

Recent Results and Perspectives in Spectroscopy Studies at Belle II

ECT* WORKSHOP, Trento (IT) - MASS IN THE STANDARD MODEL AND CONSEQUENCES OF ITS EMERGENCY - 19-23.April.2021

Elisabetta Prencipe, JLU – University of Giessen (DE)

Outline

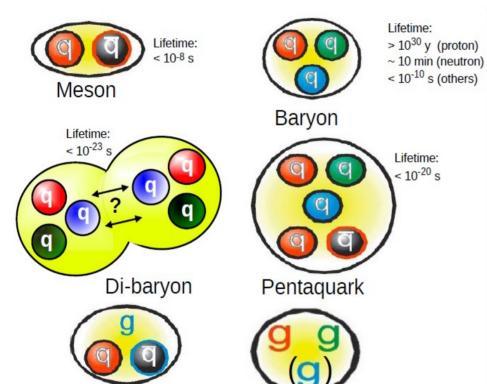
- Introduction
- Motivation
 - recent results from B-factories
 - open questions
 - new and unique opportunities at Belle II
- The Belle II experiment
- Perspectives in search for exotics at Belle II
 - Charmonium
 - Bottomonium
 - "re-discovery" channels with Early Phase 3 data
- Summary

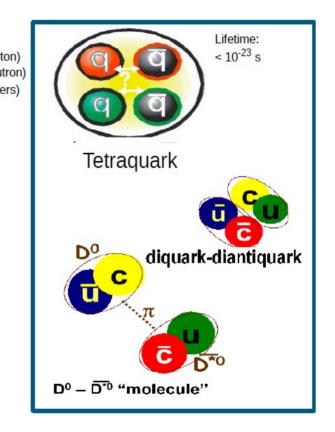
Introduction

- Gell-Mann Zweig idea: Constituent Quark Model (CQM)
 Still valid for half century → it classifies all known hadrons
- QCD-motivated models predict the existence of hadrons with more complex structures than simple qq (mesons) or qqq (baryons) → the so-called XYZ "charmonium"-like states
- Lot of experimental effort to prove the existence of XYZ!
- No unambiguous evidence for hadrons with non-CQM-like structures has been found
- New possibilities, started with the observation of the X(3872):
 - tetraquarks
- molecular states

- pentaquarks - glueballs

- hybrids

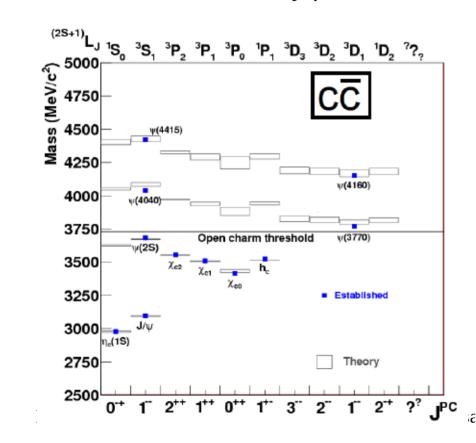

- hadrocharmonium

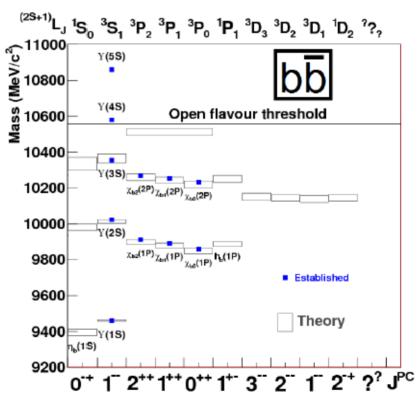

- hexaquarks cusps...
- Evidence that there is more than mesons and baryons!

Substantial contribution from B-factories (1999-2010) into the field

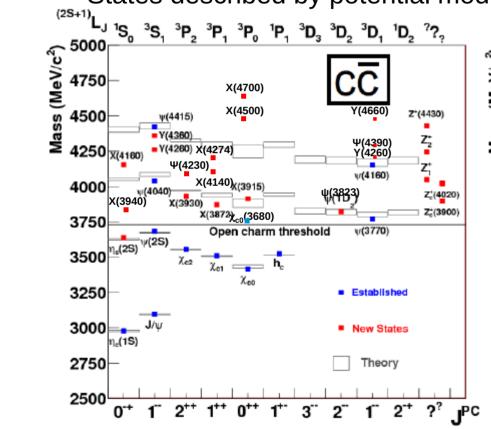
Quark Bound States

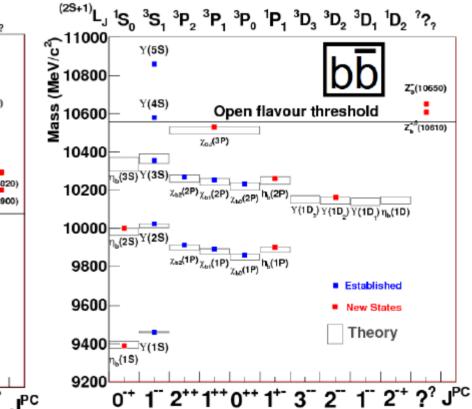
...and superposition of different states: $c_1|\overline{q}q>+c_2|\overline{q}q\overline{q}q>+...$


Hybrid meson

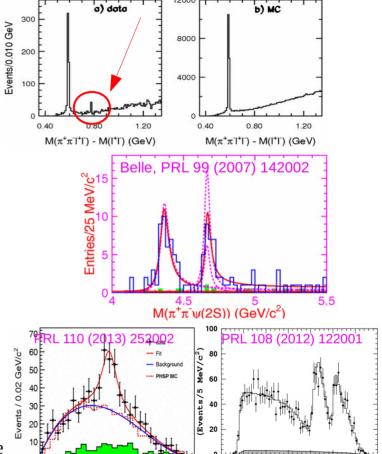

Glueball

States described by potential models, NRQCD,..., before 2003





States described by potential models, NRQCD,..., after 2003



Nomenclature

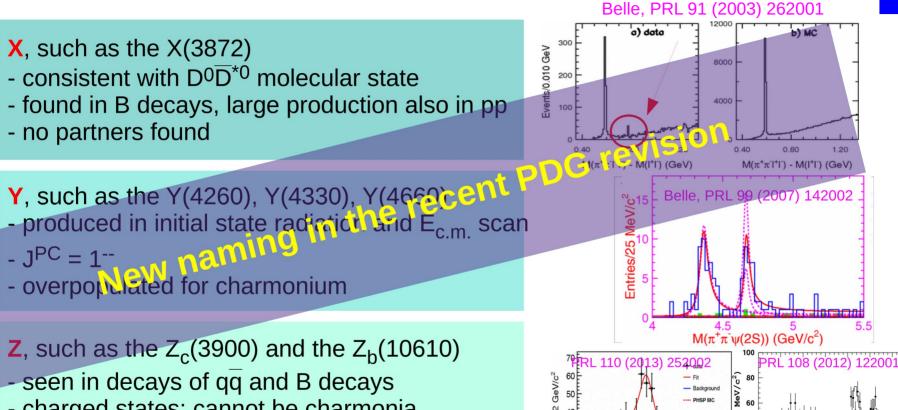
- X, such as the X(3872)
- consistent with $D^0\overline{D}^{*0}$ molecular state
- found in B decays, large production also in pp
- no partners found
- Y, such as the Y(4260), Y(4330), Y(4660)
- produced in initial state radiation and $E_{c.m.}$ scan
- $-J^{PC} = 1^{--}$
- overpopulated for charmonium
- **Z**, such as the $Z_c(3900)$ and the $Z_b(10610)$
- seen in decays of $q\overline{q}$ and B decays
- charged states: cannot be charmonia
- b- and c- onia: similarities

 $M_{max}(\pi J/\psi)$ (GeV/c²

Belle, PRL 91 (2003) 262001

10.4 10.45 10.5 10.55 10.6 10.65 10.7 10.75 $M(Y(2S)\pi)_{max}$, (GeV/c²)

Nomenclature

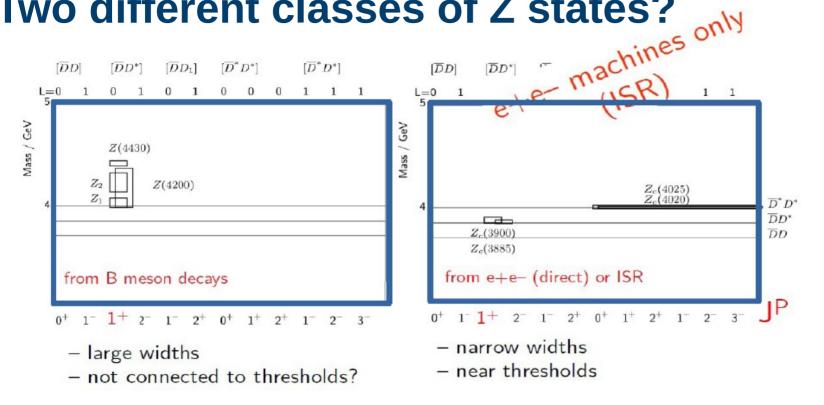

X, such as the X(3872)

- consistent with D⁰D̄*⁰ molecular state
- found in B decays, large production also in pp
- no partners found

- produced in initial state radiation and E_{c.m.} scan
- overportlated for charmonium

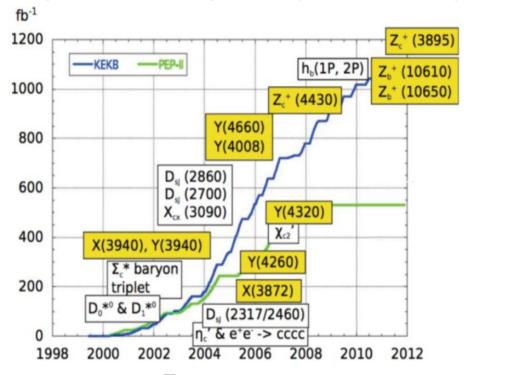
Z, such as the $Z_c(3900)$ and the $Z_h(10610)$

- seen in decays of $q\bar{q}$ and B decays
- charged states: cannot be charmonia
- b- and c- onia: similarities

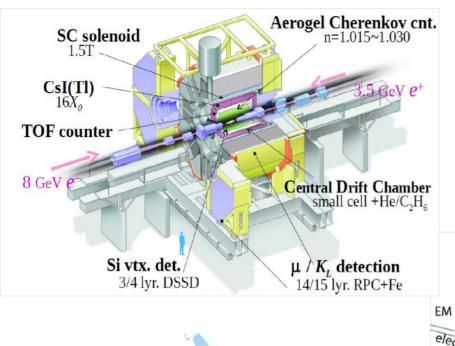


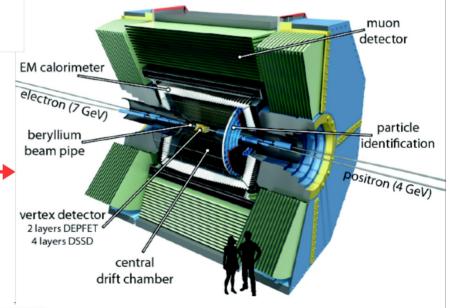
 $M_{max}(\pi J/\psi)$ (GeV/c²

 $M(Y(2S)\pi)_{max}$, (GeV/c²)


Two different classes of Z states?

- Belle II is in a unique position to look for both Z types:
 - through B decays (LHCb, not by BES III)
 - threshold state (BES III, not by LHCb)


- BaBar + Belle:
- >1.5 ab⁻¹ integrated luminosity triumph in the history of B-factories!

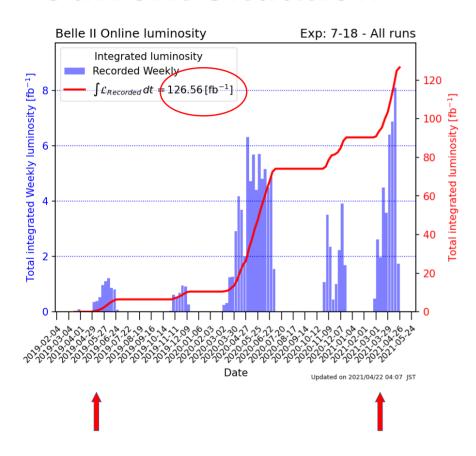

- Not only B-factory, but cc-factory with so high luminosity
- Statistics limited for rare processes (BR<10⁻⁵)
- Upgrade needed!

←Belle detector

02- September 2019

Belle II detector

26 countries, 120 institutions,


Tsukuba

Tokyo

1050 physicists

Current situation

Corona-pandemic affected activity at KEKB

BUT

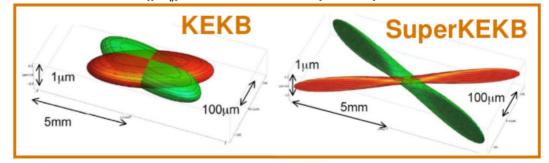
we are very active and data taking is ongoing!

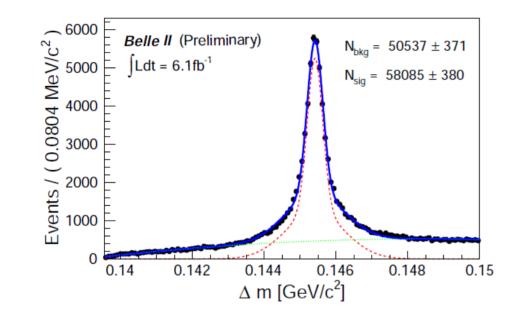
Luminosity record: 2.4 x 10³⁴ cm⁻² s⁻¹

On 01.07.2019: L = 6.5 fb⁻¹

On 20.04.2021: L = **126.56 fb**-1

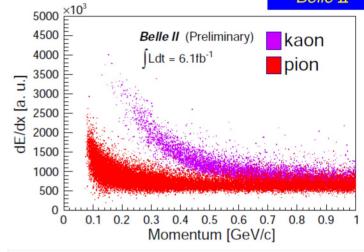
By 2026, expected up to 50 ab⁻¹

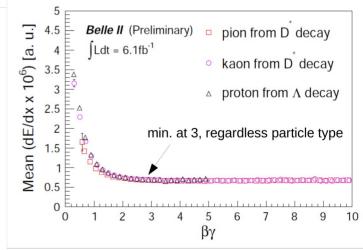

Belle II detector – main changes


- Pixel Detector: improved vertex resolution in beam direction 50 μ m (Belle) \rightarrow 25 μ m (Belle II).
- Time Of Propogation: TOP measures the timing of the Cherenkov light. Time resolution ~50ps. TOP detector surface is polished to nanometer precision for total reflection of Cherenkov light.
- $Arr K_L$ Muon Detector: two inner layers of barrel + all layers in the end cap replaced by scintillators, because of large background.
- Electromagnetic Calorimeter: readout electronics replaced, fast FADC sampling for identify pile-up of pulses.
- Luminosity: ~30x instantaneous and integrated luminosity. Beam current, 1.64/1.19 A (Belle) \rightarrow 3.60/2.60 A (Belle II) for e⁺/e⁻ beam. Beta function at IP (β^*), 5.9/5.9 mm (Belle) \rightarrow 0.27/0.31 mm

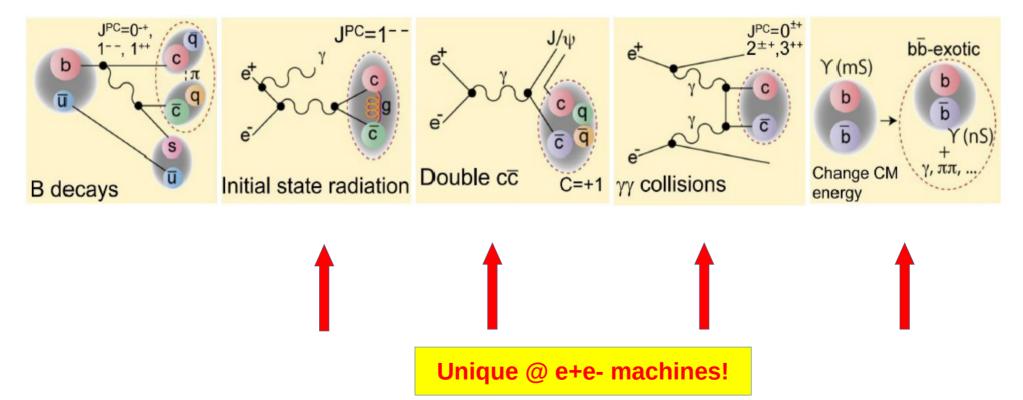
(Belle II).

- Vertex detector: new design
- Drift Chamber: improved p_t resolution




Belle II is performing well!

 D^*-D^0 mass difference (Δm) from the D^* sample in data



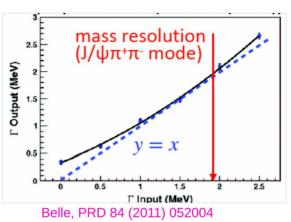
Belle II: how to search for -onia

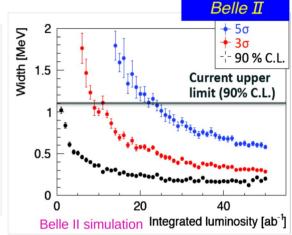
ECT* Workshop - 22.04.2021

Elisabetta Prencipe

Search for the X(3872) at Belle II

- Width upper limit by Belle: Γ < 1.2 MeV (estimated from X(3872) → J/ψπ⁺π⁻),
- Best BW width estimate by LHCb:


$$0.96^{+0.19}_{-0.18} \pm 0.21 \, MeV$$
 JHEP 08 (2020) 123


■ Very promising: $X(3872) \rightarrow D^0\overline{D}^{0*}$

mode	Q value [MeV]	
J/ψ <u>π</u> +π⁻	495.65±0.17	
D ⁰ D ⁰ π ⁰	7.05±0.18	
D ⁰ D ⁰ *	0.01±0.18	

Projection on 50 ab⁻¹ (extrapolated from Belle)

State	Production and Decay	N
X(3872)	$B \rightarrow KX(3872),~X(3872) \rightarrow J/\Psi \pi + \pi -$	~14400
Y(4230)	ISR, Y(4230) \rightarrow J/ $\Psi\pi$ + π -	~29600
Z(4430)	$B \rightarrow K \pm Z(4430), Z(4430) \rightarrow J/\Psi \pi \pm$	~10200

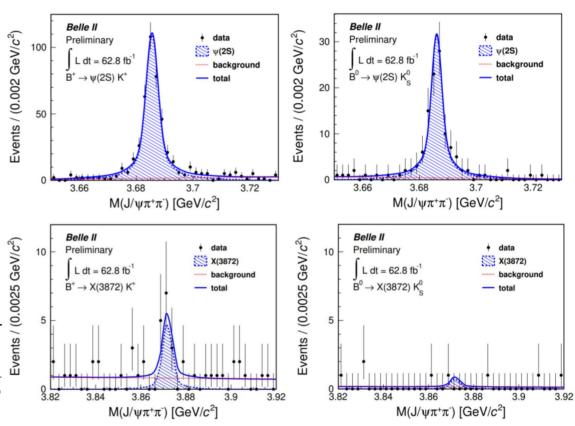
- Due to very low Q value, the mass resolution is extremely good → expected great improvement on width with 50 ab⁻¹
- Search for exotics at DD* threshold (better slow pion detection at Belle II).
- Slow pion reconstruction efficiency >60%

Search for the X(3872) at Belle II: ongoing

Reconstruction of final states

Selection criteria (standard)

Particle identification

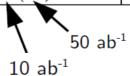

Continuum: nTracks, R2

Kinematics: $M_{\pi+\pi-}$, M_{bc} , $|\Delta E|$

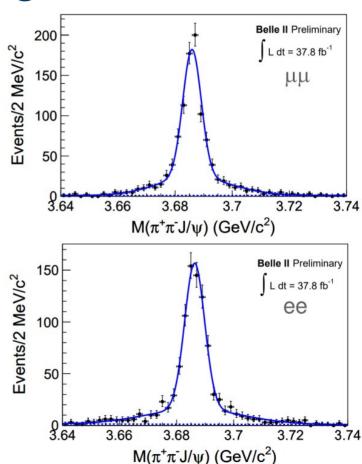
• First X(3872) at Belle II with 62.8 fb 14.4±4.6 events (4.6σ)

Belle: ~170 events in 772M BB

Phys. Rev. D 84, 052004, 2011



- Line shape of the Y(4260)
- Strange partner of Z(3900) in KKJ/ψ
- Cross sections of exclusive (\overline{cc}) + hadrons


Golden Channels	$E_{c.m.}$ (GeV)	Statistical error (%)	Related XYZ states
$\pi^+\pi^-J/\psi$	4.23	7.5 (3.0)	$Y(4008), Y(4260), Z_c(3900)$
$\pi^+\pi^-\psi(2S)$	4.36	12 (5.0)	$Y(4260), Y(4360), Y(4660), Z_c(4050)$
K^+K^-J/ψ	4.53	15 (6.5)	Z_{cs}
$\pi^+\pi^-h_c$	4.23	15 (6.5)	$Y(4220), Y(4390), Z_c(4020), Z_c(4025)$
$\omega\chi_{c0}$	4.23	35 (15)	Y(4220)

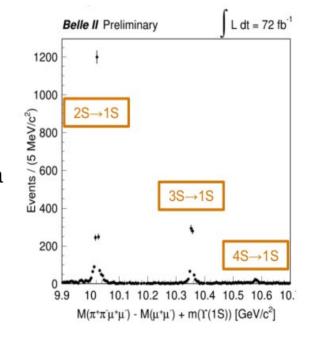
Charmonium in ISR: ongoing

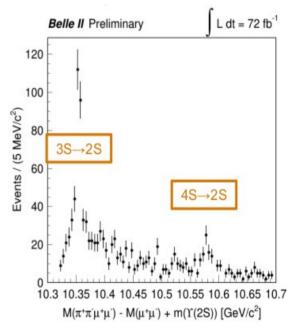
- e⁺e⁻γ_{ISR} → π⁺π⁻J/Ψ(I ⁺I ⁻) reconstruction
 Nominal PID requirements
 |M(J/Ψ) M(PDG)| < 75 MeV</p>
 ISR photon not required (high efficiency)
 |MM²(π⁺π⁻J/Ψ)| < 2 GeV/c²
- Clear observation of ISR Ψ(2S) signals
- Next step: Y(4230) <u>re</u>discovery
 Expect ~60 total events per 100 fb⁻¹

Why Bottomonium at Belle II?

- Bottomonium spectrum is significantly different from charmonium spectrum n=3 state (³P) is below the threshold L=2 state (¹D) is below the threshold
- \mathbf{Z}_{b} states were only found so far in Y(5S) decays
- SuperKEKB can reach $E_{c.m.} \cong 11$ GeV ⇒ $\Upsilon(6S)$ running possible – unique possibility!
- With the high luminosity, for the 1st time study radiative transitions between bottomonia states possible (suppressed by 1/137). Marginal statistics so far at Belle, big advantage at Belle II

Bottomonium at Belle II: ongoing

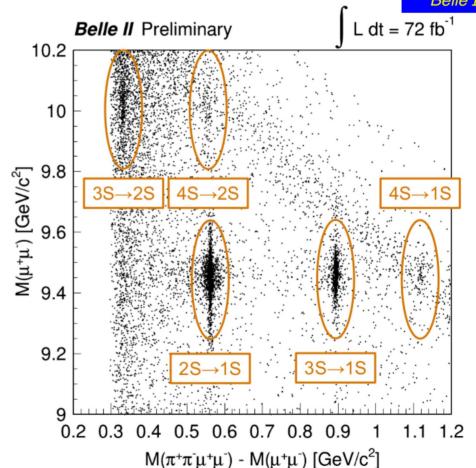



• $e^+e^-\gamma_{ISR} \to \pi^+\pi^-$ Initial State Radiation (ISR) production:

$$\begin{split} \gamma_{ISR} Y(2S) &\rightarrow \pi^+ \pi^- \Upsilon(1S) (I^+ I^-) \\ \gamma_{ISR} Y(3S) &\rightarrow \pi^+ \pi^- \Upsilon(1S, 2S) (I^+ I^-) \end{split}$$

- Direct transitions: $\Upsilon(4S) \rightarrow \pi^+\pi^-\Upsilon(1S,2S)$
- All signals observed in early Belle II data
- Future studies:

 $M(\pi^{+}\pi^{-})$ in $\Upsilon(4S)$ transitions



Bottomonium at Belle II: ongoing

$$\Upsilon \rightarrow \mu + \mu$$

- Y-dipion transition in Early Phase 3 Data
- Clear evidence of signal with 72 fb-1
- Clusters represent signal transitions

Expectations on Z_b states at Belle II

 $\chi_b\pi$, $\Upsilon\rho$

ullet If $Z_{\rm b}$ is a loosely-bound state, several new molecular states should appear

Υ (6S) and Υ (5S): conventional state search

- Belle II goals:
 - search for new, predicted, resonances
 - use both, single transitions and double cascade har me
 - fill the remaining spectrum to measure the effect of the coupled channel contribution

Υ (6S) and Υ (5S): new exotics search

- Belle II goals:
 - Υ (6S): 100 fb⁻¹ exploratory run
 - Υ(5S): 1 ab⁻¹ high statistics run

Υ (6S) and Υ (5S): scan

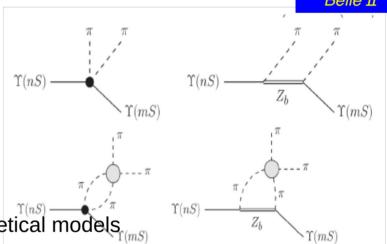
- Bélle II goals:
 - Y(6S) and Y(5S) behave differently in $\pi\pi Y$ and $\pi\pi\eta$
 - \rightarrow hint of a non-bb nature of $\Upsilon(5S)$?
 - investigate an extra resonance around 10.750 MeV/c²

e effect of the coupled channel coupled X_b X_b X_b , X_b X_b , X_b X_b , X_b

Settle the nature of Υ (5S)

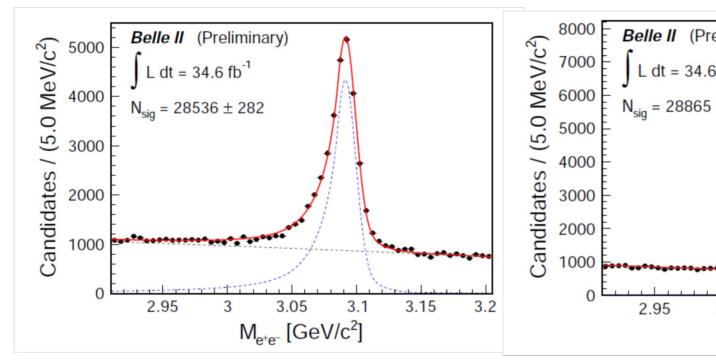
$\Upsilon(3S)$: Opportunities at Belle II

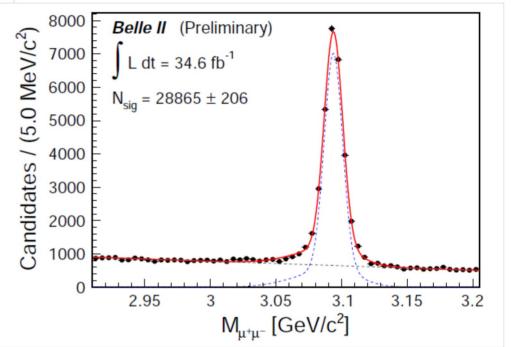
Belle II

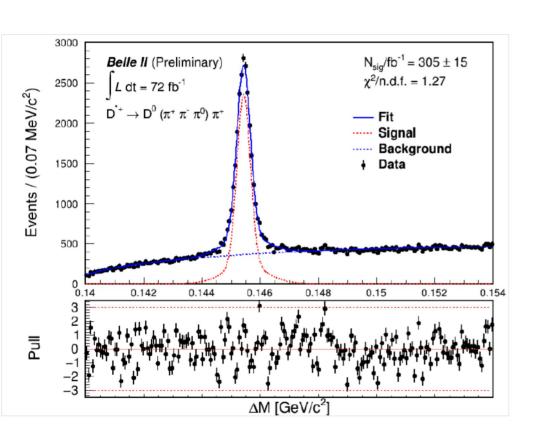

- Exotic states contribute to the hadronic and radiative transitions from narrow quarkonia
 - \rightarrow complementary approach to the direct search from Y(5S) and Y(6S)

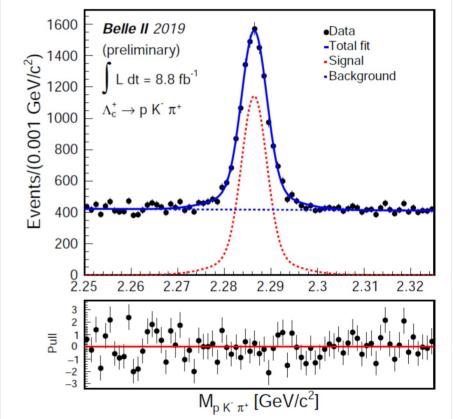
Υ (3S): exotics in transitions

- Belle II goals:
 - $\Upsilon(3S) \rightarrow \pi\pi\Upsilon(1S, 2S)$ still limited by statistics
 - perform full amplitude analysis
 - search for missing $\pi\pi/\eta$ transitions to constraint further theoretical models
 - study hindered radiative transitions


Υ (3S): charmonia in production


- Belle II goals with 300 fb⁻¹:
 - up to 5x sensitivity in inclusive production from $\Upsilon(3S)$
 - up to 15x in double charmonium
 - inclusive rate of X(3872)
 - $D\overline{D}^*$ correlation in $Y(3S) \rightarrow D\overline{D}^*$ + hadron to test the nature of the X(3872)
- Υ (3S): rare χ_h decays, deuteron production mechanism


"Re-discovery" with Phase 3 Data: J/ψ



"Re-discovery" with Phase 3 Data: D^0 , Λ_c

Summary

- Great achievements with Belle (~ 1 ab⁻¹) in spectroscopy, but still opportunities for <u>unique physics with the new upgrade Belle II!</u>
- In SuperKEKB e^+e^- collisions will reach unprecedented instantaneous luminosity: 6×10^{35} cm⁻² s⁻¹.
- Improved tracking and PID in Belle II
- Challenge by summer 2020: 200 fb⁻¹
- Expected 50 ab⁻¹ integrated luminosity at Belle II in 6 years
- With x50 more data than Belle, expected in Belle II great achievements in hadron spectroscopy:
 - ISR analysis as unique case
 - favorite Bottomonium search through $\Upsilon(6S)$ compared to Belle
 - good slow pion reconstruction to search for $D^*\overline{D}^{(*)}$ threshold exotic state
 - study of J/ψKK invariant mass in all possible mechanisms
 - search for new and conventional -onia with high precision
 - amplitude analysis

B2GM June 2019

Elisabetta Prencipe