

Istituto Nazionale di Fisica Nucleare SEZIONE DI TORINO

Quarkonium at Belle II

Umberto Tamponi tamponi@to.infn.it INFN - Sezione di Torino

1

On behalf of the Belle II collaboration

Meson 2021 May 17th 2021

1- An overview of the Belle II experiment

2- Status of the quarkonium physics program

3- Plans for the near and far future

The B-factories legacy

Experiment	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$	$\Upsilon(4S)$	$\Upsilon(5S)$	$\Upsilon(6S)$	$rac{\Upsilon(nS)}{\Upsilon(4S)}$
CLEO	1.2 (21)	1.2 (10)	1.2 (5)	16 (17.1)	0.1 (0.4)	-	23%
BaBar	-	14 (99)	30 (122)	433 (471)	R_b scan	R_b scan	11%
Belle	6 (102)	25 (158)	3 (12)	711 (772)	121 (36)	5.5	23%
BelleII	-	-	?	$5 \times 10^4 (5.4 \times 10^4)$?	?	?

Belle II goal:collect 50 ab⁻¹ (~50x Belle data)Super-KEKB goal:>30x KEKB luminosity

Belle II goal:collect 50 ab⁻¹ (~50x Belle data)Super-KEKB goal:>30x KEKB luminosity

Beam aspect ratio (flat beam ~ 1-2%) Beam currents $L = \frac{\gamma_{\pm}}{2er_{e}} \left(1 + \frac{\sigma_{y}^{*}}{\sigma_{x}^{*}}\right) \left(\frac{I_{\pm}\xi_{y\pm}}{\beta_{y}^{*}}\right) \left(\frac{R_{L}}{R_{\xi_{y\pm}}}\right)$ Vertical β Geometric

function at IP

Geometrical corrections

Brute force:

- Current 2 x larger

Nanobeam scheme:

- $\beta_v \approx 20 \text{ x smaller}$
- Vertical beam size ~ 50 nm

Super-KEKB: how is it going?

Belle II VS Belle, a matter of backgrounds

[P.Lewis et al, NIM A 914, 69-144 (2019)]

Single beam backgrounds:

- Touschek $\propto l^2 \sigma_v^{-1} n_b^{-1}$
- Beam Gas ∝ I 🕇
- Synchrotron radiation \propto 1 1

Luminosity backgrounds:

- Radiative Bhabha ∝ L 1
- Two-photon ∝ L 1
- Injection 🛏

Belle II is designed to perform as well as or better than Belle with much higher backgrounds!

Belle II performance VS Belle, in broad strokes

Tracking [Comp. Phys. Comm. 259 (2021) 107610 (Monte Carlo only), in preparation (data)]

- Better resolution at both low and high p_t
- Better efficiency at low p_t
- 2x better vertexing and decay time resolution

Full event reconstruction [Comput. Softw. Big Sci 3, 6 (2019)]

- Better purity and efficiency

Neutrals [paper in preparation]

- Better algorithms and electronics
- (Currently) only enough to compensate the increased backgrounds

Particle identification [paper in preparation]

- Better algorithms and new detectors (working on NN-based approaches)
- (Currently) only enough to compensate the increased backgrounds

Summer 2022: match Belle data set at Y(4S)

2022-2023: Long shutdown: Detector HW replacement and upgrade (LS1)

2026-2027: Long shutdown: Accelerator HW upgrade (LS2)

What are we doing right now?

11

Current data set: 140 fb⁻¹ (increasing by 1-1.5 fb⁻¹ /day)

- Understand the detector and the performance
 - Check all the results at <u>https://docs.belle2.org/</u> !

What are we doing right now?

Current data set: 140 fb⁻¹ (increasing by 1-1.5 fb⁻¹ /day)

- Understand the detector and the performance
- Exploit new methods
- Take advantage of looser triggers for "low" luminosity

```
B^+ \rightarrow K^+ v \overline{v} with a new tagging method
[arXiv:2104.12624]
```

Search for Axion-Like Particles [Phys.Rev.Lett. 125 (2020) 16, 161806]

Search for an Invisibly Decaying Z' Boson [Phys.Rev.Lett. 124 (2020) 14, 141801] +3 more papers already in internal review!

Quarkonia at Belle II

Quarkonia @ Belle II: how?

Bottomonium

_

- Hadronic transitions from Y(4S)
 - Best gateway to $h_{
 m b}^{}(1{
 m P})$ and $\eta_{
 m b}^{}(1{
 m S})$!
- ISR production
- Direct production

Quarkonia @ Belle II: how?

Bottomonium

- Hadronic transitions from Y(4S)
 - Best gateway to $h_{
 m b}^{}(1{
 m P})$ and $\eta_{
 m b}^{}(1{
 m S})$!
- ISR production
- Direct production

Charmonium

- γγ fusion running at Y(4S)
- B decays via $b \rightarrow c$
- ISR production

Non-4S runs are not scheduled yet.

The X(3872) rediscovery

The X(3872) rediscovery

[BELLE2-NOTE-PL-2021-002]

Dipion transitions among bottomonia

[BELLE2-NOTE-PL-2021-001]

- Study $e^+e^- \rightarrow \pi^+\pi^-\mu^+\mu^-$ (+ γ undetected)
- Y(4S) → π⁺π⁻Y(nS)
- $e^+e^- \rightarrow \gamma_{ISR} Y(mS), Y(mS) \rightarrow \pi^+\pi^-Y(nS)$

Dipion transitions among bottomonia

[BELLE2-NOTE-PL-2021-001]

- Study $e^+e^- \rightarrow \pi^+\pi^-\mu^+\mu^-$ (+ γ undetected)
- Y(4S) → π⁺π⁻Y(nS)
 - $e^+e^- \rightarrow \gamma_{ISR} Y(mS), Y(mS) \rightarrow \pi^+\pi^-Y(nS)$

Compare with Belle, 496 fb⁻¹ [PRD 96 (2017) 5, 052005]

- Improved low momentum tracking

Near-term plans and projects

Quarkonium physics with the 2022 dataset

By 2022 Belle II should have as much Y(4S) as Belle. Analysis results from 2023!

Many analysis already ongoing, just waiting for more data!

Charmonium

- X(3872) lineshape combining Belle and Belle II dataset
- Full amplitude analysis of $B \rightarrow$ charmonium modes
- Inclusive $B \rightarrow K (c\overline{c})$

Bottomonium sector

- Dalitz analysis of Y(4S) $\rightarrow \pi^+\pi^-$ Y(nS)
- $h_{b}(1P)$ and $\eta_{b}(1S)$ exclusive decays

Outside Y(4S) even small data sets can make a difference

What's special about 10.750 GeV?

JHEP10(2019)220 (Belle):

- "High-stat" scan points: 1 fb⁻¹ each
- 1 point "on resonance"
- 2-3 points in the region of interest
- Significance: 5.2 σ

Parameters:

	$\Upsilon(10860)$	$\Upsilon(11020)$	New structure
$M (MeV/c^2)$	$10885.3 \pm 1.5 {}^{+2.2}_{-0.9}$	$11000.0\substack{+4.0 \\ -4.5 }\substack{+1.0 \\ -1.3}$	$10752.7 \pm 5.9 {}^{+0.7}_{-1.1}$
$\Gamma \ ({ m MeV})$	$36.6^{+4.5}_{-3.9}{}^{+0.5}_{-1.1}$	$23.8^{+8.0}_{-6.8}{}^{+0.7}_{-1.8}$	$35.5^{+17.6}_{-11.3}{}^{+3.9}_{-3.3}$

Why is the Y(10750) important?

- Unlikely to be a molecule as it's far from any S- threshold
- No direct matching to conventional states (but may be an S-D mixing?)

The early Y(10750) run

Proposal under discussion to take before the 2022 shutdown:

- **10.751 GeV: 10 fb⁻¹** to study the Y(10750) on-peak
- **10.657, 10.706, 10.810 (1+2+3 fb**⁻¹) ancillary points for the BBbar decomposition
- Total: 10 + 6 fb⁻¹

Long-term plans and projects

The wish: 0.5 ab⁻¹ scan between Y(4S) and at least 11.02 GeV [Bondar, Mizuk, Voloshin; Mod. Phys. A 32, 04, 1750025 (2017)]

QCD goals:

 Precise decomposition of the R-ratio and systematic exploration of the threshold region

When?

- Challenging for the accelerator operations

2024+ planes: narrow bottomonium run

2024+ planes: narrow bottomonium run

The wish: collect 1 Billion Y(3S) or Y(2S)

(A personal favourite) QCD goals:

- $Y(nS) \rightarrow multi-quark system + X$
 - Exotic charmonia [Phys. Rev. D 93, 112013 (2016)]

2024+ planes: narrow bottomonium run

The wish: collect 1 Billion Y(3S) or Y(2S)

(A personal favourite) QCD goals:

- $Y(nS) \rightarrow multi-quark system + X$
 - Exotic charmonia [Phys. Rev. D 93, 112013 (2016)]
 - Di-baryons
 - Loosely-bound [Phys. Rev. Lett. 110 (2013), 222002]
 - Deeply-bound [Phys. Rev. Lett. 122 (2019) 7, 072002]

Belle II and SuperKEKB have fully entered the physics data taking phase

Detector performances are good

- First performance publications in fall 2021

Belle II is providing the first physics results

- Mostly low-multiplicity, NP channels

First quarkonium results from 2023!

- Bottomonium-related plans are under discussion

Backup

Chin.Phys.C 44 8, 083001:

- Refit the BaBar R_h scan
- Further evidence of Y(10750) in interference

Parameter	<i>Y</i> (10750)	$\Upsilon(5S)$	Y(6S)
Mass/(MeV/c ²)	10761 ± 2	10882 ± 1	11001 ± 1
Width/MeV	48.5 ± 3.0	49.5 ± 1.5	35.1 ± 1.2

The (theoretical) golden modes at Y(10750)

- 1) BB : BB* : B*B* ratio is predicted by almost all models
- 2) $Y(10750) \rightarrow \omega \eta_b(1S)$ very large in one tetraquark-based model

Mode	$\mathcal{B}(4q)$ (%)	$\mathcal{B}(b\overline{b})$ (%)
$B\overline{B}$	$39.3^{+38.7}_{-22.9}$	21.3
$B\overline{B}^*$	~ 0.2	14.3
$B^*\overline{B}^*$	$52.3^{+54.9}_{-31.7}$	64.1
$B_s \overline{B}_s$	-	0.3
$\omega \eta_b$	$7.9^{+14.0}_{-5.0}$	<u></u>
$f_0(1370)\Upsilon$	$0.2^{+0.6}_{-0.2}$	-
$\omega \Upsilon$	~ 0	-

M(ππ) shape predicted by the tetraquark models

The (theoretical) golden modes at Y(10750)

Golden Channels	$E_{c.m.}$ (GeV)	Statistical error (%)	Related XYZ states
$\pi^+\pi^- J/\psi$	4.23	7.5 (3.0)	$Y(4008), Y(4260), Z_c(3900)$
$\pi^+\pi^-\psi(2S)$	4.36	12 (5.0)	$Y(4260), Y(4360), Y(4660), Z_c(4050)$
K^+K^-J/ψ	4.53	15 (6.5)	Z_{cs}
$\pi^+\pi^-h_c$	4.23	15 (6.5)	$Y(4220), Y(4390), Z_c(4020), Z_c(4025)$
$\omega\chi_{c0}$	4.23	35(15)	Y(4220)

Same sensitivity as BESIII with ~10 $\rm ab^{-1}$

Bottomonium spectrum

Charmonium spectrum

