Search for $B^+ \rightarrow K^+ \nu \bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment

55th Rencontres de Moriond
Electroweak Interactions & Unified Theories
March 24, 2021

Filippo Dattola on behalf of the Belle II Collaboration
The $B^+ \rightarrow K^+ \nu \bar{\nu}$ decay
The $B^+ \rightarrow K^+ \nu \bar{\nu}$ decay

In the Standard Model:

- $b \rightarrow s \nu \bar{\nu}$ flavour-changing neutral-current transition;
- occurs at the loop level, suppressed by the extended GIM mechanism;
- clean theoretical prediction:

$$\text{BR}(B^+ \rightarrow K^+ \nu \bar{\nu})_{\text{SM}} = (4.6 \pm 0.5) \times 10^{-6}$$

[David M. Straub et al. Rare B decays as tests of the Standard Model]
The $B^+ \rightarrow K^+\nu\bar{\nu}$ decay

In the Standard Model:

- $b \rightarrow s\nu\bar{\nu}$ flavour-changing neutral-current transition;

- occurs at the loop level, suppressed by the extended GIM mechanism;

- clean theoretical prediction:

 $$\text{BR}(B^+ \rightarrow K^+\nu\bar{\nu})_{\text{SM}} = (4.6 \pm 0.5) \times 10^{-6}$$

Optimal measurement to probe the SM and to constrain scenarios beyond it.
The $B^+ \rightarrow K^+ \nu \bar{\nu}$ decay

In the Standard Model:

- $b \rightarrow s \nu \bar{\nu}$ flavour-changing neutral-current transition;
- occurs at the loop level, suppressed by the extended GIM mechanism;
- clean theoretical prediction:

$$\text{BR}(B^+ \rightarrow K^+ \nu \bar{\nu})_{\text{SM}} = (4.6 \pm 0.5) \times 10^{-6}$$

Optimal measurement to probe the SM and to constrain scenarios beyond it.

A challenging measurement:

- decay with 2 neutrinos in the final state leaving no signature in the detector;
- can be measured at B factories because of the clean event environment and the well defined initial state.
Filippo Dattola | Search for $B^+ \rightarrow K^+ \nu \bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment
SuperKEKB

- Asymmetric-energy e^+e^- collider operating at $\sqrt{s} = 10.58$ GeV $\rightarrow Y(4S)$ resonance.

- Second generation B factory based on the **nanobeam scheme**: major upgrade of its predecessor KEKB.

- **World highest instantaneous luminosity**: 2.4×10^{34} cm$^{-2}$ s$^{-1}$ recorded in June 2020.

- Total integrated luminosity up to now (2021) ~ 90 fb$^{-1}$.

Filippo Dattola | Search for $B^+ \rightarrow K^+\nu\bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment
SuperKEKB

- Asymmetric-energy e^+e^- collider operating at $\sqrt{s} = 10.58$ GeV $\rightarrow \Upsilon(4S)$ resonance.

- Second generation B factory based on the nanobeam scheme: major upgrade of its predecessor KEKB.

- **World highest instantaneous luminosity**: 2.4×10^{34} cm$^{-2}$ s$^{-1}$ recorded in June 2020.

- Total integrated luminosity up to now (2021) ~ 90 fb$^{-1}$.

- **For this study:**
 - 63 fb$^{-1}$ of data collected at $\sqrt{s} \rightarrow \Upsilon(4S)$ resonance ~ 68 million $B\bar{B}$ pairs.
 - 9 fb$^{-1}$ of (off-resonance) data collected 60 MeV below the $\Upsilon(4S)$ resonance for background studies.

Filippo Dattola | Search for $B^+ \rightarrow K^+\nu\bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment
The Belle II detector
The Belle II detector

New detector with respect to the predecessor Belle.

- **Electromagnetic Calorimeter ECL** (CsI(Tl) crystals)
- **KL and muon detector** (resistive plates and scintillators)
- **1.5T Magnet**
- **Electron (7 GeV)**
- **Positron (4 GeV)**
- **Vertex Detector** (pixels detector PXD and silicon strips detector)
- **Central Drift Chamber** (cylindrical wire chamber with 14336 sense wires)
- **Particle ID:**
 - Time-of-Propagation counter (barrel)
 - Aerogel RICH (fwd)
Previous searches for $B^+ \rightarrow K^+\nu\bar{\nu}$
Previous searches for $B^+ \rightarrow K^+ \nu \bar{\nu}$

The previous studies all adopted an explicit reconstruction of the B$_{\text{tag}}$
Previous searches for $B^+ \to K^+\nu\bar{\nu}$

The previous studies all adopted an explicit reconstruction of the B_{tag}.
Previous searches for $B^+ \rightarrow K^+ \nu \bar{\nu}$

The previous studies all adopted an explicit reconstruction of the B_{tag}.
Previous searches for $B^+ \rightarrow K^+ \nu \bar{\nu}$

The previous studies all adopted an explicit reconstruction of the B_{tag} followed by the signal reconstruction.

$e^- \rightarrow \Upsilon(4S) \leftarrow e^+$

Hadronic reconstruction:
$B_{\text{tag}}^\pm \rightarrow$ hadrons

OR

Semileptonic reconstruction:
$B_{\text{tag}}^\pm \rightarrow D^{(*)} l \nu_l$
Previous searches for $B^+ \rightarrow K^+ \nu \bar{\nu}$

The previous studies all adopted an explicit reconstruction of the B_{tag} followed by the signal reconstruction.

Low reconstruction efficiency because of the low tag-reconstruction efficiency:

- hadronic tag $\epsilon_{sig} \cdot \epsilon_{tag} \sim 0.04\%$
- semileptonic tag $\epsilon_{sig} \cdot \epsilon_{tag} \sim 0.2\%$

$e^- \rightarrow \Upsilon(4S) \leftarrow e^+$
Previous searches for $B^+ \rightarrow K^+ \nu \bar{\nu}$

The previous studies all adopted an explicit reconstruction of the B_{tag} followed by the signal reconstruction.

Low reconstruction efficiency because of the low tag-reconstruction efficiency:
- hadronic tag $\epsilon_{\text{sig}} \cdot \epsilon_{\text{tag}} \sim 0.04\%$
- semileptonic tag $\epsilon_{\text{sig}} \cdot \epsilon_{\text{tag}} \sim 0.2\%$

Only upper limits on the branching ratios were set:

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Year</th>
<th>Observed limit on $\text{BR}(B^+ \rightarrow K^+ \nu \bar{\nu})$</th>
<th>Approach</th>
<th>Data [fb$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BABAR</td>
<td>2013</td>
<td>$< 1.6 \times 10^{-5}$ [Phys.Rev.D87,112005]</td>
<td>SL + Had tag</td>
<td>429</td>
</tr>
<tr>
<td>Belle</td>
<td>2013</td>
<td>$< 5.5 \times 10^{-5}$ [Phys.Rev.D87,111103(R)]</td>
<td>Had tag</td>
<td>711</td>
</tr>
<tr>
<td>Belle</td>
<td>2017</td>
<td>$< 1.9 \times 10^{-5}$ [Phys.Rev.D96,091101(R)]</td>
<td>SL tag</td>
<td>711</td>
</tr>
</tbody>
</table>
The inclusive tagging

$B^+ \rightarrow K^+ \nu \bar{\nu}$
The inclusive tagging

The idea
The inclusive tagging

The idea

- Signal reconstructed as the highest p_T track with at least 1 PXD hit (correct match $\sim 80\%$)
The inclusive tagging

The idea

- Signal reconstructed as the highest p_T track with at least 1 PXD hit (correct match $\sim 80\%$)
The inclusive tagging

The idea

- Signal reconstructed as the highest p_T track with at least 1 PXD hit (correct match $\sim 80\%$) followed by inclusive reconstruction of the rest of the event (ROE).

$e^- \rightarrow \Upsilon(4S) \leftarrow e^+$

ROE: Remaining tracks and ECL clusters

Filippo Dattola | Search for $B^+ \rightarrow K^+\nu\bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment
The inclusive tagging

The idea

- Signal reconstructed as the highest p_T track with at least 1 PXD hit (correct match $\sim 80\%$) followed by inclusive reconstruction of the rest of the event (ROE).

- Higher signal efficiency $\epsilon_{\text{sig}} \sim 4\%$ but larger background contributions from generic B decays and continuum production ($u\bar{u}, dd, c\bar{c}, s\bar{s}$).

$$\epsilon_{\text{sig}} \sim 4\%$$

$$p_T^\sim 80\%$$

$$\epsilon_{\text{sig}} \sim 4\%$$

The inclusive tagging method at the Belle II experiment

$e^- \rightarrow \Upsilon(4S) \leftarrow e^+$

B_{tag}^\pm

B_{sig}^\pm

ROE:
Remaining tracks
and ECL clusters

Filippo Dattola | Search for $B^+ \rightarrow K^+\nu\bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment
Features of $B^+ \rightarrow K^+\nu\bar{\nu}$
Features of $B^+ \rightarrow K^+\nu\bar{\nu}$

Signal identification exploiting topological features of $B^+ \rightarrow K^+\nu\bar{\nu}$
Features of $B^+ \rightarrow K^+ \nu \bar{\nu}$

Signal identification exploiting topological features of $B^+ \rightarrow K^+ \nu \bar{\nu}$.

• For example the event shape:

$B \bar{B}$

$B(\rightarrow K \nu \bar{\nu}) \bar{B}$

$q \bar{q}$
Features of $B^+ \rightarrow K^+ \nu \bar{\nu}$

Signal identification exploiting topological features of $B^+ \rightarrow K^+ \nu \bar{\nu}$.

- For example the event shape:
 $B \bar{B} \quad B(\rightarrow K \nu \bar{\nu}) \bar{B} \quad q\bar{q}$

- But also:
 - other variables related to the event features;
 - variables related to the kinematics of the signal K candidate;
 - variables related to the ROE;
 - variables related to the D^0/D^+ suppression.

Filippo Dattola | Search for $B^+ \rightarrow K^+ \nu \bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment
Multivariate classification
Multivariate classification

51 well separating variables are used to train 2 consecutive binary classifiers (FastBDT) \(BDT_1 \) and \(BDT_2 \).
Multivariate classification

51 well separating variables are used to train 2 consecutive binary classifiers (FastBDT) BDT_1 and BDT_2.

- train BDT_1 on $1.6M$ signal events and
 $1.6M \times (B^+B^-, B^0\bar{B}^0, u\bar{u}, d\bar{d}, c\bar{c}, s\bar{s}, \tau^+\tau^-)$ events:
Multivariate classification

51 well separating variables are used to train 2 consecutive binary classifiers (FastBDT) BDT_1 and BDT_2.

- Train BDT_1 on 1.6M signal events and 1.6M$(B^+B^-, B^0\bar{B}^0, u\bar{u}, d\bar{d}, c\bar{c}, s\bar{s}, \tau^+\tau^-)$ events:

FIRST SIGNAL IDENTIFICATION
Multivariate classification

51 well separating variables are used to train 2 consecutive binary classifiers (FastBDT) BDT$_1$ and BDT$_2$.

- train BDT$_1$ on 1.6M signal events and 1.6M \((B^+B^-, B^0\bar{B}^0, u\bar{u}, d\bar{d}, c\bar{c}, s\bar{s}, \tau^+\tau^-) \) events:

FIRST SIGNAL IDENTIFICATION

- train BDT$_2$ - same features - on the events with BDT$_1 > 0.9$ among 100 fb$^{-1}$ events of generic background and 1.6M events of signal:
Multivariate classification

51 well separating variables are used to train 2 consecutive binary classifiers (FastBDT) BDT₁ and BDT₂.

• train BDT₁ on 1.6M signal events and 1.6M \times (B⁺B⁻, B⁰\bar{B}⁰, u\bar{u}, d\bar{d}, c\bar{c}, s\bar{s}, \tau^+\tau^-) events:

FIRST SIGNAL IDENTIFICATION

• train BDT₂ - same features - on the events with BDT₁ > 0.9 among 100 fb⁻¹ events of generic background and 1.6M events of signal:

IMPROVEMENT OF SIGNAL SENSITIVITY

(+10%, up to ~50%)

IN THE HIGH PURITY REGION
Multivariate classification

51 well separating variables are used to train 2 consecutive binary classifiers (FastBDT) BDT_1 and BDT_2.

- train BDT_1 on 1.6M signal events and $1.6M \times (B^+B^-, B^0\bar{B}^0, u\bar{u}, d\bar{d}, c\bar{c}, s\bar{s}, \tau^+\tau^-)$ events:
 FIRST SIGNAL IDENTIFICATION

- train BDT_2 - same features - on the events with $\text{BDT}_1 > 0.9$ among 100 fb$^{-1}$ events of generic background and 1.6M events of signal:
 IMPROVEMENT OF SIGNAL SENSITIVITY
 (+10%, up to ~50%)
 IN THE HIGH PURITY REGION
Multivariate classification

51 well separating variables are used to train 2 consecutive binary classifiers (FastBDT) BDT₁ and BDT₂.

- train BDT₁ on 1.6M signal events and 1.6M × (B⁺B⁻, B⁰B̄⁰, uū, dd, cc, ss, τ⁺τ⁻) events:

FIRST SIGNAL IDENTIFICATION

- train BDT₂ - same features - on the events with BDT₁ > 0.9 among 100 fb⁻¹ events of generic background and 1.6M events of signal:

IMPROVEMENT OF SIGNAL SENSITIVITY (+10%, up to ~50%) IN THE HIGH PURITY REGION
Multivariate classification

51 well separating variables are used to train 2 consecutive binary classifiers (FastBDT) BDT₁ and BDT₂.

- train BDT₁ on 1.6M signal events and 1.6M \(\times (B^+B^-, B^0\bar{B}^0, u\bar{u}, d\bar{d}, c\bar{c}, s\bar{s}, \tau^+\tau^-) \) events:

FIRST SIGNAL IDENTIFICATION

- train BDT₂ - same features - on the events with BDT₁ > 0.9 among 100 fb⁻¹ events of generic background and 1.6M events of signal:

IMPROVEMENT OF SIGNAL SENSITIVITY

(+10%, up to ~50%)

IN THE HIGH PURITY REGION
Definition of the fit region
Definition of the fit region

Optimised bin boundaries set up in the $p_T(K^+) \times BDT_2$ space:

![Graph](image_url)

$B^+ \to K^+\nu\bar{\nu}$
Definition of the fit region

Optimised bin boundaries set up in the $p_T(K^+) \times \text{BDT}_2$ space:

Bins 4, 5, 6, 7, 8, 9, 10:
Definition of the fit region

Optimised bin boundaries set up in the $p_T(K^+) \times BDT_2$ space:

Bins $4, 5, 6, 7, 8, 9, 10$:
- **Signal Region (SR)**: fit of data at the $\Upsilon(4S)$ resonance;
Definition of the fit region

Optimised bin boundaries set up in the $p_T(K^+) \times BDT_2$ space:

- **Signal Region (SR):** fit of data at the $\Upsilon(4S)$ resonance;
- **Control Region 2 (CR2):** fit of off-resonance data.

Bins 4, 5, 6, 7, 8, 9, 10:
Definition of the fit region

Optimised bin boundaries set up in the $p_T(K^+) \times BDT_2$ space:

Bins 4, 5, 6, 7, 8, 9, 10:
- **Signal Region (SR):** fit of data at the $\Upsilon(4S)$ resonance;
- **Control Region 2 (CR2):** fit of off-resonance data.

Bins 1, 2, 3:
Definition of the fit region

Optimised bin boundaries set up in the $p_T(K^+) \times BDT_2$ space:

Bins 4,5,6,7,8,9,10:
- **Signal Region (SR):** fit of data at the $\Upsilon(4S)$ resonance;
- **Control Region 2 (CR2):** fit of off-resonance data.

Bins 1,2,3:
- **Control Region 1 (CR1):** fit of data at the $\Upsilon(4S)$ resonance;
Definition of the fit region

Optimised bin boundaries set up in the $p_T(K^+) \times \text{BDT}_2$ space:

Bins $4, 5, 6, 7, 8, 9, 10$:
- Signal Region (SR): fit of data at the $\Upsilon(4S)$ resonance;
- Control Region 2 (CR2): fit of off-resonance data.

Bins $1, 2, 3$:
- Control Region 1 (CR1): fit of data at the $\Upsilon(4S)$ resonance;
- Control Region 3 (CR3): fit of off-resonance data.
Definition of the fit region

Optimised bin boundaries set up in the $p_T(K^+) \times BDT_2$ space:

<table>
<thead>
<tr>
<th>p_T(K^+) [GeV/c]</th>
<th>0.5</th>
<th>2.0</th>
<th>2.4</th>
<th>3.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDT_2</td>
<td>0.93</td>
<td>0.95</td>
<td>0.97</td>
<td>0.99</td>
</tr>
<tr>
<td>Bins 1,2,3:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Bins 4,5,6,7,8,9,10:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

- **Signal Region (SR):** fit of data at the $\Upsilon(4S)$ resonance;
- **Control Region 2 (CR2):** fit of off-resonance data.

Control Region 1-2-3 to constrain bkg’s yields.
Validation using $B^+ \rightarrow K^+ J/\psi \rightarrow \mu^+ \mu^-$
Validation using $B^+ \rightarrow K^+J/\psi \rightarrow \mu^+\mu^-$

Mode with large branching ratio characterised by clean experimental signature.
Validation using $B^+ \rightarrow K^+ J/\psi \rightarrow \mu^+ \mu^-$

Mode with large branching ratio characterised by clean experimental signature.

Identification of $B^+ \rightarrow K^+ J/\psi \rightarrow \mu^+ \mu^-$ events
Validation using $B^+ \rightarrow K^+ J/\psi \rightarrow \mu^+ \mu^-$

Mode with large branching ratio characterised by clean experimental signature.

Identification of $B^+ \rightarrow K^+ J/\psi \rightarrow \mu^+ \mu^-$ events

Strategy to mimic reconstructed $B^+ \rightarrow K^+ \bar{\nu} \bar{\nu}$ events.
Validation using $B^+ \rightarrow K^+ J/\psi \rightarrow \mu^+ \mu^-$

Mode with large branching ratio characterised by clean experimental signature.

Identification of $B^+ \rightarrow K^+ J/\psi \rightarrow \mu^+ \mu^-$ events

Strategy to mimic reconstructed $B^+ \rightarrow K^+ \nu \bar{\nu}$ events.

- Ignore the $\mu^+ \mu^-$ from the selected J/ψ decay.
Validation using \(B^+ \rightarrow K^+J/\psi \rightarrow \mu^+\mu^- \)

Mode with large branching ratio characterised by clean experimental signature.

Identification of \(B^+ \rightarrow K^+J/\psi \rightarrow \mu^+\mu^- \) events

Strategy to mimic reconstructed \(B^+ \rightarrow K^+\nu\bar{\nu} \) events.

- Ignore the \(\mu^+\mu^- \) from the selected \(J/\psi \) decay.

- 2-body \(\rightarrow \) 3-body kinematics: replace the 4-momentum of the \(K^+ \) with the generator-level 4-momentum taken from the \(K^+ \) in \(B^+ \rightarrow K^+\nu\bar{\nu} \).
Validation using \(B^+ \rightarrow K^+ J/\psi \rightarrow \mu^+ \mu^- \)

Mode with large branching ratio characterised by clean experimental signature.

Identification of \(B^+ \rightarrow K^+ J/\psi \rightarrow \mu^+ \mu^- \) **events**

\[\uparrow \]

Strategy to mimic reconstructed \(B^+ \rightarrow K^+ \nu \bar{\nu} \) **events.**

- Ignore the \(\mu^+ \mu^- \) from the selected \(J/\psi \) decay.

- 2-body \(\rightarrow \) 3-body kinematics: replace the 4-momentum of the \(K^+ \) with the generator-level 4-momentum taken from the \(K^+ \) in \(B^+ \rightarrow K^+ \nu \bar{\nu} \).

- Reconstruct the modified \(B^+ \rightarrow K^+ J/\psi \rightarrow \mu^+ \mu^- \) events with the inclusive tagging algorithm.
Validation using $B^+ \rightarrow K^+ J/\psi \rightarrow \mu^+ \mu^-$

Mode with large branching ratio characterised by clean experimental signature.

Identification of $B^+ \rightarrow K^+ J/\psi \rightarrow \mu^+ \mu^-$ events

Strategy to mimic reconstructed $B^+ \rightarrow K^+ \nu \bar{\nu}$ events.

- Ignore the $\mu^+ \mu^-$ from the selected J/ψ decay.

- 2-body \rightarrow 3-body kinematics: replace the 4-momentum of the K^+ with the generator-level 4-momentum taken from the K^+ in $B^+ \rightarrow K^+ \nu \bar{\nu}$.

- Reconstruct the modified $B^+ \rightarrow K^+ J/\psi \rightarrow \mu^+ \mu^-$ events with the inclusive tagging algorithm.

Filippo Dattola | Search for $B^+ \rightarrow K^+ \nu \bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment
Validation using $B^+ \rightarrow K^+ J/\psi \rightarrow \mu^+ \mu^-$

Mode with large branching ratio characterised by clean experimental signature.

Identification of $B^+ \rightarrow K^+ J/\psi \rightarrow \mu^+ \mu^-$ events

Strategy to mimic reconstructed $B^+ \rightarrow K^+ \nu \bar{\nu}$ events.

- Ignore the $\mu^+ \mu^-$ from the selected J/ψ decay.

- 2-body \rightarrow 3-body kinematics: replace the 4-momentum of the K^+ with the generator-level 4-momentum taken from the K^+ in $B^+ \rightarrow K^+ \nu \bar{\nu}$.

- Reconstruct the modified $B^+ \rightarrow K^+ J/\psi \rightarrow \mu^+ \mu^-$ events with the inclusive tagging algorithm.

Filippo Dattola | Search for $B^+ \rightarrow K^+ \nu \bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment
Validation using $B^+ \rightarrow K^+ J/\psi \rightarrow \mu^+ \mu^-$

Mode with large branching ratio characterised by clean experimental signature.

Identification of $B^+ \rightarrow K^+ J/\psi \rightarrow \mu^+ \mu^-$ events

Strategy to mimic reconstructed $B^+ \rightarrow K^+ \nu \bar{\nu}$ events.

- Ignore the $\mu^+ \mu^-$ from the selected J/ψ decay.

- 2-body → 3-body kinematics: replace the 4-momentum of the K^+ with the generator-level 4-momentum taken from the K^+ in $B^+ \rightarrow K^+ \nu \bar{\nu}$.

- Reconstruct the modified $B^+ \rightarrow K^+ J/\psi \rightarrow \mu^+ \mu^-$ events with the inclusive tagging algorithm.

Filippo Dattola | Search for $B^+ \rightarrow K^+ \nu \bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment
Validation using $B^+ \rightarrow K^+J/\psi_{\mu^+\mu^-}$

Mode with large branching ratio characterised by clean experimental signature.

Identification of $B^+ \rightarrow K^+J/\psi_{\mu^+\mu^-}$ events

Strategy to mimic reconstructed $B^+ \rightarrow K^+\nu\bar{\nu}$ events.

- Ignore the $\mu^+\mu^-$ from the selected J/ψ decay.

- 2-body → 3-body kinematics: replace the 4-momentum of the K^+ with the generator-level 4-momentum taken from the K^+ in $B^+ \rightarrow K^+\nu\bar{\nu}$.

- Reconstruct the modified $B^+ \rightarrow K^+J/\psi_{\mu^+\mu^-}$ events with the inclusive tagging algorithm.

Filippo Dattola | Search for $B^+ \rightarrow K^+\nu\bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment
Validation using $B^+ \rightarrow K^+ J/\psi \rightarrow \mu^+ \mu^-$

Mode with large branching ratio characterised by clean experimental signature.

Identification of $B^+ \rightarrow K^+ J/\psi \rightarrow \mu^+ \mu^-$ events

Strategy to mimic reconstructed $B^+ \rightarrow K^+ \nu \bar{\nu}$ events.

- Ignore the $\mu^+ \mu^-$ from the selected J/ψ decay.

- 2-body → 3-body kinematics: replace the 4-momentum of the K^+ with the generator-level 4-momentum taken from the K^+ in $B^+ \rightarrow K^+ \nu \bar{\nu}$.

- Reconstruct the modified $B^+ \rightarrow K^+ J/\psi \rightarrow \mu^+ \mu^-$ events with the inclusive tagging algorithm.

Excellent Data-MC agreement for the BDT's.

Filippo Dattola | Search for $B^+ \rightarrow K^+ \nu \bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment
Validation using off-resonance data
Validation using off-resonance data

Investigation of the Data-MC agreement between simulated continuum and off-resonance data in CR2-CR3.
Validation using off-resonance data

Investigation of the Data-MC agreement between simulated continuum and off-resonance data in CR2-CR3.

- Very good Data–MC shape agreement.
Validation using off–resonance data

- Very good Data–MC shape agreement.
- But discrepancy in yields: data/simulation = 1.4 ± 0.1
Validation using off-resonance data

• Very good Data–MC shape agreement.
• But discrepancy in yields: data/simulation = 1.4 ± 0.1.
• Introduction of conservative 50% normalisation uncertainty in the fit for each bkg yield individually.
Fit procedure
Fit procedure

Statistical interpretation with statistical model for multi-bin histogram-based analysis.
Fit procedure

Statistical interpretation with statistical model for multi-bin histogram-based analysis.

Extended Maximum Likelihood Binned Fit:

\[f(n, a | \eta, \chi) = \]

\(\eta = \text{parameter of interest} \)
\(\chi = \text{nuisance parameters} \)

Filippo Dattola | Search for \(B^+ \to K^+ \nu \bar{\nu} \) decays with an inclusive tagging method at the Belle II experiment
Fit procedure

Statistical interpretation with statistical model for multi-bin histogram-based analysis.

Extended Maximum Likelihood Binned Fit:

$$f(n, a | \eta, \chi) = \prod_{r \in \text{regions}} \prod_{b \in \text{bins}} \text{Pois}(n_{cb} | \nu_{cb}(\eta, \chi))$$

Simultaneous measurements of multiple regions

$\eta = \text{parameter of interest}$

$\chi = \text{nuisance parameters}$
Fit procedure

Statistical interpretation with statistical model for multi-bin histogram-based analysis.

Extended Maximum Likelihood Binned Fit:

\[f(n, a | \eta, \chi) = \prod_{r \in \text{regions}} \prod_{b \in \text{bins}} \text{Pois}(n_{cb} | \nu_{cb}(\eta, \chi)) \]

\[\eta = \text{parameter of interest} \]
\[\chi = \text{nuisance parameters} \]

Regions = \{SR, CR1, CR2, CR3\}
Bins 1 to 12:

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.93</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0.95</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>0.97</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>1.00</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

Simultaneous measurements of multiple regions
Fit procedure

Statistical interpretation with statistical model for multi-bin histogram-based analysis.

Extended Maximum Likelihood Binned Fit:

\[f(n, a | \eta, \chi) = \prod_{r \in \text{regions}} \prod_{b \in \text{bins}} \text{Pois}(n_{cb} | \nu_{cb}(\eta, \chi)) \prod_{\chi} c_{\chi}(a_{\chi} | \chi) \]

Simultaneous measurements of multiple regions

\[\eta = \text{parameter of interest} \]
\[\chi = \text{nuisance parameters} \]

Regions = \{SR, CR1, CR2, CR3\}

Bins 1 to 12:

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

[Heinrich, Lukas and Feickert, Matthew and Stark, Giordon. pyhf:v0.5.4.]
Fit procedure

Statistical interpretation with statistical model for multi-bin histogram-based analysis.

Extended Maximum Likelihood Binned Fit:

\[
f(n, a | \eta, \chi) = \prod_{r \in \text{regions}} \prod_{b \in \text{bins}} \text{Pois}(n_{cb} | \nu_{cb}(\eta, \chi)) \prod_{\chi} c(\chi | \chi) \]

- Systematic uncertainties (normalisations of bkg’s yields, BR of the leading B-decays, PID correction, ...) as (175) nuisance parameters.
- **1 parameter of interest:** signal strength \(\mu \): multiplicative factor with respect to the SM expectation.

Regions = \{SR, CR1, CR2, CR3\}

Bins 1 to 12:

<table>
<thead>
<tr>
<th>BDT2</th>
<th>0.93</th>
<th>0.95</th>
<th>0.97</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2.0</td>
<td>11</td>
<td>8</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>2.4</td>
<td>12</td>
<td>9</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\mu = 1 \rightarrow \text{SM BF} = 4.6 \times 10^{-6} \)
Fit to the Data
Fit to the Data

• Profile likelihood scan for the signal strength μ:
Fit to the Data

• Profile likelihood scan for the signal strength μ:

Asymmetric uncertainty on μ estimated by fitting the scanned points with an asymmetric parabola $f(x) = (x/\sigma^-)^2$ for $x < 0$ and $f(x) = (x/\sigma^+)^2$ for $x > 0$.

Belle II preliminary
$\int \mathcal{L} dt = (63 + 9)$ fb$^{-1}$

Filippo Dattola | Search for $B^+ \rightarrow K^+\nu\bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment
Fit to the Data

Fit to the Data
Fit to the Data

- Measured signal strength μ:
Fit to the Data

• Measured signal strength μ:

$$\mu = 4.2^{+2.9}_{-2.8}\text{(stat)}^{+1.8}_{-1.6}\text{(syst)} = 4.2^{+3.4}_{-3.2}$$

$$\text{BR}(B^+ \to K^+\nu\bar{\nu}) = 1.9^{+1.3}_{-1.3}\text{(stat)}^{+0.8}_{-0.7}\text{(syst)} \times 10^{-5} = 1.9^{+1.6}_{-1.5} \times 10^{-5}$$
Fit to the Data

- Measured signal strength μ:

$$\mu = 4.2^{+2.9}_{-2.8} (\text{stat})^{+1.8}_{-1.6} (\text{syst}) = 4.2^{+3.4}_{-3.2}$$

$$\text{BR}(B^+ \rightarrow K^+ \nu \bar{\nu}) = 1.9^{+1.3}_{-1.3} (\text{stat})^{+0.8}_{-0.7} (\text{syst}) \times 10^{-5} = 1.9^{+1.6}_{-1.5} \times 10^{-5}$$

- Consistent with the SM expectation ($\mu = 1$) at CL = 1σ.
Fit to the Data

- Measured signal strength μ:

$$\mu = 4.2^{+2.9}_{-2.8}^{(\text{stat})}^{+1.8}_{-1.6}^{(\text{syst})} = 4.2^{+3.4}_{-3.2}$$

$$\text{BR}(B^+ \to K^+\nu\bar{\nu}) = 1.9^{+1.3}_{-1.3}^{(\text{stat})}^{+0.8}_{-0.7}^{(\text{syst})} \times 10^{-5} = 1.9^{+1.6}_{-1.5} \times 10^{-5}$$

- Consistent with the SM expectation ($\mu = 1$) at $\text{CL} = 1\sigma$.
- Consistent with the bkg-only hypothesis ($\mu = 0$) at $\text{CL} = 1.3\sigma$.
Fit to the Data

- Measured signal strength μ:

$$\mu = 4.2^{+2.9}_{-2.8}\text{(stat)}^{+1.8}_{-1.6}\text{(syst)} = 4.2^{+3.4}_{-3.2}$$

$$\text{BR}(B^+ \to K^+\nu\bar{\nu}) = 1.9^{+1.3}_{-1.3}\text{(stat)}^{+0.8}_{-0.7}\text{(syst)} \times 10^{-5} = 1.9^{+1.6}_{-1.5} \times 10^{-5}$$

- Consistent with the SM expectation ($\mu = 1$) at CL = 1σ.
- Consistent with the bkg-only hypothesis ($\mu = 0$) at CL = 1.3σ.

Filippo Dattola | Search for $B^+ \to K^+\nu\bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment
Fit to the Data

- Measured signal strength μ:

$$\mu = 4.2^{+2.9}_{-2.8} \text{(stat)}^{+1.8}_{-1.6} \text{(syst)} = 4.2^{+3.4}_{-3.2}$$

$$\text{BR}(B^+ \rightarrow K^+\nu\bar{\nu}) = 1.9^{+1.3}_{-1.3} \text{(stat)}^{+0.8}_{-0.7} \text{(syst)} \times 10^{-5} = 1.9^{+1.6}_{-1.5} \times 10^{-5}$$

- Consistent with the SM expectation ($\mu = 1$) at CL = 1σ.
- Consistent with the bkg-only hypothesis ($\mu = 0$) at CL = 1.3σ.

![CLs upper limit scan](image1.png)

![Data vs post-fit predictions in CR1 + SR](image2.png)
Measurement summary
Measurement summary

• This measurement represents the first search for $B^+ \rightarrow K^+ \nu \bar{\nu}$ performed with an inclusive tag.
Measurement summary

• This measurement represents the first search for $B^+ \rightarrow K^+ \nu \bar{\nu}$ performed with an inclusive tag.

• No signal observed yet, but an observed upper limit on the branching ratio of 4.1×10^{-5} is set at the 90% CL.
Measurement summary

- This measurement represents the first search for $B^+ \rightarrow K^+ \nu \bar{\nu}$ performed with an inclusive tag.

- No signal observed yet, but an observed upper limit on the branching ratio of 4.1×10^{-5} is set at the 90\% CL.

- With 63 fb$^{-1}$ of $\Upsilon(4S)$ data recorded by the Belle II experiment, the inclusive tagging is competitive with the previous searches despite the much lower integrated luminosity.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Year</th>
<th>Observed limit on BR($B^+ \rightarrow K^+ \nu \bar{\nu}$)</th>
<th>Approach</th>
<th>Data [fb$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BABAR</td>
<td>2013</td>
<td>$< 1.6 \times 10^{-5}$ [Phys.Rev.D87,112005]</td>
<td>SL + Had tag</td>
<td>429</td>
</tr>
<tr>
<td>Belle</td>
<td>2013</td>
<td>$< 5.5 \times 10^{-5}$ [Phys.Rev.D87,111103(R)]</td>
<td>Had tag</td>
<td>711</td>
</tr>
<tr>
<td>Belle</td>
<td>2017</td>
<td>$< 1.9 \times 10^{-5}$ [Phys.Rev.D96,091101(R)]</td>
<td>SL tag</td>
<td>711</td>
</tr>
<tr>
<td>Belle II</td>
<td>2021</td>
<td>$< 4.1 \times 10^{-5}$</td>
<td>Inclusive tag</td>
<td>63</td>
</tr>
</tbody>
</table>
Measurement summary

- This measurement represents the **first search for** $B^+ \rightarrow K^+ \nu \bar{\nu}$ performed with an inclusive tag.

- **No signal observed yet, but an observed upper limit on the branching ratio of** 4.1×10^{-5} **is set at the 90% CL.**

- With 63 fb$^{-1}$ of $\Upsilon(4S)$ data recorded by the Belle II experiment, the inclusive tagging is **competitive with the previous searches despite the much lower integrated luminosity.**

![Graph showing comparison between SM, Average, and different experiments]

$10^5 \times \text{Br}(B^+ \rightarrow K^+ \nu \bar{\nu})$

Filippo Dattola | Search for $B^+ \rightarrow K^+ \nu \bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment
Supplemental material
Summary of the $B^+ \rightarrow K^+ \nu\bar{\nu}$ searches

- Uncertainty on BR: Belle II vs Belle vs Babar.
 - BR: measured branching ratio of $B^+ \rightarrow K^+ \nu\bar{\nu}$;
 - σ: total symmetric uncertainty on the BR
 - L: integrated luminosity

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Year</th>
<th>Approach</th>
<th>L [fb$^{-1}$]</th>
<th>BR [$\times 10^{-5}$]</th>
<th>σ [$\times 10^{-5}$]</th>
<th>$\sqrt{\frac{L}{L_{\text{Belle2}}}}$ [$\times 10^{-5}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BABAR(*)</td>
<td>2013</td>
<td>SL + Had tag</td>
<td>429</td>
<td>0.8</td>
<td>0.6</td>
<td>1.7</td>
</tr>
<tr>
<td>Belle(***)</td>
<td>2013</td>
<td>Had tag</td>
<td>711</td>
<td>3.0</td>
<td>1.6</td>
<td>5.5</td>
</tr>
<tr>
<td>Belle(***)</td>
<td>2017</td>
<td>SL tag</td>
<td>711</td>
<td>1.0</td>
<td>0.6</td>
<td>1.9</td>
</tr>
<tr>
<td>Belle II</td>
<td>2021</td>
<td>Inclusive tag</td>
<td>63</td>
<td>1.9</td>
<td>1.6</td>
<td>1.6</td>
</tr>
</tbody>
</table>

(*) Combined central value of $B^+ \rightarrow K^+ \nu\bar{\nu}$ / $B^0 \rightarrow K^0 \nu\bar{\nu}$

(**) Computed from $N_{\text{sig}}/(c_{\text{sig}} \cdot N_{\text{BB}})$.

BABAR 2013 - [Phys.Rev.D87,112005]
Belle 2013 - [Phys.Rev.D87,111103(R)]
Belle 2017 - [Phys.Rev.D96,091101(R)]
The $B^+ \to K^+ \nu \bar{\nu}$ decay

Scenarios beyond the SM \to possible contribution of right-handed operators Q^l_R

$$\mathcal{H}_{\text{eff.}} = -\frac{4 G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_l (C^l_L Q^l_L + C^l_R Q^l_R) \quad \text{where} \quad Q^l_{L(R)} = \left(\bar{s}_{L(R)} \gamma_\mu b_{L(R)} \right) \left(\bar{\nu}^l_{L(R)} \gamma^\mu \nu^l_{L(R)} \right) \quad l = e, \mu, \tau$$

2 combinations of 6 Wilson Coefficients:

$$\begin{align*}
\frac{\text{Br}(B \to K \nu \bar{\nu})}{\text{Br}(B \to K \nu \bar{\nu})_{\text{SM}}} &= \frac{1}{3} \sum_\ell (1 - 2 \eta_\ell) \epsilon^2_\ell, \\
\frac{\text{Br}(B \to K^* \nu \bar{\nu})}{\text{Br}(B \to K^* \nu \bar{\nu})_{\text{SM}}} &= \frac{1}{3} \sum_\ell (1 + \kappa_\ell \eta_\ell) \epsilon^2_\ell, \\
\epsilon_\ell &= \sqrt{|C^\ell_L|^2 + |C^\ell_R|^2} / |C^\text{SM}_L|, \\
\eta_\ell &= -\text{Re} \left(C^\ell_L C^\ell_R^* \right) / |C^\ell_L|^2 + |C^\ell_R|^2.
\end{align*}$$

Constraint on new-physics contributions: Wilson coefficients C^NP_L and C^NP_R normalised to the SM value of C_L (Belle II from expected 50 ab$^{-1}$).
• Peak luminosity projections:

• Nano-beam scheme:

Filippo Dattola | Search for $B^+ \rightarrow K^+ \nu \bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment
Features of $B^+ \rightarrow K^+\nu\bar{\nu}$

- Number of reconstructed tracks in the event.
Features of $B^+ \rightarrow K^+ \nu \bar{\nu}$

• Variables related to the signal K^+ candidate.

• Variables related to the event topology.

Filippo Dattola | Search for $B^+ \rightarrow K^+ \nu \bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment
Features of $B^+ \rightarrow K^+\nu\bar{\nu}$

- Variables related to D^0/D^+ suppression.

- Variables related to the ROE.
More on multivariate classification

- No overfitting observed neither for BDT1 nor for BDT2.

- Signal sensitivity of BDT1:
Reweighting of continuum MC

Discrepancies between simulated continuum and off-resonance data.

Data-driven correction by means of an additional fastBDT: BDT\(_c\).

- Select simulated continuum (100 fb\(^{-1}\)) with BDT\(_1\) > 0.9;
- Select off-resonance data (9 fb\(^{-1}\)) with BDT\(_1\) > 0.9;
- Train BDT\(_c\) with the set of 51 variables using data as signal and simulation as bkg;
- Being \(p\) the BDT\(_c\) score, apply the event weight
 \[w_{\text{event}} = \frac{P(\text{Data} - \text{like})}{P(\text{MC} - \text{like})} \]
 to correct the simulated continuum.

Before reweighting: no perfect overlap at 0.5 \(\rightarrow\) mismodelling.

Protection against large weights: clipping at \(w = 10\)

Continuum MC yields scaled up to Data of normalisation ratio 1.22

Filippo Dattola | Search for \(B^+ \rightarrow K^+ \nu \bar{\nu}\) decays with an inclusive tagging method at the Belle II experiment
The fit region

- 1 signal region + 3 control regions.

Bin boundaries in the SR specifically optimised by minimisation of the expected upper limit on the BR($B^+ \rightarrow K^+\nu\bar{\nu}$).

<table>
<thead>
<tr>
<th>Region</th>
<th>2D Bin Boundary Definition</th>
<th>Physics Processes</th>
<th>\sqrt{s}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Region</td>
<td>$p_T(K^+) \in [0.5, 2.0, 2.4, 3.5]$ GeV/c</td>
<td>signal + all backgrounds</td>
<td>T (4S)</td>
</tr>
<tr>
<td>Control Region</td>
<td>$BDT_2 \leq 0.95, 0.97, 0.99, 1.0$</td>
<td>signal + all backgrounds</td>
<td>T (4S)</td>
</tr>
<tr>
<td>Region (SR)</td>
<td>$p_T(K^+) \in [0.5, 2.0, 2.4, 3.5]$ GeV/c</td>
<td>continuum backgrounds</td>
<td>off-resonance (60 MeV/c²)</td>
</tr>
<tr>
<td>Control Region</td>
<td>$BDT_2 \leq 0.95, 0.97, 0.99, 1.0$</td>
<td>continuum backgrounds</td>
<td>off-resonance (60 MeV/c²)</td>
</tr>
<tr>
<td>Region 1 (CR1)</td>
<td>$p_T(K^+) \in [0.5, 2.0, 2.4, 3.5]$ GeV/c</td>
<td>continuum backgrounds</td>
<td></td>
</tr>
<tr>
<td>Control Region</td>
<td>$BDT_2 \leq 0.95, 0.97, 0.99, 1.0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Region 2 (CR2)</td>
<td>$p_T(K^+) \in [0.5, 2.0, 2.4, 3.5]$ GeV/c</td>
<td>continuum backgrounds</td>
<td></td>
</tr>
<tr>
<td>Control Region</td>
<td>$BDT_2 \leq 0.95, 0.97, 0.99, 1.0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Region 3 (CR3)</td>
<td>$p_T(K^+) \in [0.5, 2.0, 2.4, 3.5]$ GeV/c</td>
<td>continuum backgrounds</td>
<td></td>
</tr>
<tr>
<td>Control Region</td>
<td>$BDT_2 \leq 0.95, 0.97, 0.99, 1.0$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signal efficiency in SR

By stat. uncertainty

$N_{\text{rec}}/N_{\text{gen}}$ [%]

$q^2 \left[\text{GeV}^2/c^4 \right] = (p_\nu^2 + p_{\bar{\nu}}^2)$

Filippo Dattola | Search for $B^+ \rightarrow K^+\nu\bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment
Identification of $B^+ \rightarrow K^+J/\psi \rightarrow \mu^+\mu^-$ events

$M_{\mu\mu} \text{ [GeV/c}^2\text{]}$

$M_{bc} \text{ [GeV/c}^2\text{]}$

$\Delta E \text{ [GeV]}$

$M_{bc} = \sqrt{E_{\text{beam}}^2 - (\vec{P}_B^{\text{CMS}})^2}$

$\Delta E = \sum_i E_i^{\text{CMS}} - E_{\text{beam}}$

1720 data events from 63 fb$^{-1}$ + bkg suppressed to percent level.
Results of the validation on $B^+ \rightarrow K^+ J/\psi \rightarrow \mu^+ \mu^-$

Filippo Dattola | Search for $B^+ \rightarrow K^+ \nu \bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment
Background composition in the fit region

- $B^0\bar{B}^0$ signal side:

- $B^0\bar{B}^0$ tag side:

- B^+B^- signal side:

- $B^+\bar{B}^-$ tag side:

Filippo Dattola | Search for $B^+ \rightarrow K^+\nu\bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment
Validation in the BDT sideband

- Agreement between Y(4S) on-resonance data and simulation in the sideband $0.9 < \text{BDT}_1 < 0.99$ and $\text{BDT}_2 < 0.7$:

- Only if the continuum background is scaled by a factor of 1.22 as obtained from the comparison with off-resonance data, the data/MC ratio is then 1.00 in the moderate BDT sideband.
SM form factor vs q^2

- q^2 spectrum from PHSP simulation compared to the SM form factor from [J. High Energ. Phys. 2015, 184 (2015)] as a function of q^2.

Filippo Dattola | Search for $B^+ \rightarrow K^+\nu\bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment
Fit procedure

- **pyhf modifiers and constraints:**

\[
\nu_{cb}(\phi) = \sum_{s \in \text{samples}} \nu_{scb}(\eta, \chi) = \sum_{s \in \text{samples}} \left(\prod_{\kappa \in \kappa} \kappa_{scb}(\eta, \chi) \right) \left[\nu_{scb}^0(\eta, \chi) + \sum_{\Delta \in \Delta} \Delta_{scb}(\eta, \chi) \right].
\]

<table>
<thead>
<tr>
<th>Description</th>
<th>Modification</th>
<th>Constraint Term c_{χ}</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncorrelated Shape</td>
<td>$\kappa_{scb}(\gamma_b) = \gamma_b$</td>
<td>$\prod_b \text{Pois} \left(r_b = \sigma_b^{-2}</td>
<td>\rho_b = \sigma_b^{-2} \gamma_b \right)$</td>
</tr>
<tr>
<td>Correlated Shape</td>
<td>$\Delta_{scb}(\alpha) = f_p \left(\alpha</td>
<td>\Delta_{scb,\alpha=-1}, \Delta_{scb,\alpha=1} \right)$</td>
<td>$\text{Gaus} \left(\alpha = 0</td>
</tr>
<tr>
<td>Normalisation Unc.</td>
<td>$\kappa_{scb}(\alpha) = g_p \left(\alpha</td>
<td>\kappa_{scb,\alpha=-1}, \kappa_{scb,\alpha=1} \right)$</td>
<td>$\text{Gaus} \left(\alpha = 0</td>
</tr>
<tr>
<td>MC Stat. Uncertainty</td>
<td>$\kappa_{scb}(\gamma_b) = \gamma_b$</td>
<td>$\prod_b \text{Gaus} \left(\sigma_{\gamma_b} = 1</td>
<td>\gamma_b, \delta_b \right)$</td>
</tr>
<tr>
<td>Luminosity</td>
<td>$\kappa_{scb}(\lambda) = \lambda$</td>
<td>$\text{Gaus} \left(\ell = \lambda_0</td>
<td>\lambda, \sigma_\lambda \right)$</td>
</tr>
<tr>
<td>Normalisation</td>
<td>$\kappa_{scb}(\mu_0) = \mu_0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data-driven Shape</td>
<td>$\kappa_{scb}(\tau_b) = \tau_b$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fit validation

- **Test with injected signal:**

 Check the pulls \(\frac{\mu_{\text{fit}} - \mu_{\text{inj}}}{\sigma_{\mu}} \)

- **Test the fit quality:**

 Check the p-value of the fit on observations

No biases observed ✔

High p-value ✔
Good agreement with \(\chi^2 \) ✔

Filippo Dattola | Search for \(B^+ \rightarrow K^+\nu\bar{\nu} \) decays with an inclusive tagging method at the Belle II experiment
Cross validation of PyHf with a simplified Gaussian model

![Graph showing the cross validation of PyHf with a simplified Gaussian model. The graph compares the mu values from PyHf and sghf for different mu_s values.](image)

- $\mu_{\text{sig}} = 1.0$
- $\mu_{\text{sig}} = 5.0$
- $\mu_{\text{sig}} = 20.0$

Belle II preliminary simulation
Fit to the Data

• Post-fit shifts of the bkg’s normalisations.

- 50% pre-fit uncertainty attached to each of the bkg's normalisations.

- No post-fit shift wrt to expectations for B^+B^- and $B^0\bar{B}^0$ that are the larger bkg’s.

- Post-fit shift of $\sim 1\sigma$ wrt to the expectations for some continuum sources ($c\bar{c}, s\bar{s}$) consistent with the observed Data-MC normalisation discrepancy.
Fit to the Data

- Post-fit predictions for continuum vs off-resonance data.
Fit to the Data

- Correlation of post-fit shifts of the bkg’s normalisations.

![Correlation Matrix](image)

Belle II preliminary

\[\int L \, dt = (63 + 9) \text{ fb}^{-1} \]
Limit vs uncertainties

Belle II preliminary simulation

Gaussian 90% c.l. $\times 10^{-5}$