

Latest Belle II results on beauty and charm decays

Saurabh Sandilya

(on behalf of the Belle II Collaboration)

भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad

Rencontres de Moriond 2021 QCD & High Energy Interactions March 29, 2021

SuperKEKB+Belle II : beauty and charm factory

- SuperKEKB collides e^+ and e^- , with CM energy at $\Upsilon(4S)$ resonance.
- $e^+e^- \rightarrow \Upsilon(4S) : 1.1 \text{ nb, } e^+e^- \rightarrow c\overline{c} : 1.3 \text{ nb }, e^+e^- \rightarrow \tau^+\tau^- : 0.92 \text{ nb}$
- Large and clean samples of B mesons, D mesons and τ leptons.

22-Mar-2021

Study of $B^- \rightarrow D^{(*)}h^-$

- Decays $B^- \rightarrow D^{(*)+}K^-$ are important for precise determination CKM angle γ/ϕ_3 .
- Dominant and clean decay $B^- \rightarrow D^{(*)}\pi^-$ provide good control sample.
- PID to K/ π from B, signal enhanced with $M_{bc} = \sqrt{E_{beam}^2 (\overline{P_B}c)^2} > 5.27 \text{ GeV/c}^2$;
- Unbinned ML fit in ΔE (= $E_B E_{beam}$) and MVA output (with event shape variables).

First Belle II reconstruction of ${\rm B^0} \rightarrow \pi^0\pi^0$

- $B^0 \rightarrow \pi^0 \pi^0$ limits precision of isospin relations to determine α/ϕ_2 .
- Unique to Belle II : final state are just four photons.
- $B \rightarrow D(K\pi\pi^0)\pi^0$ as control channel.
- Dedicated MVA for optimized photon selection.
- Dominant bkg from continuum π^0 . Suppressed with another MVA.

• Signal yield $14.0^{+6.8}_{-5.6}$ events, and **BF(B**⁰ $\rightarrow \pi^{0}\pi^{0}$) = 0.98 $^{+0.48}_{-0.39} \pm 0.27 \times 10^{-6}$

First Belle II analysis of $B^+ \rightarrow \rho^+ \rho^0$

- pion-only $(\pi^+\pi^0)(\pi^+\pi^-)$ final state and broad ρ peak \Rightarrow large bkg
- Spin-0 \rightarrow spin1 + spin-1 \Rightarrow angular analysis.
- 6D fit including ΔE, CS, and ρ masses to extract signal, and helicity angles to measure fraction f_L of decays with longitudinal polarization.

First Belle II measurements of $B^0 \rightarrow K^0 \pi^0$

Stringent SM test: $B \rightarrow K\pi$ isospin sum rule (hep-ph/0508047)

Precision on $A_{K^0\pi^0}$ is the most limiting input

- **Challenges**:
- π^0 final state $\Rightarrow \Delta E$ tails
- CP-eigenstate \Rightarrow need flavor tagging

 $N(B^0 \rightarrow K_s^0 \pi^0) = 45^{+9}_{-8}$

 $\mathcal{B} = [8.5^{+1.7}_{-1.6}(\text{stat}) \pm 1.2(\text{syst})] \times 10^{-6}$ $A_{K^0\pi^0} = -0.40^{+0.46}_{-0.44}$ (stat) ± 0.04 (syst)

First Belle II DCPV in $K^0\pi^0$, the single most limiting input of isospin-sum-rule probing power

$B^0 \rightarrow J/\psi K_L^0$

- The decay $B^0 \rightarrow J/\psi K_L^0$ provides an independent measurement of sin(2 ϕ_1).
- $J/\psi \rightarrow e^+e^-$ or $\mu^+\mu^-$ and K_L^0 is reconstructed as a hadronic neutral cluster in K_L and μ detector (KLM).
- $p(K_L^0)$ is calculated from the direction of the cluster in KLM and reconstructed momentum of J/ ψ with B⁰ mass constraint.

- The yield is observed with the same purity as in predecessor Belle.
- Work in progress to include neutral clusters in ECL in the path of TDCPV and sin($2\phi_1$) measurements

Inclusive photon spectrum from b \rightarrow sy transition

 B-decays with b→sγ transitions: FCNCs, suppressed at tree level and sensitive to many SM extension.

Monochromatic (smeared) photon energy from the two-body decay $b \rightarrow s\gamma$.

- High energy photon $E_{\gamma}^* > 1.4$ GeV
- The γ should not be arising from a π^0 decay
- Continuum Suppression with event shape variables.
- Data driven (from off-resonance and side-bands) scaling of MC.
- Excess around expected region is clearly visible.

 B-decays with b→sℓℓ transitions: FCNCs, suppressed at tree level and sensitive to many SM extension.

- These decays have raised a lot of interest in the study of the LFU ratio.
- The rare decays $B^+ \rightarrow K^+ \ell \ell$ ($\ell = e, \mu$) are seen at Belle II with just 62.8 fb⁻¹
- Signal yield : $8.6^{+4.3}_{-3.9} \pm 0.4$ (2.7 σ)

$B^+ \rightarrow K^+ \nu \nu$ decays at Belle II

- Transition mediates by a virtual Z-boson.
- SM prediction for the $BF[B \rightarrow K^+\nu\nu]_{SM}$ is $(4.6 \pm 0.5) \times 10^{-6}$ [B2TIP, PTEP 2019, 123C01].
- Inclusive tagging approach : nested statistical-learning discriminators exploits efficiently topology allowing for sizeable signal (4%) while controlling large backgrounds.

$B^+ \rightarrow K^+ \nu \nu$ decays at Belle II

- Measured signal strenth $\mu = 4.2^{+2.9}_{-2.9} + 1.8_{-1.6} = 4.2^{+3.4}_{-3.2}$.
- Consistent with the bkg-only (SM) hypothesis at CL 1.3 σ (1 σ)
- Observed (expected) UL @90% CL 4.1 × 10⁻⁵ (2.6 × 10⁻⁵)
- $\mathcal{B}[B \to K^+ \nu \nu] = 1.9^{+1.3}_{-1.3} {}^{+0.8}_{-0.7} \times 10^{-5}$

Data and post-fit predictions in the signal and control region bins

Sensitivity with just 63 fb⁻¹ data is already close to previous searches with significantly large data-set.

D⁰ lifetime measurement

- Reconstructed $D^0 \rightarrow K^-\pi^+$, $D^0 \rightarrow K^-\pi^+\pi^0$, and $D^0 \rightarrow K^-\pi^+\pi^-\pi^-$ from $D^{*+} \rightarrow D^0\pi^+_s$ in 9.6 fb⁻¹ data collected in 2019.
- D*+ should not be originating from a B decay (P*_{D*}> 2.5GeV).

With 72 fb⁻¹ Belle II life-time measurements expected to be competitive with world-averages!

 $K^{-}\pi^{+}$

 $K^{-}\pi^{+}\pi^{0}$

 $K^{-}\pi^{+}\pi^{-}\pi^{+}$

In the path towards CPV in charm

- CPV in charm remains an important topic to study for the Belle II experiment.
- Preliminary study of the decay $D^{*+} \rightarrow D^0 [\pi^0 \pi^+ \pi^-] \pi^-$
- Ultimately to study time-averaged Dalitz analysis.
- Standard selection of π^+ and π^0
- D*+ should not be originating from a B-decay (P^{*}_{D*}> 2.5GeV)
- Unbinned ML fit to $\Delta M \cong M[D^{*+}]-M[D^0]$.
- Signal (two Gaussian)
 Background (Threshold function).
- Signal yield (estimated)/fb⁻¹ = 305±15

Summary

- Upcoming large and clean samples of B, D (and τ) will allow Belle II to search for NP and to improve the measurements of SM parameters.
- Improved detector and analysis methods at Belle II leads to better sensitivity.
- Results using early data demonstrates the expected performances of all the sub-detectors.
- Belle II is running well amid CoViD-19 towards its ultimate goal to record 50ab⁻¹.

Extra Slides

X(3872) rediscovery

- The exotic state X(3872) is searched in the B-decay:
- The decay $B \rightarrow K\psi(2S)[\rightarrow J/\psi\pi\pi]$ serves as a good control sample.
- Simultaneous fit is performed to combine the distribution from B⁺ and B⁰ decays.

- The X(3872) signal yield is 14.4 \pm 4.6 and the statistical significance is 4.6 σ .
- First exotic state to be rediscovered in Belle II.

SuperKEKB Luminosity Plan

SuperKEKB Luminosity Plan

$B^{0} \rightarrow K^{0} \pi^{0}$

- CP-eigenstate: flavor tagging to determine tag-side B's flavor
- Probability density function of signal-side quark flavor q:

$$P_{sig}(q) = \frac{1}{2}(1 - q \cdot \Delta w_r + q \cdot (1 - 2w_r) \cdot (1 - 2\chi_d) \cdot A_{K^0\pi^0})$$

(* integrated over B mesons' lifetime difference Δt : $P(q, \Delta t) = \frac{e^{-|\Delta t|}/\tau_{B^0}}{4\tau_{R^0}} [1 + q(A_f \cos(\Delta m_d \Delta t) + S_f \sin(\Delta m_d \Delta t))]$

 χ_{d} : time-integrated B^0 mixing probability (external input) Assume null A_{CP}^{rare} + continuum flavor symmetric

Simultaneous fit over 7 flavor tagging r-bins

Source	$\delta \mathcal{B}(\%)$
Tracking efficiency	1.8
K_S^0 reconstruction efficiency	3.8
π^0 reconstruction efficiency	3.2
Continuum-suppression efficiency	2.4
$N(B\overline{B})$ (as written in Eq. 3)	1.4
Signal model	< 0.1
Continuum background model	1.2
Total	6.1

Source	$\delta {\cal A}_{K^0\pi^0}$
Flavor tagging modelling	0.03
B^0 mixing parameter χ_d	$<\!0.01$
B-decay background asymmetry	0.03
Continuum background asymmetry	0.01
Total	0.04

$$\mathscr{B} = (8.6^{+1.7}_{-1.6} \pm 0.5) \times 10^{-6}$$

$$A_{K^0\pi^0} = -0.42^{+0.46}_{-0.44} \pm 0.04$$

Moriond-QCD 2021 | S. Sandilya