Latest *Belle II* results on beauty and charm decays

Saurabh Sandilya
(on behalf of the Belle II Collaboration)

Indian Institute of Technology Hyderabad

Rencontres de Moriond 2021
QCD & High Energy Interactions
March 29, 2021
SuperKEKB+Belle II : beauty and charm factory

- SuperKEKB collides e^+ and e^-, with CM energy at $\Upsilon(4S)$ resonance.
- $e^+e^- \rightarrow \Upsilon(4S) : 1.1 \text{ nb}$, $e^+e^- \rightarrow c\bar{c} : 1.3 \text{ nb}$, $e^+e^- \rightarrow \tau^+\tau^- : 0.92 \text{nb}$
- Large and clean samples of B mesons, D mesons and τ leptons.
- Total data set about 105 fb^{-1}. Today’s results based on up to $63 \text{ fb}^{-1} (9 \text{ fb}^{-1})$ on (off) resonance

$\mathcal{L}_{\text{goal}} = 6.5 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1}$

$\mathcal{L}_{\text{achieved}} = 2.4 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1}$
on June 2020, world record

As compared to Belle:
- Better vertex resolution
- Better Ks efficiency
- Similar K/π separation.
- Similar or better performance than Belle even under 20 times higher backgrounds.

Gianluca Inguglia (Mar 31st)
Study of $B^- \rightarrow D(\ast)h^-$

- Decays $B^- \rightarrow D(\ast)K^-$ are important for precise determination CKM angle γ/ϕ_3.
- Dominant and clean decay $B^- \rightarrow D(\ast)\pi^-$ provide good control sample.
- PID to K/π from B, signal enhanced with $M_{bc} = \sqrt{E_{beam}^2 - (\vec{P}_{BC})^2} > 5.27$ GeV/c^2;
- Unbinned ML fit in $\Delta E (= E_B - E_{beam})$ and MVA output (with event shape variables).

\[
\frac{\Gamma(B^- \rightarrow D^0 (K_S^0 \pi^- \pi^+)K^-)}{\Gamma(B^- \rightarrow D^0 (K_S^0 \pi^- \pi^+)\pi^-)} = (6.32 \pm 0.81^{+0.09}_{-0.11}) \times 10^{-2}
\]

In all the 5 reconstructed modes results agree with the PDG within 2σ
First Belle II reconstruction of $B^0 \rightarrow \pi^0\pi^0$

- $B^0 \rightarrow \pi^0\pi^0$ limits precision of isospin relations to determine α/ϕ_2.
- Unique to Belle II: final state are just four photons.
- $B \rightarrow D(K\pi\pi^0)\pi^0$ as control channel.
- Dedicated MVA for optimized photon selection.
- Dominant bkg from continuum π^0. Suppressed with another MVA.

Signal yield $14.0^{+6.8}_{-5.6}$ events, and $\text{BF}(B^0 \rightarrow \pi^0\pi^0) = 0.98^{+0.48}_{-0.39} \pm 0.27 \times 10^{-6}$
First Belle II analysis of $B^+ \rightarrow \rho^+\rho^0$

- pion-only ($\pi^+\pi^0)(\pi^+\pi^-)$ final state and broad ρ peak \Rightarrow large bkg
- Spin-0 \rightarrow spin1 + spin-1 \Rightarrow angular analysis.
- 6D fit including ΔE, CS, and ρ masses to extract signal, and helicity angles to measure fraction f_L of decays with longitudinal polarization.

$N = 104 \pm 16$

$\mathcal{B} = [20.6 \pm 3.2(stat) \pm 4.0(syst)] \times 10^{-6}$

$f_L = 0.936^{+0.049}_{-0.041}(stat) \pm 0.021(syst)$

20% better precision than Belle on 78 fb$^{-1}$ (PRL 91, 221801 (2003)).
First Belle II measurements of $B^0 \rightarrow K^0\pi^0$

$$I_{K\pi} = A_{K^+\pi^-} + A_{K^0\pi^+} \frac{B(K^0\pi^+)}{B(K^+\pi^-)} \frac{\tau_{B^0}}{\tau_{B^+}} - 2A_{K^+\pi^0} \frac{B(K^+\pi^0)}{B(K^+\pi^-)} \frac{\tau_{B^0}}{\tau_{B^+}} - 2A_{K^0\pi^0} \frac{B(K^0\pi^0)}{B(K^+\pi^-)} \frac{\tau_{B^0}}{\tau_{B^+}}$$

Precision on $A_{K^0\pi^0}$ is the most limiting input

Challenges:
- π^0 final state \Rightarrow ΔE tails
- CP-eigenstate \Rightarrow need flavor tagging

$$N(B^0 \rightarrow K^0_S\pi^0) = 45^{+9}_{-8}$$

$$B = [8.5^{+1.7}_{-1.6} \text{(stat)} \pm 1.2 \text{(syst)}] \times 10^{-6}$$

$$A_{K^0\pi^0} = -0.40^{+0.46}_{-0.44} \text{(stat)} \pm 0.04 \text{(syst)}$$

First Belle II DCPV in $K^0\pi^0$, the single most limiting input of isospin-sum-rule probing power
\(B^0 \rightarrow J/\psi K_L^0 \)

- The decay \(B^0 \rightarrow J/\psi K_L^0 \) provides an independent measurement of \(\sin(2\phi_1) \).
- \(J/\psi \rightarrow e^+e^- \) or \(\mu^+\mu^- \) and \(K_L^0 \) is reconstructed as a hadronic neutral cluster in \(K_L \) and \(\mu \) detector (KLM).
- \(p(K_L^0) \) is calculated from the direction of the cluster in KLM and reconstructed momentum of \(J/\psi \) with \(B^0 \) mass constraint.

The yield is observed with the same purity as in predecessor Belle.
Work in progress to include neutral clusters in ECL in the path of TDCPV and \(\sin(2\phi_1) \) measurements.
Inclusive photon spectrum from \(b \to s \gamma \) transition

- **B-decays with \(b \to s \gamma \) transitions**: FCNCs, suppressed at tree level and sensitive to many SM extensions.

\[
\begin{align*}
 & b & \to & W^- & t & \to & s \\
 & BF \sim 10^{-5}
\end{align*}
\]

- Monochromatic (smeared) photon energy from the two-body decay \(b \to s \gamma \).

- High energy photon \(E_\gamma^* > 1.4 \) GeV
- The \(\gamma \) should not be arising from a \(\pi^0 \) decay
- Continuum Suppression with event shape variables.
- Data driven (from off-resonance and side-bands) scaling of MC.
- Excess around expected region is clearly visible.

\[
\begin{align*}
 & \text{Belle II preliminary} \\
 & \int L dt = 62.8 \text{ fb}^{-1}
\end{align*}
\]
B$^+ \rightarrow K^+ \ell\ell$ decays at Belle II

- **B-decays with b\rightarrows$\ell\ell$ transitions:** FCNCs, suppressed at tree level and sensitive to many SM extension.

 - These decays have raised a lot of interest in the study of the LFU ratio.
 - The rare decays B$^+ \rightarrow K^+ \ell\ell$ ($\ell = e, \mu$) are seen at Belle II with just 62.8 fb$^{-1}$
 - Signal yield: $8.6^{+4.3}_{-3.9} \pm 0.4 \ (2.7\sigma)$

![Diagram of B-decay processes involving W$^-$, b, s, and l transitions](image)

![Graphs showing B$^+ \rightarrow K^+ \ell\ell$ candidates and distributions](graphs)
B$^+ \rightarrow K^+\nu\nu$ decays at Belle II

- Transition mediates by a virtual Z-boson.
- SM prediction for the $\text{BF}[B \rightarrow K^+\nu\nu]_{SM}$ is $(4.6 \pm 0.5) \times 10^{-6}$ [B2TIP, PTEP 2019, 123C01].

- **Inclusive tagging approach** : nested statistical-learning discriminators exploits efficiently topology allowing for sizeable signal (4%) while controlling large backgrounds.

- Validate with $B^+ \rightarrow K^+ J/\psi [\rightarrow \mu^+\mu^-]$

- $\mu^+\mu^-$ ignored
- K^+ momentum modified
- 2-body \rightarrow 3-body
B$^+ \to K^+ \nu\nu$ decays at Belle II

- Measured signal strength $\mu = 4.2^{+2.9}_{-2.9}^{+1.8}_{-1.6} = 4.2^{+3.4}_{-3.2}$.
- Consistent with the bkg-only (SM) hypothesis at CL 1.3 σ (1 σ)
- Observed (expected) UL @90% CL 4.1×10^{-5} (2.6×10^{-5})
- $\mathcal{B}[B \to K^+\nu\nu] = 1.9^{+1.3}_{-1.3}^{+0.8}_{-0.7} \times 10^{-5}$

Data and post-fit predictions in the signal and control region bins

Sensitivity with just 63 fb$^{-1}$ data is already close to previous searches with significantly large data-set.
D⁰ lifetime measurement

- Reconstructed \(D⁰ \to K^−\pi^+ \), \(D⁰ \to K^−\pi^+\pi^0 \), and \(D⁰ \to K^−\pi^+\pi^+\pi^- \) from \(D^{*+} \to D⁰\pi^+ \) in 9.6 fb\(^{-1}\) data collected in 2019.
- \(D^{*+} \) should not be originating from a B decay (\(P_{D^*}^* > 2.5\) GeV).

\[
t_{\text{flight}} = m_{D^0}(r_{\text{decay}} - r_{\text{prod}}) \cdot \frac{\hat{p}_{D^0}}{p_{D^0}}
\]

With 72 fb\(^{-1}\) Belle II life-time measurements expected to be competitive with world-averages!
In the path towards CPV in charm

- CPV in charm remains an important topic to study for the Belle II experiment.
- Preliminary study of the decay $D^{*+} \rightarrow D^0 [\pi^0 \pi^+ \pi^-] \pi^-$
- Ultimately to study time-averaged Dalitz analysis.

- Standard selection of π^+ and π^0
- D^{*+} should not be originating from a B-decay ($P_{D^{*+}} > 2.5 \text{GeV}$)

- Unbinned ML fit to $\Delta M \approx M[D^{*+}] - M[D^0]$.
- Signal (two Gaussian) Background (Threshold function).
- Signal yield (estimated)/fb$^{-1} = 305 \pm 15$
• Upcoming large and clean samples of B, D (and τ) will allow Belle II to search for NP and to improve the measurements of SM parameters.

• Improved detector and analysis methods at Belle II leads to better sensitivity.

• Results using early data demonstrates the expected performances of all the sub-detectors.

• Belle II is running well amid CoViD-19 towards its ultimate goal to record 50 ab^{-1}.
Extra Slides
The exotic state $X(3872)$ is searched in the B-decay:

- The decay $B \rightarrow K\psi(2S)[\rightarrow J/\psi \pi\pi]$ serves as a good control sample.
- Simultaneous fit is performed to combine the distribution from B^+ and B^0 decays.

The $X(3872)$ signal yield is 14.4 ± 4.6 and the statistical significance is 4.6σ.
- First exotic state to be rediscovered in Belle II.
SuperKEKB Luminosity Plan

Operation plan proposed for MEXT 2020 Roadmap

- L_{peak} Before IR upgrade
- L_{peak} After IR upgrade

- Int. Luminosity

Peak luminosity [10^{35} cm$^{-2}$s$^{-1}$]

Date

2019/1 2021/1 2023/1 2025/1 2027/1 2029/1 2031/1

RF [partial] IR (QCS) PXD

(PXD) (Tuning)
SuperKEKB Luminosity Plan

Belle II Online luminosity Exp: 7-8-10-12-14-16-17 - All runs

\[\int L_{\text{Recorded}} \, dt = 101.67 \, [\text{fb}^{-1}] \]

Updated on 2021/03/26 22:11 JST
B^0 \rightarrow K^0\pi^0

- CP-eigenstate: flavor tagging to determine tag-side B’s flavor
- Probability density function of signal-side quark flavor q:

\[P_{\text{sig}}(q) = \frac{1}{2}(1 - q \cdot \Delta w_r + q \cdot (1 - 2w_r) \cdot (1 - 2\chi_d) \cdot A_{K^0\pi^0}) \]

\[\Delta t: P(q, \Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \left[1 + q(A_f \cos(\Delta m_d \Delta t) + S_f \sin(\Delta m_d \Delta t)) \right] \]

\(\chi_d \): time-integrated B^0 mixing probability (external input)
Assume null \(A_{CP} \) + continuum flavor symmetric

- Simultaneous fit over 7 flavor tagging r-bins

<table>
<thead>
<tr>
<th>Source</th>
<th>(\delta B(%))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracking efficiency</td>
<td>1.8</td>
</tr>
<tr>
<td>(K_S^0) reconstruction efficiency</td>
<td>3.8</td>
</tr>
<tr>
<td>(\pi^0) reconstruction efficiency</td>
<td>3.2</td>
</tr>
<tr>
<td>Continuum-suppresion efficiency</td>
<td>2.4</td>
</tr>
<tr>
<td>N((B\bar{B})) (as written in Eq. 3)</td>
<td>1.4</td>
</tr>
<tr>
<td>Signal model</td>
<td><0.1</td>
</tr>
<tr>
<td>Continuum background model</td>
<td>1.2</td>
</tr>
<tr>
<td>Total</td>
<td>6.1</td>
</tr>
</tbody>
</table>

\[B = (8.6^{+1.7}_{-1.6} \pm 0.5) \times 10^{-6} \]

\[A_{K^0\pi^0} = -0.42^{+0.46}_{-0.44} \pm 0.04 \]