Results and Prospects of Radiative and Electroweak Penguin Decays at Belle II

Soumen Halder (On behalf of the Belle II Collaboration)

26th May, 2021 (Wednesday)

1. Motivation

- 2. Belle II status
- 3. Radiative penguin B decays
- 4. Electroweak penguin *B* decays 4.1. $b \rightarrow s\ell^+\ell^-$ 4.2. $b \rightarrow s\nu\bar{\nu}$ (will be covered by Cyrille Praz)
- 5. Conclusions

BSM searches via rare B decays

- $b \to s(d)$ is an FCNC transition that is not allowed at tree level in the Standard Model (SM) \to loop and CKM suppressed
- BSM model allowing FCNC at tree level or new particles appearing in loop can change branching fractions and/or other observables

 $W^{-} \bigvee_{lb} \bigvee$

Belle II operation¹

- Goal: integrate upto 50 ab^{-1} by 2031
- Collected \sim 170 fb $^{-1}$ since 2018
- Belle II has achieved highest instantaneous luminosity ever $(2.4 \times 10^{34} \text{cm}^{-2} \text{s}^{-1})$
- Analysis (shown here) are performed in 62.8 fb $^{-1}$ dataset

¹For more information about Belle II status see Christoph Schwanda's talk

1. Motivation

2. Belle II status

3. Radiative penguin ${\cal B}$ decays

4. Electroweak penguin *B* decays 4.1. $b \rightarrow s \ell^+ \ell^-$ 4.2. $b \rightarrow s \nu \bar{\nu}$ (will be covered by Cyrille Praz)

5. Conclusions

Inclusive measurements

Key obsevables

- $\mathcal{B}(B \to X_s \gamma)$ • $A_{CP}^{X_s+d\gamma} = \frac{\Gamma(\bar{B} \to X_s+d\gamma) - \Gamma(B \to X_s + d\gamma)}{\Gamma(\bar{B} \to X_s+d\gamma) + \Gamma(\bar{B} \to X_s + d\gamma)} \sim \mathcal{O}(\Lambda_{QCD}/m_b)$
- $\Delta A_{CP}(B \rightarrow X_s \gamma) = A_{CP}(B^+ \rightarrow X_s^+ \gamma) A_{CP}(B^0 \rightarrow X_s^0 \gamma) \propto Im(C_{8g}/c_{7\gamma}) \rightarrow \text{zero in SM}$
- Prospects for Belle II: A_{CP} and ΔA_{CP}
 - Systematic uncertainty due to detector asymmetry could be reduced using control samples
 - More measurements at Belle II of A_{CP} in rare charmless decays, that can fake the inclusive signal → Room for improvement using more realistic peaking background study
- Prospects for Belle II: $\mathcal{B}(B \to X_s \gamma)$
 - Fully inclusive reduce systematics by better modeling of neutral hadrons faking photons
 - \blacksquare Sum-of-exclusive increase the number of modes to reduce systematic from X_s hadronization
 - \blacksquare Hadronic tagging method increased purity so that the $E_{\gamma}^{\rm threshold}$ can be reduced

- Monochromatic (smeared) photon energy from the two-body decay $b \to s \gamma$
- High energy photon with $E_{\gamma}^* > 1.4 \text{ GeV}$
- It should not be arising from a π^0 decay
- Continuum suppression with event shape variables
- Data driven (from off-resonance and side-bands) scaling of MC

1. Motivation

2. Belle II status

- 3. Radiative penguin B decays
- 4. Electroweak penguin *B* decays 4.1. $b \rightarrow s\ell^+\ell^-$ 4.2. $b \rightarrow s\nu\bar{\nu}$ (will be covered by Cyrille Praz)

5. Conclusions

Lepton flavor universality test

$$R_{H}[q_{0}^{2}, q_{1}^{2}] = \frac{\int_{q_{0}}^{q_{1}^{2}} dq^{2} \frac{d\Gamma(B \to H\mu^{+}\mu^{-})}{dq^{2}}}{\int_{q_{0}}^{q_{1}^{2}} dq^{2} \frac{d\Gamma(B \to H\mu^{+}\mu^{-})}{dq^{2}}}$$
$$Q_{i} = P_{i}^{\mu} - P_{i}^{e} \text{ (def of } P_{i}: \text{ JHEP 05 (2013) 137)}$$

- In SM gauge bosons couple equally to different lepton flavours
- Precise prediction of R_H ratios in SM
- Belle R_K measurement: JHEP 03 (2021) 105 , Angular analysis $B \to K^{*} \ell^{+} \ell^{-}$: PRL 118, 111801

Advantage for Belle II over hadronic machine

- Electron and muon modes have similar efficiency
- Both low and high q^2 regions will be measured
- All $R_{K^{(*)}}$ and R_{X_s} are possible at Belle II

9 15

Observation of $B^+ \to K^+ \ell^+ \ell^-$ signal

- First $b \rightarrow s \ell^+ \ell^-$ decay observed at Belle II
- $B^+ \rightarrow \psi(nS)K^+$ where n = 1, 2, events are rejected by applying optimized veto on di-lepton invariant mass
- BDT classifier used to suppress background trained with event shape, vertex related variables and missing energy.

- Signal yield: $8.6^{+4.3}_{-3.9} \pm 0.4$ (statistical and systematic uncertainty).
- Signal significance: 2.7 standard deviations

10 15

Conclusions

- Clean environment at Belle II grants access to unique observables (R_{x_s}, Q_5) in rare B decays
- Similar sensitivity of electron and muon mode of a decay makes lepton flavour test more reliable
- Improved detector and analysis methods at Belle II leads to better sensitivity
- · Results using early data demonstrates the expected performances of all the sub-detectors
- Belle II is running well in this Covid-19 pandemic towards its ultimate goal to record 50 ab $^{-1}$

11 15

Angular analysis: $B \to K^* \ell^+ \ell^-$

- Angular observables $P'_{i=4,5,6,8}$ are suggested to be theoretically robust (JHEP 05 (2013) 137)
- Sensitive to Wilson coefficients C_7 , C_9 and C_{10}

Distribution of P_5^\prime (left) and $Q_5^\prime({\rm right})$ in Belle measurement

- Belle measurement (PRL 118, 111801) uncertainty is statistically dominated
- Sensitivity to P'_5 with full Belle II data in the 4-8 GeV^2/c^2 bin will be around 0.04 (PTEP 2020(2020) 2)

