
Belle

BELLE2-CONF-PH-2021-008
June 9, 2021

Study of B → D(∗)h decays using 62.8 fb−1 of Belle II data

F. Abudinén,49 I. Adachi,25, 22 R. Adak,19 K. Adamczyk,75 P. Ahlburg,110 J. K. Ahn,57

H. Aihara,128 N. Akopov,134 A. Aloisio,99, 42 F. Ameli,46 L. Andricek,66 N. Anh Ky,39, 14

D. M. Asner,3 H. Atmacan,112 V. Aulchenko,4, 77 T. Aushev,27 V. Aushev,90

T. Aziz,91 V. Babu,12 S. Bacher,75 S. Baehr,53 S. Bahinipati,29 A. M. Bakich,127

P. Bambade,107 Sw. Banerjee,117 S. Bansal,82 M. Barrett,25 G. Batignani,102, 45

J. Baudot,108 A. Beaulieu,130 J. Becker,53 P. K. Behera,32 M. Bender,62 J. V. Bennett,121

E. Bernieri,47 F. U. Bernlochner,110 M. Bertemes,35 E. Bertholet,93 M. Bessner,114

S. Bettarini,102, 45 V. Bhardwaj,28 B. Bhuyan,30 F. Bianchi,104, 48 T. Bilka,7 S. Bilokin,62

D. Biswas,117 A. Bobrov,4, 77 A. Bondar,4, 77 G. Bonvicini,132 A. Bozek,75 M. Bračko,119, 89
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Abstract
We report measurements related to hadronic B decays to final states that contain charm mesons.

The analyses are performed on a 62.8 fb−1 data set collected by the Belle II experiment at a center-

of-mass energy corresponding to the mass of the Υ (4S) resonance. The measurements reported

are for the decay modes B− → D0h−, B− → D∗0h−, B̄0 → D+h− and B̄0 → D∗+h−, where

h = π or K. These modes are either signal or control channels for measurements related to the

unitarity triangle angle γ in direct or time-dependent CP -violation measurements. The reported

observables are the ratios between the B → D(∗)K and B → D(∗)π decay rates, which are found

to be in agreement with previous measurements.
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1. INTRODUCTION

We report the first measurements at Belle II of observables related to B− → D(∗)0h− and
B̄0 → D(∗)+h− decays, where h− is either a π− or K− meson. (Throughout this paper charge-
conjugate is implied.) These decay modes are of interest for two reasons. Firstly, the decays
B− → D(∗)0π− and B̄0 → D(∗)+π− arise from the favoured b → c transition, which makes
them some of the most abundant hadronic B decays with branching fractions between 0.25%
and 0.5% [1]. Therefore, these modes are important control channels for other fully hadronic
B-decay measurements, such as those of time-dependent CP violation and charmless B
decays. Secondly, the decays B− → D(∗)0K− are sensitive to the b− d Cabibbo-Kobayashi-
Maskawa (CKM) [2] unitarity-triangle angle φ3 (or γ) [3]. A more precise determination of
φ3 is one of the primary goals of Belle II [4].

An important set of observables related to these modes are the ratios between the decay
rates:

R(∗)0 =
Γ(B− → D(∗)0K−)

Γ(B− → D(∗)0π−)
(1)

R(∗)+ =
Γ(B̄0 → D(∗)+K−)

Γ(B̄0 → D(∗)+π−)
. (2)

These observables can test theoretical predictions, particularly of factorization and SU(3)
symmetry breaking in quantum chromodynamics (QCD) [5]. We present measurements
of R(∗)0/+ for four decay modes: (1) B− → D0h−, D0 → K−π+ or D0 → K0

Sπ
+π−; (2)

B− → D∗0h−, D∗0 → D0π0, D0 → K−π+; (3) B̄0 → D+h−, D+ → K−π+π+; and (4)
B̄0 → D∗+h−, D∗+ → D0π+, D0 → K−π+.

Among these decays B− → D0(K0
Sπ

+π−)K− is the single most sensitive mode to deter-
mine φ3 [6–8] at Belle II [4]. Therefore, the demonstration of an efficient reconstruction of
this mode at Belle II is a significant first step toward a determination of φ3. Hence, a more
complex analysis is performed for B− → D0(K0

Sπ
+π−)K− compared to the other modes,

which are used as high-statistics control samples or for tests of QCD.

The remainder of this paper is organised as followed. Section 2 describes the Belle II
detector, as well as the data and simulation samples used in these analyses. The event
selection requirements are outlined in Sec. 3. Section 4 describes how the values of R(∗)0/+

are determined from the data, the results are presented and the evaluation of systematic
uncertainties described. Section 5 gives the conclusion and outlook.

2. THE BELLE II DETECTOR AND DATA SAMPLE

Belle II [9] is a particle-physics spectrometer with almost 4π solid-angle coverage, which
is designed to reconstruct the products of electron-positron collisions produced by the Su-
perKEKB asymmetric-energy collider [10], located at the KEK laboratory in Tsukuba,
Japan. The energies of the electron and positron beams are 7 GeV and 4 GeV, respec-
tively. Belle II comprises several subdetectors arranged around the interaction point in a
cylindrical geometry. The innermost subdetector is the vertex detector (VXD), which uses
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position-sensitive silicon layers to sample the trajectories of charged particles (tracks) in the
vicinity of the interaction region to extrapolate the decay positions of their long-lived parent
particles. The VXD includes two inner layers of DEPFET-based pixel sensors and four outer
layers of double-sided silicon microstrip sensors. The second pixel layer is currently incom-
plete covering only one sixth of the azimuthal angle. Charged-particle momenta and charges
are measured by a large-radius, helium-ethane, small-cell central drift chamber (CDC), which
also offers charged-particle-identification information through a measurement of particles’
specific ionization. A Cherenkov-light angle and time-of-propagation (TOP) detector sur-
rounding the chamber provides charged-particle identification in the central detector volume,
supplemented by proximity-focusing, aerogel, ring-imaging Cherenkov (ARICH) detectors
in the forward region with respect to the electron beam. A CsI(Tl)-crystal electromagnetic
calorimeter (ECL) provides electron-energy measurements and photon reconstruction. A
solenoid surrounding the calorimeter generates a uniform axial 1.5 T magnetic field filling
its inner volume. Layers of plastic scintillator and resistive-plate chambers, interspersed
between the magnetic flux-return iron plates, allow for identification of K0

L and muons. The
subdetectors most relevant for this work are the VXD, CDC, TOP, ARICH and ECL.

We use simulated data to optimize the event selection, study background and compare the
distributions observed in experimental data with expectations. We use signal-only simulated
data to model relevant signal features for fits and determine selection efficiencies. The so-
called generic sample consists of Monte Carlo (MC) simulated events that include B0B̄0,
B+B−, uū, dd̄, ss̄, and cc̄ processes in realistic proportions and corresponds in size to
more than ten times that of the Υ (4S) data. The generic MC sample is used to study
background and make comparisons with the data. In addition, one million signal-only
events are generated for each decay channel. The B-meson decays are simulated with the
EvtGen generator [11] and the effect of final-state electromagnetic radiation is simulated
by the Photos package [12]. The simulation of the continuum background process e+e− →
qq̄ (q = u, d, s, c) is carried out with the KKMC [13] generator interfaced to Pythia [14].
The interactions of particles with the detector are simulated using Geant4 [15].

The data sample consists of all good-quality runs collected at a center-of-mass energy
corresponding to the the Υ (4S) resonance from March 11th, 2019 until July 1st, 2020. The
sample size corresponds to an integrated luminosity of 62.8 fb−1. Events used in the analysis
are required to satisfy data-skimming selection criteria, which reduces sample sizes such that
the time required to analyse the full data sample is shortened significantly. These skimming
criteria are placed on the total energy and charged-particle multiplicity in the event; the
selection is almost 100% efficient on signal events rejecting only beam background and low-
multiplicity events, such as those produced in two-photon collisions. All data are processed
using the Belle II analysis software framework [16].

3. EVENT SELECTION AND RECONSTRUCTION

The selection has been designed to be largely common among the modes studied. An
overview of the selection is as follows. Initially we select π+, K+, π0 and K0

S candidates
with baseline criteria that ensure high efficiency and purity. These candidates are combined
to form D and D∗ candidates, which are then combined with an h− candidate to form B
candidates. Constrained vertex and kinematic fits are applied to ensure consistency with
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the topology of the decay. We reconstruct B− → D0h−, B− → D∗0h−, B̄0 → D+h− and
B̄0 → D∗+h−. Further, we reconstruct D∗+ → D0π+ and D∗0 → D0π0 cascades, as well as
D0 → K−π+, K0

Sπ
+π− and D+ → K−π+π+ decays. The remainder of this section describes

the details of the selection criteria.

Charged particle tracks originating from e+e− collisions are selected by requiring |dr| <
0.5 cm and |dz| < 3 cm, where dr and dz represent the distance of closest approach to
the interaction point (IP) in the plane transverse to and along the z direction, respectively.
(In the Belle II coordinate system, the z axis is aligned with the direction opposite to the
positron beam.) These tracks are then identified as either K+ or π+ using information
from the CDC, TOP and ARICH detectors. We apply likelihood-ratio requirements of
L(K/π) = LK

LK+Lπ > 0.6 for a kaon candidate and L(K/π) < 0.6 for a pion candidate,

where LK (Lπ) is the likelihood of a track being a kaon (pion). In order to reduce the pion
fake rate, we require cos θ > −0.6, where θ is the polar angle in lab frame of the π or K
candidate coming directly from the B decay, which is referred to as the prompt track. This
requirement removes the tracks in the backward part of the detector, which are outside the
TOP or ARICH acceptance. The kaon identification efficiency is approximately 83% and
the pion-to-kaon misidentifiaction rate is about 10%; the latter quantity is obtained from
the simultaneous fit to B → D(∗)h− data described in Sec. 4.

For K0
S reconstruction, we use pairs of oppositely charged tracks that originate from

a common space-point and have an invariant mass consistent with the nominal K0
S mass

[1], when the tracks are reconstructed assuming the pion mass hypothesis. No particle
identification criteria are applied to these tracks. To improve the purity of the K0

S selection,
we use a multivariate discriminant implemented as a fast boosted decision tree (FBDT).
Five variables are used as inputs to the FBDT:

1. The azimuthal angle between the momentum vector and the vector between the IP
and the decay vertex of the K0

S candidate.

2. The smaller distance of closest approach between the extrapolated track of one of the
pion candidates and the IP.

3. The longer distance of closest approach between the extrapolated track of the other
pion candidate and the IP.

4. The flight length of the K0
S candidate in the plane transverse to the beam direction.

5. The difference between the measured mass of K0
S candidate and the nominal K0

S

mass [1] divided by uncertainty on the measured K0
S candidate mass.

The efficiency and purity of the K0
S selection are 91% and 97%, respectively.

We reconstruct π0 candidates from photon pairs. The energy of each photon is required
to be greater than 30, 80, and 60 MeV depending upon whether it is reconstructed in
the barrel, forward, and backward endcap region of the ECL, respectively; the differing
thresholds are motivated by the different levels of beam-induced background within the
regions. Requirements are placed on the helicity angle of the π0 decay to further reduce
combinatorial candidates constructed from the beam-induced background. We also restrict
the diphoton mass to be between 120 < Mγγ < 145 MeV/c2. The mass of the π0 candidates
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is constrained to its known value in subsequent kinematic fits to improve its four-momentum
resolution.

Invariant-mass restrictions are placed on the the D and D∗ candidates, formed from
combinations of the selected π+, K+, K0

S and π0 candidates, to reduce combinatorial back-
ground:

• 1.84 < M(K−π+) < 1.89 GeV/c2;

• 1.85 < M(K0
Sπ
−π+) < 1.88 GeV/c2;

• 1.844 < M(K−π+π+) < 1.894 GeV/c2;

• 0.140 < M(D0π0)−M(D0) < 0.144 GeV/c2; and

• 0.143 < M(D0π+)−M(D0) < 0.147 GeV/c2.

These intervals correspond to between ±3.5σ and ±4.0σ about the nominal D(∗) masses
[1], where σ is the invariant-mass resolution. To improve the resolution of the selected D(∗)

candidate’s four-momentum, it is reconstructed using a kinematic fit that constraints the
reconstructed mass to the known D(∗) mass [1]. This fit improves the resolution of the
beam-energy difference [defined in Eq. (4)] by approximately 11%.

B-meson candidates are reconstructed by combining a D or D∗ candidate with a charged
track without any particle identification criteria applied. The kinematic variables used to
discriminate B decays from combinatorial or partially reconstructed background are the
beam-energy-constrained mass

Mbc =
1

c2

√√√√E2
beam −

(∑
i

~pic

)2

, (3)

and the beam-energy difference

∆E =
∑
i

Ei − Ebeam , (4)

where Ebeam is the beam energy and (Ei, ~pic) is the four-momentum of the ith decay product
of the B candidate; all quantities are calculated in the center-of-mass frame. For correctly re-
constructed signal, Mbc peaks at the nominal mass of the B meson [1] and ∆E peaks at zero.
We retain candidates with Mbc > 5.27 GeV/c2. The distribution of ∆E for selected candi-
dates is fit to determine the values of R(∗)+/0. Therefore, mode-dependent ∆E criteria are
placed to define the interval over which the distribution is fit. The reason for the differing ∆E
ranges is two-fold: to remove partially reconstructed background and to increase sideband
control regions for the two-dimensional fit in the mode B− → D(K0

Sπ
+π−)h−. The ∆E crite-

ria are −0.13 < ∆E < 0.15 GeV for B− → D0(K−π+)h− and B− → D∗0[D0(K−π+)π0]h−,
−0.13 < ∆E < 0.18 GeV for B− → D0(K0

Sπ
+π−)h−, and −0.15 < ∆E < 0.15 GeV for

B̄0 → D(∗)+h−.

There are a few background modes that can peak in the same manner as the signal
(‘peaking background’). The decay B− → J/ψ(`+`−)K− may contribute to the background
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for B− → D0(K−π+)π− or similarly, B̄0 → J/ψ(`+`−)K∗0 for B̄0 → D+(K−π+π+)π−. To
reject this background arising from particle misidentification, we veto candidates satisfying
M(ππ) being within ±3σ of the nominal J/ψ mass.

Continuum background is suppressed by requiring the ratio of second and zeroth Fox-
Wolfram moments [17], R2 < 0.3. This criterion is applied for all modes except for B− →
D(K0

Sπ
+π−)h−, for which we use instead an FBDT that combines variables known to pro-

vide statistical discrimination between B-meson signals and continuum background. The
variables are also required to have negligible correlation with ∆E and Mbc. These quanti-
ties are associated to event topology, which relate to both the whole event and signal-only
angular configurations. We train the classifier to identify statistically significant signal and
background features using simulated samples. We use the following event topology variables
for differentiating the signal and continuum: the likelihood ratio obtained from Fisher dis-
criminants formed from modified Super-Fox-Wolfram moment [18], the absolute value of the
cosine of the angle between the B candidate and the z direction in the e+e− center-of-mass
frame, the cosine of the angle between the thrust axis of the signal B and thrust axis of
rest-of-the-event (ROE), the difference between the position of the signal B decay vertex
and the vertex of the ROE in the z direction, and B flavor-tagger output [19]. The output
of the FBDT lies in the range zero to one, where signal events peak around one and con-
tinuum events peak around zero. The fit to data in this mode includes a variable related to
the FBDT output as well as ∆E. However, to simplify the background description of this
variable, the FBDT output is required to be greater than 0.2; this criterion rejects 67% of
background while retaining 96% of signal.

After applying all the selection criteria, there can be more than one candidate per event
in the B− → D(K0

Sπ
+π−)h− mode with an average multiplicity of approximately 1.06. In

such events we retain the candidate that has M(K0
Sπ

+π−) and Mbc values closest to the
corresponding nominal values [1]; the efficiency of this criterion is approximately 65%. The
number of events with multiple candidates is negligible in all other decay modes studied.

4. RESULTS

We select both B → DK and B → Dπ decays, the B → Dπ branching fraction is
typically an order of magnitude larger than that of B → DK, hence it can serve as an
excellent calibration sample for the signal determination procedure. Furthermore, there
is a significant background from B → Dπ decays in the B → DK sample due to the
misidentification of the charged pion as a kaon; a simultaneous fit to samples enhanced in
prompt tracks that are either pions [L(K/π) < 0.6] or kaons [L(K/π) > 0.6], allows this
cross-feed to be directly determined from data. The signal extraction is done by fitting
only the ∆E distribution simultaneously in pion and kaon enhanced samples for all the
modes other than B− → D0h− where D0 → K0

Sπ
+π−. In this last case, the signal yield

is determined from a two-dimensional extended maximum-likelihood fit to ∆E and the
transformed FBDT output (C ′). The continuum suppression FBDT output is transformed
using the µ-transformation [20, 21]. The principal advantage to using this transformation
compared to the commonly used Gaussian transformation (see for example Ch. 9 in Ref. [22])
is that the PDFs can be described by analytic functions that have fewer parameters.

The yields of the signal B → D(∗)π and B → D(∗)K, and their cross-feed, in the pion
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FIG. 1. Signal-enhanced (left) ∆E and (right) C ′ distributions for B− → D0(K0
Sπ

+π−)h− for

the pion-enhanced (top) and kaon-enhanced (bottom) data sample. The projection of the total

and individual components of a simultaneous unbinned maximum-likelihood fit are overlaid. The

signal-enhancement is achieved by requiring |∆E| < 0.03 GeV and 0.65 < C ′ < 1 on the C ′ and

∆E distributions, respectively.

and kaon-enhanced samples can be expressed by the following relations:

ND(∗)π
pion enhanced = (1− κ)ND(∗)π

tot (5)

ND(∗)π
kaon enhanced = κND(∗)π

tot (6)

ND(∗)K
kaon enhanced = εR(∗)ND(∗)π

tot (7)

ND(∗)K
pion enhanced = (1− ε)R(∗)ND(∗)π

tot . (8)

Here the pion fake rate κ is a free parameter, as well as R(∗) and ND(∗)π
tot , respectively the ratio

between the decay rates defined in Eq. (2) and the signal yield of B → D(∗)π mode. Due to
the low yield of B → D(∗)K cross feed to the pion-enhanced sample, the kaon identification
efficiency ε is fixed to the value obtained from the tagged D control samples that are used
to calibrate the particle identification [23] performance.

Three background components are considered:

• continuum qq̄ background;

• combinatorial BB̄ background, in which the final state particles could be coming from
both B mesons in an event; and
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TABLE I. R+ and R0 results compared to those reported by the LHCb Collaboration [24, 25].

B− → D0(K−π+)h− B− → D0(K0
Sπ

+π−)h− B̄0 → D+h−

Belle II R+/0 (×10−2) 7.66± 0.55 +0.11
−0.08 6.32± 0.81 +0.09

−0.11 9.22± 0.58± 0.09

LHCb R+/0 (×10−2) 7.77± 0.04± 0.07 [24] 7.77± 0.04± 0.07 [24] 8.22± 0.11± 0.25 [25]

• cross-feed peaking background from B+ → Dh+, where h = π, K, in which the charged
kaon is misidentified as a pion or vice versa.

There is no significant correlation between ∆E and C ′, so the two-dimensional PDF for each
of the components is the product of one-dimensional ∆E and C ′ PDFs. The sum of a double
Gaussian function and an asymmetric Gaussian function with a common mean is used as the
PDF to model the ∆E signal component in both samples. A uniform distribution is used to
model the C ′ signal component in both samples. The continuum background distribution is
modeled with a first-order polynomial in ∆E and by the sum of two exponential functions
in C ′. The ∆E distribution of combinatorial BB̄ background in Dπ is described by an
exponential function. A first-order polynomial is added to the above two PDFs in the case
of B → DK decays. The C ′ distribution in the B → Dπ (B → DK) sample is modeled by
a first-order (third-order) polynomial. The cross-feed peaking background in ∆E is modeled
by the sum of a (double) Gaussian and an asymmetric Gaussian in the B → DK (B → Dπ)
sample and a first-order polynomial is used to model the C ′ distribution for both samples.

All yields are determined from the fit to data. For the ∆E PDFs the following parameters
are determined in the fit to data: the signal PDF mean value, polynomial coefficient for
continuum background ∆E distribution, the exponential parameter for BB̄ background,
and the difference between the means of the signal and cross-feed peaks in the B → DK
sample. For the C ′ PDFs the following parameters are determined from the fit to data: the
polynomial coefficient of the BB̄ background and one of the exponential parameters of the
continuum background. All other shape parameters are fixed to those obtained from fits to
appropriate MC samples. A scaling factor is applied on the ∆E signal resolution, which is
a free parameter in the fit. The signal-enhanced fit projections for the data are shown in
Fig. 1, where the signal regions are defined as |∆E| < 0.03 GeV and 0.65 < C ′ < 1.

For the other modes, in which continuum background is suppressed by simply requiring
R2 < 0.3, the signal yield is extracted using a simultaneous fit to only the ∆E distributions
in both samples. In few modes, there remains a peaking background from charmless hadronic
B decays which have the same final state as the signal, e.g. B → Kρ for the B → D(Kπ)π
mode. The peaking background yield is fixed from MC simulation properly scaled by their
measured branching fraction [1]. The fit projections for the data are shown for B− →
D0(K−π+)h−, B− → D∗0[D0(K−π+)π0]h−, B̄0 → D+(K−π+π+)h− and B̄0 → D(∗)+h−

in Figs. 2, 3, 4 and 5, respectively. The measured values of R(∗)+ and R(∗)0 are listed in
Tables I and II, respectively. The results reported by the LHCb Collaboration [24–26] are
also given in these tables; these measurements dominate the world-average values reported
by the Particle Data Group (PDG) [1].

We consider several sources of systematic uncertainties. We assume the sources are
independent, such that the total systematic uncertainty is the sum in quadrature of the con-
tributions from individual sources. The individual contributions to the R(∗)+/0 systematic
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FIG. 2. ∆E distributions for B− → D0(K−π+)h− candidates that are (left) pion-enhanced and

(right) kaon-enhanced from an 62.8 fb−1 data sample. The projection of the total and individual

components of a simultaneous unbinned maximum-likelihood fit are overlaid.
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and (right) kaon-enhanced from an 62.8 fb−1 data sample. The projection of the total and indi-

vidual components of a simultaneous unbinned maximum-likelihood fit are overlaid.

TABLE II. R∗+ and R∗0 results compared to those reported by the LHCb Collaboration [24, 26].

B− → D∗0h− B̄0 → D∗+h−

Belle II R∗+/0 (×10−2) 6.80± 1.01± 0.07 5.99± 0.82 +0.17
−0.08

LHCb R∗+/0 (×10−2) 7.93± 0.11± 0.56 [24] 7.76± 0.34± 0.26 [26]

uncertainties, as well as the total systematic uncertainties, are reported in Table III. The
major three sources of systematic uncertainty are the momentum scale factor applied in the
reconstruction to account for the incorrect magnetic field mapping, the fixed parameters
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FIG. 4. ∆E distributions for B̄0 → D+(K−π+π+)h− candidates that are (left) pion-enhanced and

(right) kaon-enhanced from an 62.8 fb−1 data sample. The projection of the total and individual

components of a simultaneous unbinned maximum-likelihood fit are overlaid.
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FIG. 5. ∆E distributions for B̄0 → D∗+(D0(K−π+)π+)h− candidates that are (left) pion-enhanced

and (right) kaon-enhanced data sample from an 62.8 fb−1 data sample. The projection of the total

and individual components of a simultaneous unbinned maximum-likelihood fit are overlaid.

in the PDF shape, and the kaon efficiency. The momentum of charged particle tracks is
corrected from the calibration results obtained with invariant masses of well-known reso-
nances. Those corrections are varied within their uncertainty. Those due to the ∆E PDFs
for the DK signal, the Dπ signal, and the Dπ cross-feed are evaluated by varying the shape
parameters by ±1σ, by replacing common parameter (∆E mean of the Dπ and DK compo-
nents) by a different parameter. The uncertainties due to the kaon identification efficiency
are obtained by varying the assumed values by their uncertainties as obtained in data from
the tagged D control samples. The uncertainty due to the peaking background is obtained
by varying its yield by the uncertainty in its estimation.
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TABLE III. Systematic uncertainties for R∗+/0 measurements.

D0(K0
Sπ

+π−)h− D0(K−π+)h− D∗0h− D+h− D∗+h−

Kaon identification (×10−2) +0.008
−0.008

+0.010
−0.011

+0.020
−0.019

+0.023
−0.015

+0.014
−0.013

Momentum correction (×10−2) +0.065
−0.100

+0.109
−0.064

+0.016
−0.018

+0.054
−0.040

+0.161
−0.030

PDF shape (×10−2) +0.066
−0.053

+0.030
−0.034

+0.066
−0.064

+0.093
−0.079

+0.039
−0.036

Cross-feed fraction (×10−2) − +0.004
−0.005

+0.028
−0.025

+0.009
−0.003

+0.017
−0.014

Common mean (×10−2) +0.025 −0.039 +0.004 −0.003 −0.067

Peaking background (×10−2) − ±0.013 − +0.022
−0.015

+0.002
−0.002

Total (×10−2) +0.093
−0.114

+0.114
−0.084

+0.071
−0.068

+0.112
−0.091

+0.166
−0.083

5. SUMMARY

We have reported measurements of the decay rate ratio between B → D(∗)K− and B →
D(∗)π−. We use data collected by the Belle II experiment in 2019 and 2020, corresponding
to 62.8 fb−1 of integrated luminosity, collected at the Υ (4S) resonance. The measurements
reported are for the decay modes B− → D0h−, B− → D∗0h−, B̄0 → D+h− and B̄0 →
D∗+h−, where h = π or K. The results are compatible with the world-average values
reported by the PDG [1].
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