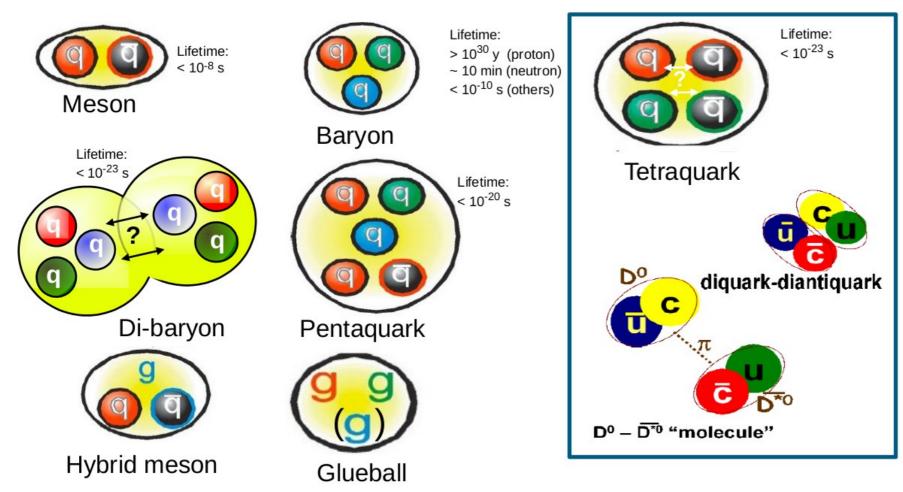
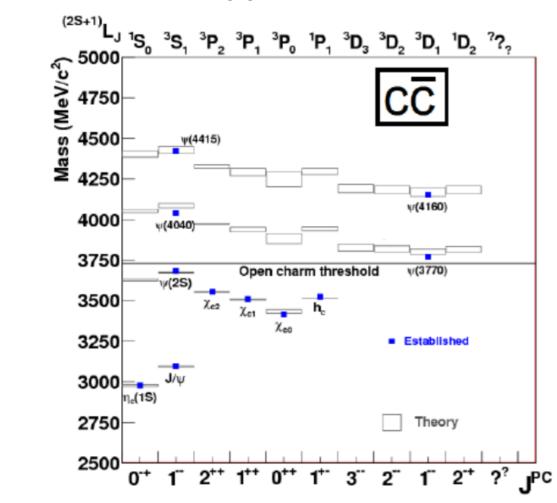


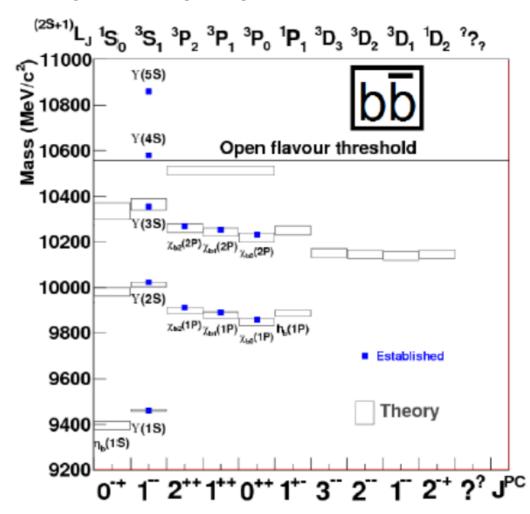
CHARMONIUM AND BOTTOMONIUM SPECTROSCOPY AT BELLE II


13 APRIL 2021 | ASHISH THAMPI ON BEHALF OF THE BELLE II COLLABORATION

XXVIII International Workshop on Deep-Inelastic Scattering and Related Subjects, Stony Brook University

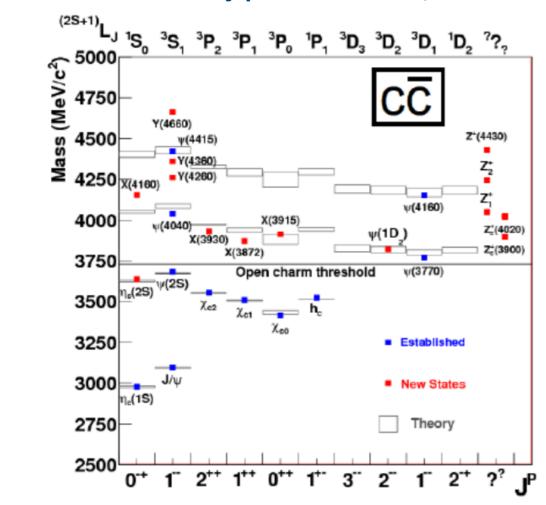
QUARK BOUND STATES

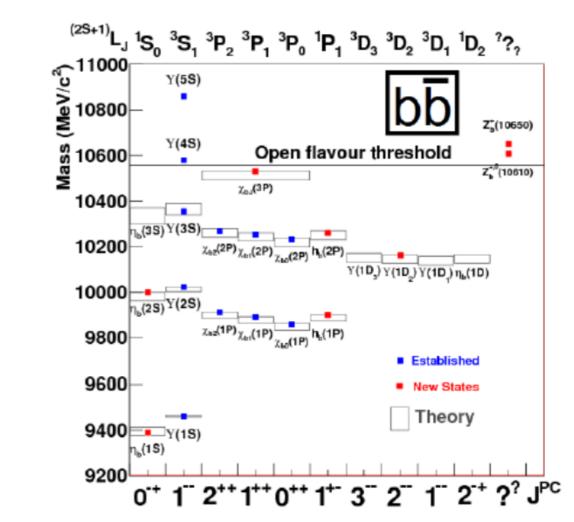



...and superposition of different states: $c_1|q\overline{q}>+c_2|q\overline{q}q\overline{q}>+...$

QUARKONIA

States described by potential model, <u>before</u> the discovery of the X(3872)





QUARKONIA

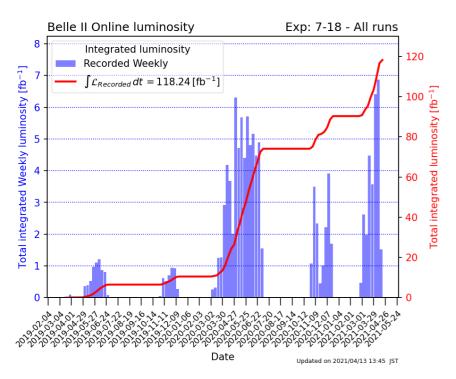
Belle II

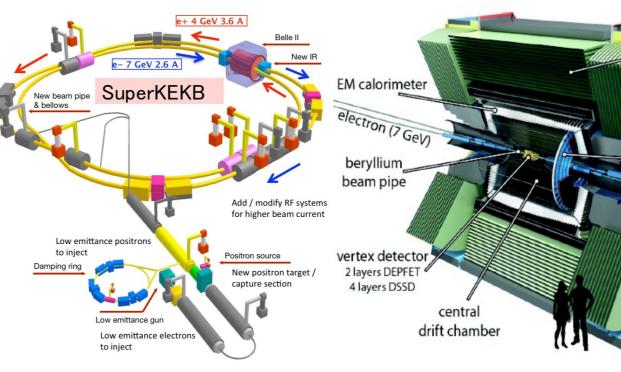
States described by potential model, after 2003....

SUPERKEKB AND BELLE II

muon

detector

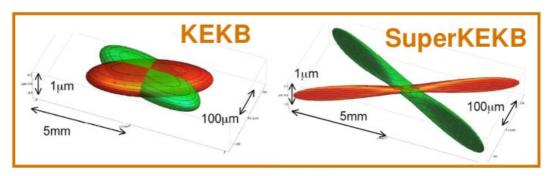

particle


identification

positron (4 GeV)

Overview

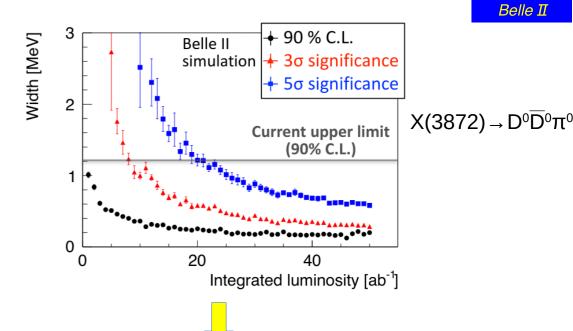
- SuperKEKB is an asymmetric e^+ (4 GeV) e^- (7 GeV) collider at Tsukuba, Japan. $\sqrt{s} = 10.58 \text{ GeV} = \text{m}(\Upsilon(4S))$.
- Belle II detector is placed around the IP of SuperKEKB.



BELLE II

Upgrade from Belle

- Pixel Detector: improved vertex resolution in beam direction 50µm (Belle) → 25µm (Belle II).
- Time Of Propogation: TOP measures the timing of the Cherenkov light. Time resolution ~50ps. TOP detector surface is polished to nanometer precision for total reflection of Cherenkov light.
- K_L Muon Detector: two inner layers of barrel + all layers in the end cap replaced by scintillators, because of large background.
- Electromagnetic Calorimeter: readout electronics replaced, fast FADC sampling for identify pile-up of pulses.
- Luminosity: ~30x instantaneous and integrated luminosity. Beam current, 1.64/1.19 A (Belle) \rightarrow 3.60/2.60 A (Belle II) for e⁺/e⁻ beam. Beta function at IP (β^*_{ν}), 5.9/5.9 mm (Belle) \rightarrow 0.27/0.31 mm (Belle II).


BELLE II POTENTIAL

Belle II

XYZ

- Best BW width from LHCb: $0.96^{+0.19}_{-0.18} \pm 0.21 \, MeV$
- Upper limit from Belle: Γ < 1.2 MeV. (estimated from X(3872) \rightarrow J/ $\Psi\pi$ + π)
- Expectation with 50 ab⁻¹ data at Belle II:

State	Production and Decay	N
X(3872)	B \rightarrow KX(3872), X(3872) \rightarrow J/Ψπ+π-	~14400
Y(4230)	ISR, Y(4230) \rightarrow J/ $\Psi\pi$ + π -	~29600
Z(4430)	$B \rightarrow K \pm Z(4430), Z(4430) \rightarrow J/\Psi \pi \pm$	~10200

mode	Q value [MeV]
J/ ψπ⁺π⁻ D⁰D⁰π⁰	495.65±0.17 7.05±0.18
$D^0\overline{D}^{0*}$	0.01±0.18

Search for exotics at DD* threshold (better slow pion detection at Belle II).
 Slow pion reconstruction efficiency >60%.

BELLE II POTENTIAL

Charmonium in ISR

- Line shape of the Y(4230).
- Strange partner of Z(3900) in KKJ/Ψ.
- Cross sections of exclusive (\overline{cc}) + hadrons.

Golden Channels	$E_{c.m.}$ (GeV)	Statistical error (%)	Related XYZ states
$\pi^+\pi^-J/\psi$	4.23	7.5 (3.0)	$Y(4008), Y(4260), Z_c(3900)$
$\pi^+\pi^-\psi(2S)$	4.36	12 (5.0)	$Y(4260), Y(4360), Y(4660), Z_c(4050)$
K^+K^-J/ψ	4.53	15 (6.5)	Z_{cs}
$\pi^+\pi^-h_c$	4.23	15 (6.5)	$Y(4220), Y(4390), Z_c(4020), Z_c(4025)$
$\omega\chi_{c0}$	4.23	35 (15)	Y(4220)

50 ab⁻¹

• ISR analysis process – unique case at e⁺e⁻ machines, in competition with LHCb

BELLE II POTENTIAL

Bottomonium

- Z_h states were only found so far in $\Upsilon(5S)$ decays.
- SuperKEKB can reach $E_{c.m.} \cong 11$ GeV. $\Upsilon(6S)$ run is possible.
- With the high luminosity, for the first time study of radiative transitions between bottomonium states possible.
- Y(6S) and Y(5S): conventional state search
 search for new, predicted, resonances, use both single transitions and double cascade, fill the
 remaining spectrum to measure the effect of the coupled channel contribution.
- Υ (3S): exotics in transitions search for missing $\pi\pi/\eta$ transitions to constrain further theoretical models.
- Υ (3S): charmonia in production, Belle II goals with 300 fb⁻¹: up to 5x sensitivity in inclusive production from Υ (3S) up to 15x in double charmonium

X(3872)

Reconstruction of final states

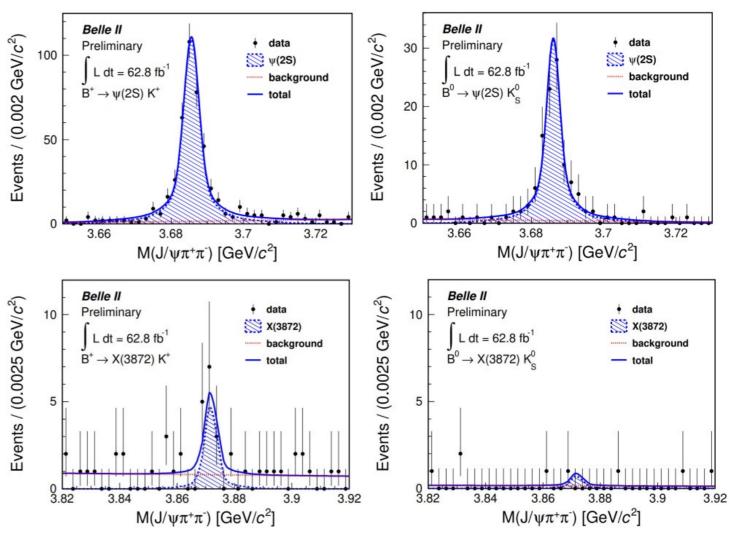
$$B^{\pm} \rightarrow \pi^{+}\pi^{-}J/\Psi(\ell^{+}\ell^{-}) K^{\pm}$$

$$B^{0} \rightarrow \pi^{+}\pi^{-}J/\Psi(\ell^{+}\ell^{-}) K_{s}$$

Selection criteria (standard)

Particle identification

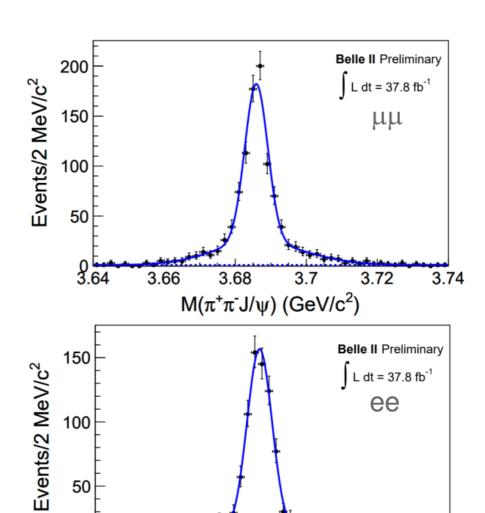
Continuum: nTracks, R2


Kinematics: $M_{\pi+\pi}$, M_{bc} , $|\Delta E|$

First X(3872) at Belle II

14.4 \pm 4.6 events (4.6 σ)

Belle: ~170 events in 772 Mi. BB pairs


Phys. Rev. D 84, 052004, 2011

ISR cc processes

- e⁺e⁻γ_{ISR} → π⁺π⁻J/Ψ(ℓ ⁺ℓ ⁻) reconstruction
 Nominal PID requirements
 |M(J/Ψ) M(PDG)| < 75 MeV</p>
 ISR photon not required (high efficiency)
 |MM²(π⁺π⁻J/Ψ)| < 2 GeV/c²</p>
- Clear observation of ISR Ψ(2S) signals
- Next step: Y(4230) rediscovery
 Expect ~60 total events per 100 fb⁻¹

3.68

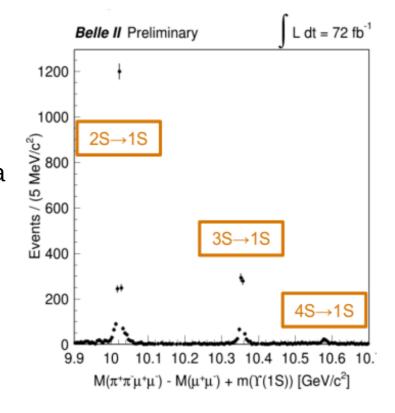
 $M(\pi^{+}\pi^{-}J/\psi)$ (GeV/c²)

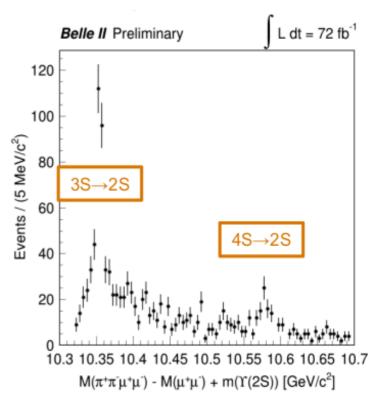
3.7

3.72

3.74

3.66

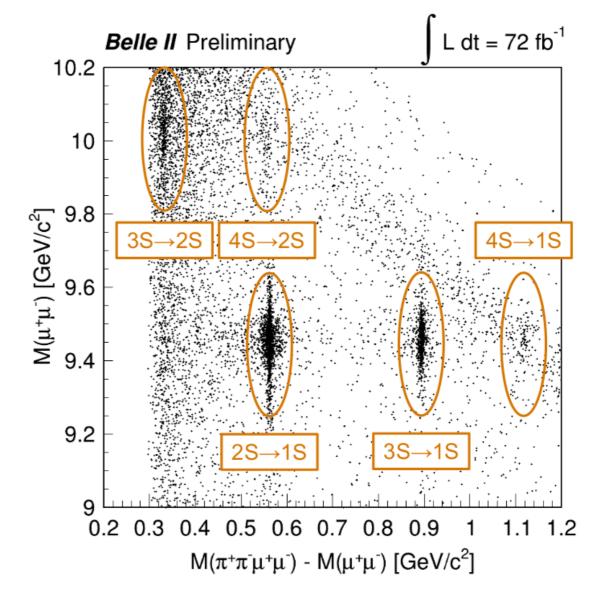



Bottomonium

• $e^+e^-\gamma_{ISR} \to \pi^+\pi^-$ Initial State Radiation (ISR) production:

$$\begin{split} \gamma_{|SR} \Upsilon(2S) &\rightarrow \pi^+ \pi \text{-} \Upsilon(1S) (\ell^+ \ell^-) \\ \gamma_{|SR} \Upsilon(3S) &\rightarrow \pi^+ \pi \text{-} \Upsilon(1S,2S) (\ell^+ \ell^-) \end{split}$$

- Direct transitions: $\Upsilon(4S) \rightarrow \pi^+\pi^-\Upsilon(1S,2S)$
- All signals observed in early Belle II data
- Future studies: $M(\pi^{+}\pi^{-})$ in Y(4S) transitions



Bottomonium

- Y-dipion transition in early Phase 3 Data
- Clear evidence of signal with 72 fb⁻¹
- Clusters represent signal transitions

SUMMARY

- Main focus to collect Y(4S) on-peak data.
- Near-term non-Y(4S) proposals:

10.751 GeV (10 fb $^{-1}$): to study Y $_{\rm b}$ (10753) on-peak 10.657, 10.706, 10.810 GeV (1+2+3 fb $^{-1}$): additional points for B $\overline{\rm B}$ decomposition 11 GeV (30+ fb $^{-1}$): post-upgrade to study Y(6S) on-peak

- Quarkonium / XYZ is one of the main components of the physics program.
- Analysis of early data
 Rediscoveries of 1⁻⁻ cc / bb states and X(3872)
 Statistics soon comparable to BaBar/Belle

THANKS

26 countries/regions, 120 institutes, 1050 members

