \pm 0.05$</td>
<td>± 0.04</td>
</tr>
<tr>
<td>$D^+ \to \pi^+\pi^0$</td>
<td>921</td>
<td>$+2.31 \pm 1.24 \pm 0.23$</td>
<td>± 0.17</td>
</tr>
<tr>
<td>$D^+ \to \eta\pi^+$</td>
<td>791</td>
<td>$+1.74 \pm 1.13 \pm 0.19$</td>
<td>± 0.14</td>
</tr>
<tr>
<td>$D^+ \to \eta'\pi^+$</td>
<td>791</td>
<td>$-0.12 \pm 1.12 \pm 0.17$</td>
<td>± 0.14</td>
</tr>
<tr>
<td>$D^+ \to K^0_S\pi^+$</td>
<td>977</td>
<td>$-0.36 \pm 0.09 \pm 0.07$</td>
<td>± 0.02</td>
</tr>
<tr>
<td>$D^+ \to K^0_SK^+$</td>
<td>977</td>
<td>$-0.25 \pm 0.28 \pm 0.14$</td>
<td>± 0.04</td>
</tr>
<tr>
<td>$D^+_s \to K^0_S\pi^+$</td>
<td>673</td>
<td>$+5.45 \pm 2.50 \pm 0.33$</td>
<td>± 0.29</td>
</tr>
<tr>
<td>$D^+_s \to K^0_SK^+$</td>
<td>673</td>
<td>$+0.12 \pm 0.36 \pm 0.22$</td>
<td>± 0.05</td>
</tr>
</tbody>
</table>

† = Belle II Physics Book: PETP 2019, 123C01 (2019)

- Best for Belle II (neutrals)
Current detector:
4 layers of Si strips
1+ inner pixel layer

[1+ = 1 layer + 1 extra ladder]

Detector performance:
~12 μm impact parameter resolution
~40 μm D0 flight path resolution

> About twice as good as first B factories [pixels at small radius!]
Charm Lifetimes: D^0 as an example

Best single result (by far) FOCUS 2002: $\tau_{D^0} = (409.6 \pm 1.1 \pm 1.5) \text{ fs}$

Statistics will not be an issue @ Belle II!

Beautiful resolution!
Charm Lifetimes: D^0 as an example

We reconstruct $D^0 \rightarrow K \pi \pi$, $D^0 \rightarrow K \pi \pi$ and $D^0 \rightarrow K \pi \pi \pi$ candidates from $D^* \rightarrow D^0 \pi^+$ decays in data collected by Belle II in 2019, and corresponding to a luminosity of 9.6 fb$^{-1}$ of integrated luminosity. We extract the D^0 lifetime in each of the three signal channels with an unbinned maximum likelihood 2D fit to the proper time and proper time uncertainty distribution. The average lifetime is $\tau_D = (412.3 \pm 2.0) \text{ fs}$, in agreement with the world-average value of $(410.1 \pm 1.5) \text{ fs}$. A summary plot is shown in Figure 1. The proper-time projections of the three fits are shown in Figures 2, 3 and 4. The average decay-time resolution is estimated to be $(97 \pm 8) \text{ fs}$ for the $D^0 \rightarrow K \pi$ channel, $(128 \pm 9) \text{ fs}$ for the $D^0 \rightarrow K \pi \pi_0$ channel and $(82 \pm 9) \text{ fs}$ for the $D^0 \rightarrow K \pi \pi^+$ channel.

Charm lifetimes were dominated by FOCUS for years; lately LHCb is taking over…

Plot from G. Casarosa, ICHEP2020

• resolution improvement visible at $t < 0$: $D^+ \rightarrow D^0 \pi^+$, $D^0 \rightarrow K \pi$
From Wrong-Sign Decay to Mixing

Look at three popular D^0 modes
• Good agreement with PDG for integrated wrong-sign rates
 (Belle II preliminary: yield ratios w/o efficiency, for now…)

Time-dependent analyses next:
• Leverage excellent vertex detector
• Separate DCSD and mixing parts of wrong-sign rates
D⁰ → K_S π⁺ π⁻

Direct access to x

x, y without strong phase rotation*
(vs. x² with K nπ)
(e.g., x', y' issue of Kπ)

*there are strong phases entering; (c.f. related analysis in B physics for CKM γ angle); but we have measured inputs from BESIII …

Eventually: a time-dependent analysis of the Dalitz Plot

31 May 2021
Roy A Briere - Charm and XYZ Prospects at Belle II - CHARM2020
Charm Mixing

Belle II Final Reach*

<table>
<thead>
<tr>
<th>Channel</th>
<th>Observable</th>
<th>Belle/BaBar Measurement</th>
<th>Scaled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(L [\text{ab}^{-1}])</td>
<td>Value</td>
</tr>
<tr>
<td>(D^0 \to K^+ \pi^-)</td>
<td>(x'^2 (%))</td>
<td>0.976</td>
<td>0.009 ± 0.022</td>
</tr>
<tr>
<td>(no CPV)</td>
<td>(y' (%))</td>
<td></td>
<td>0.46 ± 0.34</td>
</tr>
<tr>
<td>(CPV allowed)</td>
<td>(</td>
<td>q/p</td>
<td>)</td>
</tr>
<tr>
<td></td>
<td>(\phi (^\circ))</td>
<td></td>
<td>-12.9 +9.9 -8.7</td>
</tr>
<tr>
<td>(D^0 \to K^+ \pi^- \pi^0)</td>
<td>(x'' (%))</td>
<td>0.384</td>
<td>2.61 +0.57 -0.68 ± 0.39</td>
</tr>
<tr>
<td></td>
<td>(y'' (%))</td>
<td></td>
<td>-0.06 +0.55 -0.64 ± 0.34</td>
</tr>
<tr>
<td>(D^0 \to K_S^0 \pi^+ \pi^-)</td>
<td>(x (%))</td>
<td>0.921</td>
<td>0.56 ± 0.19 +0.04 -0.08 +0.06 -0.08</td>
</tr>
<tr>
<td></td>
<td>(y (%))</td>
<td></td>
<td>0.30 ± 0.15 +0.04 -0.08 -0.05 -0.07</td>
</tr>
<tr>
<td></td>
<td>(</td>
<td>q/p</td>
<td>)</td>
</tr>
<tr>
<td></td>
<td>(\phi (^\circ))</td>
<td></td>
<td>-6 ±11 +3 ±3 -3 ±4 ±0.05 -0.05</td>
</tr>
</tbody>
</table>

Other modes may be interesting for time-dependent analysis
\(K_S \pi^+ \pi^- \pi^0 \), ...

* = Belle II Physics Book; PETP 2019, 123C01 (2019)
Selected Mass Peaks: D_s & Λ_c

Golden Modes

$D_s \rightarrow \phi \pi \rightarrow K K \pi$

$D_s \rightarrow K^*K \rightarrow K K \pi$

Golden Mode

$\Lambda_c \rightarrow pK\pi$
Leptonic and Semileptonic

PHYSICS: Precise decay constants & form factors
- Test Lattice QCD
- $V_{cd} f_D$, $V_{cs} f_{Ds}$, $V_{cd} f^{\pi}(0)$, $V_{cs} f^K(0)$

Ratios also useful for various cancellations [CKM, uncertainties]

METHODS: various types of tagging (constrain kinematics)
1) *BESIII at threshold:* tagging; exclusive $D D^{\bar{b}ar}$ production

2) *B factories:* Originally D^* tagging, pseudo-mass-difference
 \[\delta M = M(\pi_{\text{slow}} h l) - M(h l) \] [like usual ΔM; but no ν so broader]

3) *B factories, improved:* “continuum tagging”
 - charm hadron tag + sets of fragmentation particles
 - First done by Belle for $D^0 \rightarrow \pi^- l^+ \nu$ PRL 97, 061804 (2006)
 - $D^{(*)}_{\text{tag}} X D^{*-\text{sig}}$ where X is a set of fragmentation
 particles including \{ π^+, π^-, π^0 (K$^+K^-$) \}
Leptonic $D^+_{(s)}$ Decays

Continuum tagging at work in Belle for leptonic D_s decay
MC studies: also works well for Cabibbo-suppressed mode!

$50 \text{ ab}^{-1}: \ 27000 \ D_s \rightarrow \mu \ \nu \ \ 1250 \ D \rightarrow \mu \ \nu$

D_s: can try to trade statistics for better systematic control

D: 3% BF (stat. only) is 1.5% on f_D [better than current BESIII; only chance to verify?]

Belle result was systematics limited.

Belle II statistics will allow more precise syst. studies & using the best sub-sample of data

Belle 0.9 ab$^{-1}$ JHEP 1309, 139 (2013)
Spectroscopy and Baryons

Open Charm Mesons
• $D^{(*)}n\pi$ systems in B decays [constrain quantum numbers]
• Continuum

Charm Baryons
• Searches for new states, new decay modes, …
• CP Violation studies

Weakly-decaying baryonic ground-states $\Lambda_c^+ \quad \Xi_c^+ \quad \Xi_c^0 \quad \Omega_c^0$
• Absolute BFs of golden modes
• Semileptonic BFs to make contact with theory
• Lifetimes

BESIII recently took Λ_c pair data at threshold
LHCb also very active

What will the huge leap to 50 ab$^{-1}$ @Belle II yield?
XYZ States
User’s Guide to X Y Z States

• $Y (= \psi)$ $J^{PC} = 1^-$ via ISR production @ Belle II

• Z
 $B \rightarrow K Z \quad Y \rightarrow \pi Z; Z \rightarrow \pi \psi$

• X
 $B \rightarrow K X \quad e^+e^- \rightarrow e^+e^- X$

[directly produced via $e^+e^- \rightarrow \psi @ BESIII$]

[some now classified as $\chi_{cJ}(nP)$ states]

Issues / Tasks:
• Confirmation of some states
• Spin-parity (J^P) determination
• New decays & production modes
• Are some pairs of observations the same state?
• New states!

Competition
• BESIII: > 0.5 fb$^{-1}$ at 19 E_{cm} points $\in [4.178, 4.600]$ GeV
• All-charged final states very doable at hadron machines!

Belle II
X(3872) Re-discovery

![Graph showing Belle II results](image-url)
Double Charmonium

First observed by Belle
Studied via recoil mass spectrum

Interesting re: fragmentation itself
+ exotic state found in spectrum

Thus far, all double charmonium is a J = 1 vs. a J = 0 state
Is this some general "rule"?
Tests with recoil vs. other states will require high statistics
(hadronic decays of η_c, χ_c0 are tougher than J/ψ dileptons!)
Exotic States: ISR

ISR is a “free energy scan”
 It requires high luminosity \(\Rightarrow 50 \text{ ab}^{-1} \) is huge leap forward!

ISR directly accesses Y states with \(J^{PC} = 1^{--} \)
- \(Y(4260), Y(4360), Y(4630), Y(4660) \)
- But also: Belle has seen \(Z \) states in \(Y \) *substructure*

\[
\begin{align*}
\text{\(Z(3900) \) in } \pi J/\psi \text{ mass} & \quad \text{within } Y(4260) \rightarrow \pi \pi J/\psi \\
\text{\(Z(4020) \) in } \pi \psi(2S) \text{ mass} & \quad \text{within } Y(4360) \rightarrow \pi \pi \psi(2S)
\end{align*}
\]

- **Belle**
 - PRL 110, 252002 (2013)
 - PRD 91, 112007 (2015)
Exotic States: B Decays

\[B \rightarrow K X, K Z \quad \text{with} \quad X, Z \rightarrow \pi\pi J/\psi, \omega J/\psi, \phi J/\psi, \gamma J/\psi, \gamma J/\psi(2S), D D^{*\text{bar}}, \]
\[\pi J/\psi, \pi \psi(2S), \pi \chi_{c1}, \gamma \chi_{c1}, \ldots \]

Very rich slate of final states
- Good detection of \(\gamma \) and \(\pi^0 \) is important for many transitions
- May also find states with \(\eta, \eta' \), other charmonia, ...

Some History:
Belle’s 2003
\(X(3872) \) discovery
PRL 91, 262001 (2003)

FIG. 2: Signal-band projections of (a) \(M_{bc} \), (b) \(M_{\pi^+\pi^- J/\psi} \) and (c) \(\Delta E \) for the \(X(3872) \rightarrow \pi^+\pi^- J/\psi \) signal region with the results of the unbinned fit superimposed.

We determine the mass of the signal peak relative to the well measured \(\psi' \) mass:
\[M_X = M_{\text{meas}} - M_{\text{meas}}^{\psi'} + M_{\text{PDG}}^{\psi'} = 3872.0 \pm 0.6 \pm 0.5 \text{ MeV}. \]
Here the first error is statistical and the second systematic. Since we use the precisely known value of the \(\psi' \) mass [9] as a reference, the systematic error is small. The \(M_{\psi'} \) measurement, which is referenced to the \(J/\psi \) mass that is 589 MeV away, is \(-0.5 \pm 0.2 \) MeV from its world-average value [13]. Variation of the mass scale from \(M_{\psi'} \) to \(M_X \) requires an extrapolation of only 186 MeV and, thus, can safely be expected to be less than this amount. We assign 0.5 MeV as the systematic error on the mass.

The measured width of the \(X(3872) \) peak is \(\sigma = 2.5 \pm 0.5 \) MeV, which is consistent with the MC-determined resolution and the value obtained from the fit to the \(\psi' \) signal.

To determine an upper limit on the total width, we repeated the fits using a resolution-
We’re at the beginning of a long & broad program of Charm & XYZ physics
Many opportunities for world-leading analyses
Other places to confirm results with independent systematics
Charm is an important piece of the flavor physics puzzle…

Preliminary results display the foundations we will build upon

The legacy of Belle (and BaBar) inspires us;
& LHCb and BESIII will push us on as well

Stay tuned for more on these topics, as well as the rest of our physics program!
More tables from the Belle II Physics Book
[PTEP 2019, 123C01 (2019)]

<table>
<thead>
<tr>
<th>Channel</th>
<th>Observable</th>
<th>Belle/BaBar Measurement</th>
<th>Scaled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>\mathcal{L} [ab$^{-1}$]</td>
<td>Value</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leptonic Decays</td>
<td></td>
</tr>
<tr>
<td>$D_s^+ \to \ell^+ \nu$</td>
<td>μ^+ events</td>
<td>492 ± 26</td>
<td>2.7k</td>
</tr>
<tr>
<td></td>
<td>τ^+ events</td>
<td>0.913</td>
<td>2217 ± 83</td>
</tr>
<tr>
<td></td>
<td>f_{D_s}</td>
<td>$2.5%$</td>
<td>1.1%</td>
</tr>
<tr>
<td>$D^+ \to \ell^+ \nu$</td>
<td>μ^+ events</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>f_D</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Rare and Radiative Decays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$D^0 \to \rho^0 \gamma$</td>
<td>ACP</td>
<td>$+0.056 \pm 0.152 \pm 0.006$</td>
<td>± 0.07</td>
</tr>
<tr>
<td>$D^0 \to \phi \gamma$</td>
<td>ACP</td>
<td>0.943</td>
<td>$-0.094 \pm 0.066 \pm 0.001$</td>
</tr>
<tr>
<td>$D^0 \to K^{*0} \gamma$</td>
<td>ACP</td>
<td>$-0.003 \pm 0.020 \pm 0.000$</td>
<td>± 0.01</td>
</tr>
</tbody>
</table>